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Abstract

One aim of component-based software engineering (CBSE) is to enable the prediction of extra-functional properties, such as
performance and reliability, utilising a well-defined composition theory. Nowadays, such theories and their accompanying prediction
methods are still in a maturation stage. Several factors influencing extra-functional properties need additional research to be
understood. A special problem in CBSE stems from its specific development process: Software components should be specified
and implemented independently from their later context to enable reuse. Thus, extra-functional properties of components need to
be specified in a parametric way to take different influencing factors like the hardware platform or the usage profile into account.
Our approach uses the Palladio Component Model (PCM) to specify component-based software architectures in a parametric way.
This model offers direct support of the CBSE development process by dividing the model creation among the developer roles. This
paper presents our model and a simulation tool based on it, which is capable of making performance predictions. Within a case
study, we show that the resulting prediction accuracy is sufficient to support the evaluation of architectural design decisions.
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1. Introduction

In CBSE, a central idea is to build complex software sys-
tems by assembling basic components. The initial goal of
CBSE was to increase the level of reuse. However, compos-
ite structures may also increase the predictability of the
system during early design stages, because certified models
of individual components can be composed, enabling soft-
ware architects to reason on the composed structure. This
is important for functional properties, but also for extra-
functional properties like performance (i.e., response time,
throughput, resource utilisation) and reliability (i.e., mean
time to failure, probability of failure on demand).

Prediction methods for performance and reliability of
general software systems are still limited and rarely used
in industry [2,5]. Especially for component-based systems
further challenges arise. Opposed to object-oriented sys-
tem development and performance prediction [59], where
developers design and implement the whole system, several
independent developer roles are involved in the creation
of a component-based software system. Component devel-
opers produce components that are assembled by software
architects and deployed by system allocators. The diverse
information needed for the prediction of extra-functional
properties is thus spread among these developer roles.

Most existing methods for component-based perfor-
mance prediction require software architects to model the
system based on specifications of single components. It is
often assumed that the software architect can provide miss-
ing information. This assumption is necessary because of
today’s incomplete component specifications. For example,
in [8] software architects model the control flow through
the component-based architecture, which is impossible if
components are black boxes and the dependencies between
provided and required interfaces are unknown. Thus, a
special component specification is needed.

Other approaches neglect factors affecting the perceived
performance of a software component like influences by
external services [?,56], changing resource environments
[10,25,40], or different input parameters [8]. However, for
accurate predictions, all these dependencies have to be
made explicit in component specifications. This is only par-
tially possible in approaches based on the UML and the
SPT profile [46], which does not provide facilities to specify
parameter dependencies, does not explicitly support differ-
ent developer roles, and complicates the implementation of
model transformations as discussed in this paper.
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With the Palladio 1 Component Model (PCM), a meta-
model allowing the specification of performance-relevant
information of a component-based architecture, we provide
an original and innovative approach to address the identi-
fied problems. First, our model is designed with the explicit
capability of dividing the model artifacts among the differ-
ent roles involved in a CBSE development process. These
artifacts can be considered as instances of domain specific
modelling languages (DSL), which capture the information
available to a specific developer role. Secondly, the model
reflects that a component can be used in changing contexts
with respect to the components it is connected to, the al-
location of the component on resources, or different usage
contexts. This is done by specifying parametric dependen-
cies, which allow deferring context decisions like assembly
or allocation. By this, our design and analysis meta models
are the first ones, which explicitly include all factors influ-
encing the performance of a software-component, namely
the factors: implementation, performance of external ser-
vices, performance of execution environment and usage pro-
file.

For an initial validation, we have developed a tool capa-
ble of simulating instances of the PCM to obtain perfor-
mance metrics. We used this tool in a case study to simulate
the performance of a component-based online shop. Com-
paring the simulation results with measurements made on
an implementation of the architecture enabled estimating
the accuracy of our simulations.

The contributions of this paper are
(i) a component meta-model for Quality-of-Service

(QoS) predictions and
(ii) an according performance simulation including a case

study.
(iii) A discussions on the weaknesses of UML for model-

driven performance prediction and
(iv) a discussion of using UML versus a dedicated meta-

model for component-based performance prediction.
(v) A discussion of applying different prediction tech-

niques at different stages of software development.
The PCM a) is based on our CBSE role concept [35], b)
allows parametric QoS specifications which include a com-
prehensive set of influencing factors on component perfor-
mance and c) supports arbitrary stochastic distribution
functions to specify component behaviour as well as to pre-
dict QoS properties. Instances of the meta-model are sim-
ulated with a simulation tool specialised for the features of
the PCM based on model transformations. This paper ex-
tends the work presented in [7] by (a) a new simulation ap-
proach for PCM instances based on model transformations,
(b) a thorough comparison of UML versus PCM and (c)
the discussion of various alternative prediction techniques
for the PCM with their strengths and weaknesses.

1 Our component model is named after the Italian renaissance ar-
chitect Andrea Palladio (1508-1580), who, in a certain way, tried to

predict the aesthetic impact of his buildings in advance.

This paper is structured as follows: In Section 2, we re-
view related work. Section 3 introduces our CBSE role con-
cept and provides details of the component meta-model.
Examples of how the parametric dependencies can be spec-
ified and evaluated are given in Section 4. We provide ex-
tensive tool support for modelling PCM instances as de-
scribed in Section 5. Section 6 details on the developed
simulation tool before Section 7 compares the simulation
approach with other evaluation methods. A discussion of
different shortcomings of the UML for component-based
performance prediction follows in Section 8. Assumptions
and limitations of our work are discussed in Section 9. In
Section 10, a case study applying our simulation tool to a
model instance is presented. Finally, we conclude our paper
and outline future work.

2. Related Work

The Palladio Component Model is related to CBSE, per-
formance prediction methods, usage modelling, and simu-
lation approaches.

Although the concept of reusable software components
has been discussed since the famous 1968 NATO con-
ference on software engineering [42], CBSE has gained
wide-spread attention only since the 1990s due to the fail-
ure of object-oriented programming to effectively support
reuse [13,27,60]. The PCM follows Szyperski’s definition of
contractually specified, independently deployable software
components [60] and has extended the component-based
development process model of Cheeseman and Daniels [13]
with model-driven performance predictions [35].

A number of component models have been developed
to support component-based development [37]. They are
related to architectural description languages (ADL) [44].
Industrial component models, such as EJB, COM, or
CCM, support specific implementation tasks and do not
deal explicitly with extra-functional properties. They lack
component concepts established in academia, such as ex-
plicit composite components or protocol-enhanced inter-
faces. Academic component models serve specific analysis
purposes (e.g., Koala, SOFA, Kobra, ROBOCOP, PECT,
COMQUAD, PECOS, Pin) like interoperability check-
ing or analysing effects of runtime reconfiguration. From
these, PECT [30], ROBOCOP [11], and COMQUAD [22]
explicitly deal with extra-functional properties.

However, their support for context-independent QoS
specification of components is limited. PECT’s compo-
nent specifications do not allow adaptation for different
resource environments, as the resource demands are speci-
fied as timing values measured on a specific platform. The
same is true for ROBOCOP, which however allows the
specification of timing values dependent to constant input
parameters. The PCM additionally allows dependencies
to output parameters to model more complex component
interaction and stochastic characterisations of parameter
values, which provide more refined results than constants.
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COMQUAD allows the component developer to provide
any kind of performance annotation, therefore the re-
sulting specification by different developers can easily be
incompatible, which reduces their reusability.

For performance predictions, researchers have cre-
ated many analytical models, such as queueing networks
[20,31,32,38,45], Markov chains [61], layered queueing
networks [55,63], stochastic Petri nets [4], and stochastic
process algebras [29]. These models mainly focussed on
accurate modelling of system resources before Smith et. al.
highlighted the influence of software with their software
performance engineering (SPE) approach [57,59].

The SPE community has put much effort into creating
designer-friendly performance modelling notations, which
can be transformed into the analytical models mentioned
before (comprehensive survey in [2]). These efforts led to
defining performance-related extensions to UML as the de
facto standard modelling language, namely the UML SPT
profile [46], and the UML MARTE profile [47], which is still
under development. Recently, several meta-models of the
performance domain have emerged from the SPE commu-
nity [15], namely SPE-MM [58], CSM [51], and KLAPER
[24] providing a solid basis for model transformations. The
PCM meta-model includes concepts similar to these meta-
models, but focusses on component-based software archi-
tectures.

Several approaches for component-based performance
prediction have been proposed during the last decade (sur-
vey in [5]). Measurement-based approaches [14,19,33,40,65]
use existing systems or prototypes to measure performance
properties and calibrate performance models with the re-
sults. Performance analysts may then use the models to
analyse the effects of changed workloads or faster hard-
ware with low effort. Model-based approaches, such as
the PCM, [8,10,11,?,23,25,30,56,64] also support creating
performance models from scratch.

Some of these approaches target the performance spec-
ification of reusable components like the PCM, but often
neglect single influencing factors (such as external service
calls, usage profile, and specifics of the execution environ-
ment). Sitaraman al. [56] use extended Big-O notations to
specifiy performance of software components depending on
input parameters, but neglect parameters of calls to re-
quired services. Their specification language furthermore
does not support external service calls. Gomaa et al. [23]
require component developers to specify fixed timing val-
ues for resource usages and probabilities for control flow
branches. However, both properties may depend on param-
eter values at runtime, which are unknown to component
developers at design time. Instead, the PCM allows com-
ponent developers to specify parameter dependencies for
these properties.

Bertolino et al. [8] provide a component performance
specification parametrised over the execution environment.
This specification does not make calls by components to
required services explicit and does not include any notion
of service parameter dependencies. Hamlet et al. [25] mod-

elled software components as functions transforming val-
ues. They measured how these components propagate in-
puts to other components to gain accurate performance
predictions. In the PCM, component developers can spec-
ify these input propagations so that software architects do
not have to measure components, which may not be avail-
able for testing.

The component performance specifications based on lay-
ered queueing networks modelled by Wu et al. [64] allow
resource demands parameterised for different execution en-
vironments. These specifications may include dependen-
cies to parameters, but these are not specialised stochastic
characterisations as in the PCM. The parameterisation of
branch probabilities or loop iteration numbers is not fore-
seen in that approach as well as the parameterisation of
other parameter characterisations, which is possible in the
PCM. Eskenazi et al. [?] do allow parameter dependencies
to control flow branches in a simple manner, but assume
components without external service calls.

Finally, many performance analysts use simulation tech-
niques to evaluate their models. Simulation approaches
from the SPE community can be found in [1,3,16,18].
However, they do not target component-based software
architectures. We used the Desmo-J framework [21] to
implement our performance simulation. Other tools sup-
porting simulation are CSIM [17], Opnet [12], SPE-ED
[59], umlPSI [3], and SSJ [39].

3. Component-based Performance Modelling

The PCM is a meta-model for the description of
component-based software architectures. The model is
designed with a special focus on the prediction of QoS
attributes, especially performance and reliability. In this
paper, we focus on the performance related parts of the
PCM. In the following, we give some details on our envi-
sioned CBSE development process and the participating
roles. Afterwards, we highlight some concepts of our meta-
model omitting concepts not used in this paper.

3.1. CBSE Development Process

In the CBSE development process (see also [35]), we dis-
tinguish four types of developer roles involved in producing
artefacts of a software system (see Fig. 1).
– Component developers specify and implement the com-

ponents. The specification contains an abstract, para-
metric description of the component and its behaviour.

– Software architects assemble components to build appli-
cations. For the prediction of extra-functional properties,
they retrieve component specifications by component de-
velopers from a repository.

– System deployers model the resource environment and
afterwards the allocation of components from the assem-
bly model to different resources of the resource environ-
ment.
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Fig. 1. Process

– Business domain experts, who are familiar with the cus-
tomers or users of the system, additionally provide us-
age models describing critical usage scenarios as well as
typical parameter values.
The complete system model can be derived from the par-

tial models specified by each developer role and then extra-
functional properties can be predicted. Each developer role
has a domain specific modelling language and only sees and
alters the parts of the model in its responsibility. The in-
troduced partial models are aligned with the reuse of the
software artefacts.

3.2. Component Specification (Component Developers)

Component developers specify and implement compo-
nents. They deposite development artefacts, such as mod-
els and code, into repositories (Section 3.2.1). Additionally,
they may compose basic (atomic) components to compos-
ite components. For performance predictions, they provide
service effect specifications (SEFFs) to abstractly describe
service behaviour (Section 3.2.2).

3.2.1. Repository

Fig. 2. Repository Example

Fig. 2 shows an example of a PCM repository with mod-
elling artefacts. In general, component developers specify
components via provided and required interfaces. Compo-
nent A requires interface Interface1, which is provided by

component B. An interface serves as contract between a
client requiring a service and a server providing the service.
Components implement services specified in their provided
interfaces and may use services specified in their required
interfaces during execution.

Interfaces are first-class entities in the PCM and thus
exist independently from components. Interfaces include
a list of service signatures. Interface1 includes signatures
for service1 and service2. Interfaces are themselves neither
providing nor requiring. Only their relations to components
define their roles. We call this relation provided role or
required role.

0..* +requiredRoles

+requiredInterface

0..*

+providedInterface

0..*

0..* +datatypes

0..*

+interfaces

0..*

+components

Interface
ProvidingEntity

Interface
RequiringEntity

InterfaceProviding
RequiringEntity

ProvidedRole RequiredRole
0..*+providedRoles

BasicComponent

Entity

NamedElement
entityName : EString

Identifier
id : EString

Interface

Repository

DataType

Fig. 3. Repository Meta-Model

Fig. 3 depicts the meta-model for repositories, which
is part of the component developer’s domain specific lan-
guage. Repositories contain BasicComponents, Inter-
faces, and DataTypes. Entities, such as Interfaces and
Repositories, have an id and a name. BasicComponents
are Entities requiring and providing interfaces modelled
by the ProvidedRoles and RequiredRoles.
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Interfaces (cf. Fig. 4) reference their direct parent-

Interfaces and indirect ancestorInterfaces. They
contain a set of Signatures. Signatures have a name,
reference a data type as return type, and include a list
of parameters, which again reference DataType. The
PCM supports PrimitiveDataTypes (e.g., INT, BOOL,
CHAR), CollectionDataTypes (e.g., arrays, sets, trees of
inner data types), and CompositeDataTypes, which con-
tain inner (primitive or collection) data types. These data
types can be mapped to Java or C-Sharp data types.

0..*

+innerDeclaration

0..*+parameters
Parameter

Primitive
DataType

Collection
DataType

Composite
DataType

<<enumeration>>
Primitive

TypeEnum

InnerDeclaration

0..*+signatures

0..*

+ancestorInterfaces

1

+parentInterface

0..*

0..*

INT
STRING
BOOL
CHAR
DOUBLE
LONG
BYTE

+datatype

1

+datatype

1

0..* 0..1

+returnType
DataTypeSignature

serviceName : String

Interface Type ; PrimitiveTypeEnum

+innerType1

Fig. 4. Interface Meta-Model

3.2.2. Service Effect Specification
Service effect specifications describe the relationship be-

tween provided and required services of a component. Be-
sides performance predictions, service effect specifications
were used to automatically adapt component protocols
[52]. In this application, service effect specifications were
finite state machines which described an abstraction of
the control flow where transitions denoted external service
calls. This model was extended with transition probabili-
ties to predict the probability of failure on demand of com-
ponent services [54]. The ResourceDemandingService-

EffectSpecification (RDSEFF) used for performance
prediction as discussed in this article built on this idea of a
probabilistic abstraction of the control flow, but differ from
the service effect specifications of [54]. Firstly, RDSEFFS
use a notation stemming from UML activity diagrams,
i.e., activities are denoted by nodes. Secondly, the resource
demand per activity can be specified and thirdly, depen-
dencies of transition probabilities and resource demands
on the formal parameters of the service can be specified.
This model is discussed in detail below.

To each provided service of a component, developers
can add a so-called ResourceDemandingServiceEffect-

Specification (RDSEFF). It describes
– how the service uses hardware/software resources
– how the service calls the component’s required services.

Resource demands in RDSEFFs abstractly specify the
consumption of resources by the service’s algorithms, e.g.,
in terms of CPU units needed or bytes read or written to
a hard disk. Resource demands as well as calls to required
services are included in an abstract control flow specifica-

tion, which captures call probabilities, sequences, branches,
loops and forks.

RDSEFFs abstractly model the externally visible be-
haviour of a service with resource demands and calls to re-
quired services. They present a grey box view of the com-
ponent, which is necessary for performance predictions, be-
cause black box specifications (e.g., interfaces with signa-
tures) do not contain sufficient information. RDSEFFs are
not white box component specifications, because they ab-
stract from the service’s concrete algorithms and do not ex-
pose the component developer’s intellectual property. Com-
ponent developers specify RDSEFFs during or after com-
ponent development and thus enable performance predic-
tions by third parties. Software architects do not need to
understand RDSEFFs, as performance analysis tools en-
capsulate them.

To get an initial idea of RDSEFFs, consider the example
in Fig. 5. The left hand side depicts the simplified code of
the service execute. The right hand side shows the corre-
sponding RDSEFF. It includes calls to required services
as ExternalCallActions, and abstracts computations
within the component’s inner method into an Internal-

Action. Control flow constructs are modelled only be-
tween calls to required services, while control within the
internal computations is abstracted. The example includes
parametric dependencies on the branch transitions and
the number of loop iterations, which we will explain in
Section 4.

An single InternalAction can potentially subsume
thousands of instructions into a single modelling entity
as long as these instructions do not interact with other
components and perform only component-internal com-
putations. In many cases, an RDSEFFs consists only of a
few InternalActions and ExternalActions while at the
same time modelling large amounts of code.

Fig. 6-10 depict the RDSEFF meta-model, which is
part of the component developer’s DSL. We spread the
description over multiple figures for clarity. Fig. 6 shows
the relation between components and RDSEFFs. A
BasicComponent contains a number of ServiceEffect-

Specifications, which each reference the signature of the
service they describe. ResourceDemandingSEFF inherits
both from ServiceEffectSpecification and Resource-

DemandingBehaviour. The latter includes a number of
AbstractActions, which model the service’s behaviour as
a chain of steps. Each action may reference a predecessor
and successor.
AbstractActions are either ExternalCallActions and

AbstractResourceDemandingActions (Fig. 7). The for-
mer model calls to the component’s required service and
therefore references the called service’s signature. The lat-
ter can place loads on the resources the component is using
(e.g., CPU, memory, storage device, network connection,
etc.). Therefore, AbstractResourceDemandingActions

contain so-called ParametricResourceDemands to specify
the amount of resources needed (e.g., 256 CPU units).
These demands inherit from RandomVariable enabling
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void execute(int number,
List array){

requiredService1();

// internal computation
innerMethod();

if (number>=0)
for (item in array) 
requiredService2();

else
requiredService3();

}

Fig. 5. Source Code and RDSEFF example

the specification of constants (e.g., 1024 Bytes), proba-
bility distributions (e.g., in 40% 1000 CPU units and in
60% 2000 CPU units), or functions of random variables
(e.g., 2000 CPU units + 100 CPU units per byte of input
parameter). Examples for parametric resource demands
follow in Section 4.

0..1
0..1

+predecessor

+successor

0..*

BasicComponent ServiceEffect
Specification

Resource
DemandingSEFF

ResourceDemanding
Behaviour

AbstractAction

*

+describedService1

0..*

Signature
serviceName : String

*

Fig. 6. RDSEFF (1/5): Relation between Components and Behaviour

As a concrete resource demanding action, an Internal-

Action potentially combines a large number of operations
in a single model entity. The algorithms executed internally
within the InternalAction are not visible in the RDSEFF
to create an abstraction of the code and avoid a white-box
specification. Notice, that ExternalCallActions cannot
contain resource demands, as the resource demands of the
required services have to be specified in the RDSEFFs of
that required services.

Each ParametricResourceDemand references a Pro-

cessingResourceType. These are abstract resource types
(e.g., CPU, HD, Network) instead of concrete resource
instances (e.g., 5 Ghz CPU, 20 MB/s HD, 1000 MBit/s
Network), because component developers can and should
not know during component specification the actual re-
sources the component will later be deployed on. The
PCM decouples component specification and concrete re-
source specification, so that independent developer roles
can execute these tasks. Once the system deployer specifies

+requiredResource 1

0..*

+resourceDemand
AbstractResource
DemandingAction

ExternalCall
Action

1 +calledService
InternalAction

AbstractAction RandomVariable
specification : String

Parametric
ResourceDemand

Processing
ResourceType

Signature
serviceName : String

unit : String

Fig. 7. RDSEFF (2/5): ExternalCallActions and InternalActions

the resource environment (cf. Section 3.4), which contains
processing times for different resource types, it can be
combined with RDSEFFs to convert the abstract resource
demands into concrete timing values.

RDSEFFs support several constructs to model control
flow primitives (Fig. 8). StartActions start the action
chain of a ResourceDemandingBehaviour and have no
predecessor, while StopActions end the action chain and
have no successor. Additionally, RDSEFFs may contain
branches, loops, and forks.

+branchCondition1

+branches0..*

1+bodyBehaviour

+iterations1

BranchAction AbstractLoopAction ForkAction

ResourceDemanding
Behaviour

AbstractBranch
Transition

Guarded
BranchTransition

BranchCondition Probabilistic
BranchTransition

branchProbability : Double

1
+branchBehaviour

LoopAction CollectionIterator
Action

IterationCount

+forkedBehaviours
0..*

1+parameter
Parameter

parameterName : String

RandomVariable
specification : String

AbstractResource
DemandingActionStartAction StopAction

Fig. 8. RDSEFF (3/5): Control Flow Primitives
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BranchActions model XOR control flow alternatives
and contain a number of AbstractBranchTransitions,
which can be either GuardedBranchTransitions or Pro-

babilisticBranchTransitions. The component devel-
oper may use the former to specify a BranchCondition

depending on an input parameter, whose actual value is
unknown during component specification (see example in
Section 4). Once the actual value is known from the us-
age model, a transition probability can be associated with
the branch. ProbabilisticBranchTransitions directly
include a branch probability without a dependency to
an input parameter. Although most components do not
include such a probabilistic control flow, this model con-
struct is a convenient way for the component developers
to specify the transition probability in case the depen-
dency to input parameters is unknown or hard to derive
from the code. Both kinds of branch transitions contain
a ResourceDemandingBehaviour (see also Fig. 6), which
includes actions executed in the body of the branch.

RDSEFFs allow two kinds of loops: LoopAction and
CollectionIteratorAction. Both contain an inner
ResourceDemandingBehaviour to model actions of the
loop body. The former models repetitive behaviour and in-
cludes the number of loop iterations as a RandomVariable.
It is thus easily possible to specify a constant or arbitrary
distribution function for the number of loop iterations.
Other models (such as Markov chain based approaches)
allow specifying a probability p of entering a loop and a
probability 1− p of exiting a loop. However, this binds the
number of loop iterations to a geometrical distribution,
which seldomly occurs in reality. Therefore, the RDSEFF
meta-model only permits explicit modelling of loops and
does not allow backward references in the chain of actions
within a ResourceDemandingBehaviour, which could be
used to introduce loops with a geometrically distributed
number of iterations.
CollectionIteratorActions are a special construct for

loops, in which the number of repetitions depends on the
size of a collection. Thus, these actions reference an input
parameter of the service, which must be a collection. The
number of loop iterations equals the number of elements
within the collection. This model construct is similar to
expansion nodes in UML 2 activities.
ForkActions model AND control flow alternatives,

meaning that the inner forked ResourceDemanding-

Behaviours execute concurrently. The successor action of
the ForkAction is not executed until all forked behaviours
have terminated.

Besides using processing resources such as CPU and
memory, RDSEFFs may also use passive resources such as
threads, semaphores, or database connections from a pool.
These resources are usually available in a limited number
(e.g., in a thread or buffer pool). A service has to aquire
a passive resource to continue execution and release it
again after using it. AbstractResourceDemandingActions
can therefore be specialised into AcquireActions and
ReleaseActions, which reference PassiveResourceTypes

(Fig. 9). Passive resource usage may have a significant in-
fluence on the execution time of a service due to waiting
times, and has therefore been included in the PCM.

1
+resourceType+resourceType

1

AbstractResource
DemandingActionAcquireAction ReleaseAction

Passive
ResourceType

Fig. 9. RDSEFF (4/5): Using Passive Resource Types

The service modelled by the RDSEFF may use input
parameters when calling required services. If these input
parameters can influence the resource demands of the re-
quired services, the component developer should model
them explicitly. Therefore ExternalCallActionsmay con-
tain a number of VariableUsages to model character-
isations of input parameters (Fig. 10). We will explain
VariableUsages and the corresponding parameter char-
acterisations in Section 3.5. Furthermore, the return val-
ues of a required service may influence its resource de-
mands. Hence, ExternalCallActions include a second set
of VariableUsage to store output parameter characterisa-
tions of required services.

1
+variableUsage

AbstractResource
DemandingActionExternalCallAction

VariableUsage

SetVariableAction

0..*
+parameterUsage

0..*
+outputVariableUsage

Fig. 10. RDSEFF (5/5): VariableUsage

To characterise the output of the service, component de-
velopers may use SetVariableActions. As we allow out-
put parameters besides service return values, using multiple
SetVariableActions is possible. It might occur that the
same output variable is set to different values within dif-
ferent branches of the control flow. In this case, the output
variable gets assigned the last value set by SetVariable-

Action.

3.3. Architecture Model (Software Architect)

Software architects connect components and their roles
to build ComposedStructures, i.e., component-based soft-
ware architectures. Component developers may also build
ComposedStructures, to create composite components.
However, only software architects can embed a Composed-

Structure into a System, which defines the modelled
system’s boundaries, can be allocated to a resource envi-
ronment (Section 3.4), and exposes services to end-users
(Section 3.5).

Fig. 11 shows an example System including a Composed-

Structure. As software architects can use multiple com-
ponent instances of the same component type in the same
system (notice component A), components are embedded
in unique AssemblyContexts (visualised by the dashed
lines), which are referenced by AssemblyConnectors.
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Fig. 11. System Example

An AssemblyConnectors connects a RequiredRole of
a component with a ProvidedRole of another compo-
nent. This means that any call emitted by the compo-
nent requiring a service of the RequiredRole is directed
to the connected component providing that service. For
AssemblyConnectors it is important that the required
and provided interfaces match (respecting subtyping), e.g.,
that the service is provided as expected by the requiring
component. Matching of interfaces is performed based on
the Interface instances in a PCM Repository where
the interfaces and its inheritance are specified. These
Interfaces are referenced directly by the connectors.
DelegationConnectors bind roles provided (required) by
the ComposedStructure with provided (required) roles of
components within the ComposedStructure.

+innerProvidedRole 1

1+outerProvidedRole

+innerRequiredRole 1

1+outerRequiredRole

+providedDelegationConnectors

0..*

+requiredDelegationConnectors

0..*

Composed
Structure AssemblyContext

Assembly
Connector

+childContexts
0..*

+assemblyConnectors
0..*

BasicComponent

+encapsulatedComponent
1

0..*

+componentParameterUsage

VariableUsage+requiringChild
1

+providingChild
1

ProvidedRole

RequiredRole
1

+requiredRole

1
+providedRoleProvidedDelegation

Connector

RequiredDelegation
Connector

Fig. 12. Composed Structure Meta-Model

We illustrate the meta-model of ComposedStructures

in Fig. 12. Software architects use this DSL to cre-
ate component architectures, while component develop-
ers use it to create composite components, which they
store in Repositories like BasicComponents. Composed-
Structures contain a set of AssemblyContexts, which
embed a single (basic or composite) component. The
software architect can bind AssemblyContexts using
AssemblyConnectors, which reference two Assembly-

Contexts (providing and requiring), and the respective
ProvidedRole and RequiredRole. A ComposedStructure

publishes its own provided and required roles and binds
them to inner component’s provided and required roles
via ProvidedDelegationConnectors and Required-

DelegationConnectors.
Fig. 13 shows the difference between System and

ComposedStructure in the meta-model. A System is (like

+system
1

InterfaceProviding
RequiringEntity

System

Composed
Structure

Allocation Composite
Component

Fig. 13. System Meta-Model

a basic component) an InterfaceProvidingRequiring-

Entity and thus may contain provided and required roles.
It furthermore inherits from ComposedStructure (unlike
basic component) as its internal structure consists of a set
of components. An Allocation from the system deployer
references a system and maps the contained inner compo-
nents to concrete resources. CompositeComponent inherits
from the same classes as System, but does not contain a
reference from Allocation as these components can only
be deployed after embedding them into a System.

3.4. Resource Model (System Deployer)

System deployers model the resource environment of the
component-based software architecture and allocate indi-
vidual components to resources. In the PCM, they instan-
tiate abstract resource types from a global resource reposi-
tory to describe their concrete resources. Component devel-
opers in turn provide RDSEFFs referencing only resource
types without knowing concrete resource instances. System
deployers group resources in resource containers, for exam-
ple to model a server as a resource container with a CPU,
memory, and cache as inner resources. They link resource
containers with communication resources, which can model
network connections.

The example in Fig. 14 shows a simple resource environ-
ment consisting of two resource containers. They contain
multiple concrete resources (e.g., CPU, thread pool, etc.)
with performance specifications (e.g., processing speed,
throughput, capacity, etc.) and are connected with a link-
ing resource modelling a FastEthernet connection.

<<AllocationContext>>

<<LinkingResource>>
processingRate = 100 Mbit/s

<<ResourceContainer>>
Server1

<<ResourceContainer>>
Server2

<<Processing
Resource

Specification>>
CPU

processingRate = 
3*10^9 cycles/s

<<Processing
Resource

Specification>>
Hard Disk

processingRate = 
15.5 MB/s

<<Passive
Resource

Specification>>
DatabaseConnect

capacity = 30

<<Processing
Resource

Specification>>
CPU

processingRate = 
2.2*10^9 cycles/s

<<Passive
Resource

Specification>>
ThreadPool

capacity = 8

Fig. 14. Resource Environment and Allocation Example
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Fig. 15 shows the meta-model for the abstract resource
type repository, concrete resource environment, and the al-
location of components to resources. It is the system de-
ployer’s domain specific modelling language.

0..*

+allocationContext

0..*

+availableResourceTypes

0..* ResourceTypeResource
Repository

Processing
ResourceType

Passive
ResourceType

CommunicationLink
ResourceType

Resource
Environment

ResourceContainer LinkingResource

AllocationAllocationContext

PassiveResource
Specification

ProcessingResource
Specifciation

CommunicationLink
ResourceSpecification

0..* 0..*

+resourceContainer 1

1 +targetResource
Environment

1 1 1

capacity : Integer processingRate : EDouble
units : String

throughput : EDouble
units : String

0..* 1
+fromResourceContainer

+toResourceContainer
10..*

Fig. 15. Resource Meta-Model

A ResourceRepository contains a number of Resource-
Types. The resource repository has to be specified globally
(i.e., for a modelled systems), so that component devel-
opers and system deployers can refer to the same types
of resources. So far, the PCM coarsely distinguishes be-
tween ProcessingResourceTypes (e.g., CPU, HD, Mem-
ory, etc.), PassiveResourceTypes (e.g., semaphores etc.),
and CommunicationLinkResources, which are specialised
ProcessingResourceTypes to model network connections.
In the future, we will extend this simple model with special
modelling constructs for middleware (such as caches) and
operating system resources (such as schedulers). The Gen-
eral Resource Model (GRM) from the UML SPT profile
[46] is a more refined resource model, which might inspire
extension to the PCM resource model.

System deployers specify concrete ResourceEnviron-

ments, which contain a number of ResourceContainers

connected by LinkingResources. ResourceContainers

may include ProcessingResourceSpecifications or
PassiveResourceSpecifications. Both model concrete
resources and reference the abstract corresponding re-
source types. They include specific characteristics about
the resource like the processing rate (e.g., instructions per
time unit, bytes read per time unit) or the capacity (e.g.,
the size of a passive resource pool).

Once the system deployer has specified the resource
environment based on the available resource types, com-
ponents can be allocated to the concrete resources using
an Allocation. It references a System and a Resource-

Environment and contains a number of Allocation-

Contexts, which associate an AssemblyContext with a
ResourceContainer. The abstract resources referenced
by the RDSEFFs included in the assembly context’s com-

ponents can then be substituted by the concrete resources
from the resource environment to compute actual resource
demands.

3.5. Usage Model (Domain Expert)

Domain experts specify a system’s usage in terms of
workload (i.e., the number of concurrent users), user be-
haviour (i.e., the control flow of user system calls), and pa-
rameters (i.e., abstract characterisations of the parameter
instances users utilise). Software architects may also con-
struct usage models from requirements documents.

Fig. 16 includes an example usage model. It specifies a
closed workload of 15 concurrent users, who repeatedly ex-
ecuted the modelled steps and begin again at the start node
after 1 second of think time after reaching the end node.
The behaviour is expressed as a control flow graph similar to
UML2 activities, but additionally contains transition prob-
abilities on branches and the number of iterations on loops.
Via variable characterisations, the domain expert can ab-
stractly characterise the parameter values of the users as
random variables. Note, that unlike the RDSEFF, the us-
age model does not contain any parametric dependencies or
resource demands, as these are concepts referring to com-
ponent behaviour but not to user behaviour.

Fig. 16. Usage Model Example

Fig. 17-19 depict the PCM usage meta-model. An Usage-

Model contains a number of UsageScenarios, which each
model single use cases of the system. An UsageScenario

contains a Workload describing the usage intensity and a
ScenarioBehaviour, which models the control of user ac-
tions. Workload may be either open or closed, analog to
workloads in queueing networks [38]. OpenWorkloads do
not fix the number of users, but model an InterArrival-

Rate of users as a RandomVariable. For example, a system
could receive 5 user requests per second. ClosedWorkloads
model a fixed number of users (i.e., population), who unlim-
itly circulate within the system. They execute an Usage-

Scenario from start to stop, and then reenter the scenario
at the start node after the specified ThinkTime.

A ScenarioBehaviour (Fig. 18) contains a number of
AbstractUserActions, which model the user behaviour.
Besides Start and Stop nodes, they may contain Branches
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+interArrivalTime
1

1..* +usageScenario

+workload
1

+scenarioBehaviour1

UsageModel

UsageScenario Workload

OpenWorkload

ClosedWorkload ThinkTime

InterArrivalTime

1
+thinkTime

Scenario
Behaviour

RandomVariable
specification : String

population : Integer

Fig. 17. Usage Model (1/3): Usage Scenario and Workload

with branch probabilities and Loops with the number of it-
erations as RandomVariable (not depicted here). Domain
experts can model call of services at system provided roles
via EntryLevelSystemCalls. Therefore, they reference a
Signature and a ProvidedRole. Note that users cannot
invoke services of components within a System that are not
delegated to system provided roles. EntryLevelSystem-
Calls can contain a number of VariableUsages to abstr-
acly characterise the parameter values of the users.

+actions
0..* 0..1

+predecessor
0..1

+successor

+branchedBehaviour
1

0..* +branchTransitions

+actualParameterUsage
0..*

Scenario
Behaviour

Abstract
UserAction Loop

EntryLevel
SystemCall

VariableUsage

Start Stop

Branch

BranchTransition
branchProbability : EDouble

1

+bodyBehaviour

Signature

+signature1

ProvidedRole

+providedRole 1

Fig. 18. Usage Model (2/3): Scenario Behaviour

VariableUsages (Fig. 19) contain the name of a
variable (AbstractNamedReference) and a number of
VariableCharacterisations for this name. Names con-
sists of NamespaceReferences and VariableReferences.
Namespaces are necessary for characterising the in-
ner elements of collection or composite parameters.
VariableCharacterisations are modelled as Random-

Variables for a fixed set of characterisation types
(VALUE, TYPE, NUMBER OF ELEMENTS, BYTE-
SIZE, STRUCTURE).

For example, domain experts can characterise the value
of an integer variable with a probability distribution to
specify the different parameter values of larger user groups
stochastically. They may also specify the bytesize of a pa-
rameter as a constant or distributed random variable if it
influences performance. The variable characterisation types
have to be chosen according to their influence on perfor-
mance properties.

4. Parametric Dependencies

The performance of a software component is influenced
by its usage [25]. The resource demand may vary depend-

+inner
Reference

+variableCharacterisation
0..*

+namedReference1

VariableUsage

AbstractNamed
Reference

Namespace
Reference

Variable
Reference

Variable
Characterisation

<<enumeration>>
VariableCharacteri-

sationType
VALUE
TYPE
NUMBER_OF_ELEMENTS
BYTESIZE
STRUCTURE

type : VariableCharacteri-
sationType

RandomVariable
specification : String

referenceName : String

Fig. 19. Usage Model (3/3): Variable Usage

ing on input parameters (e.g., uploading larger files with a
component service produces a higher demand on hard disk
and network). Different required services can be called as
a result of different inputs, thus the branch probabilities in
the SEFF are most often linked to the usage profile (e.g., re-
quired service A is called if some integer parameter is larger
than zero, otherwise service B is called). Furthermore, the
parameters passed to required services (forming a usage
model for the required component) may also depend on a
service’s own input parameters.

The central dilemma of the component developer is that
during component specification it is unknown how the com-
ponent will be used by third parties. Thus, in case of vary-
ing resource demands or branch probabilities depending
on user inputs, the component developer cannot specify
fixed values. However, to help the software architect in
QoS predictions, the component developer can specify the
dependencies between input parameters and resource de-
mands, branch probabilities, or loop iteration numbers in
RDSEFFs. If a usage model of the component has been
specified by domain experts or if the usage of the compo-
nent by other components is known, the actual resource de-
mands and branch probabilities can be determined by the
software architect by solving the dependencies.

In the PCM, we use random variables to express resource
demands or numbers of loop iterations. Mathematically, a
random variable is defined as a measurable function from a
probability space to some measurable space. More detailed,
a random variable is a function X : Ω → R with Ω being
the set of observable events and R being the set associated
to the measurable space. Observable events in the context
of software models can be for example response times of
a service call, the execution of a branch, the number of
loop iterations, or abstractions of the parameters, like their
actual size or type.

A random variable X is usually characterised by stochas-
tical means. Besides statistical characterisations, like mean
or standard deviation, a more detailed description is the
probability distribution. In the discrete case, a probabil-
ity distribution yields the probability of X taking a certain
value, which is often abbreviated by P (X = t). It can be
specified by a probability mass function (PMF), as used in
our component model. The event spaces Ω we support in-
clude integer values N, real values R, boolean values and
enumeration types (like ”sorted” and ”unsorted”).

Additionally, it is often necessary to build new random
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variables using other random variables and mathematical
expressions. For example, to denote that the response time
is 5 times slower, we would like to simply multiply a ran-
dom variable for a response time by 5 and assign the result
to a new random variable. For this reason, our specifica-
tion language supports some basic arithmetic operations
(∗,−,+,/,...) as well as logical operations for boolean type
expressions (==,>,<,AND,OR,...).

We use the introduced random variables in the following
to provide several examples for specifying dependencies be-
tween input parameters and QoS-related specifications. We
also use random variables in the case study to characterise
the parameters of the calls issued to the system.

4.1. Branch Conditions

In Fig. 20, the ResourceDemandingSEFF of the service
HandleShipping from an online-store component is depicted.
It has been specified by a component developer in a para-
metrised form. The service calls required services ship-
ping a customer’s order with different charges depending
on its costs, which it gets passed as an input parameter.
If the order’s total amount is below 100 Euros, the ser-
vice calls a service preparing a shipment with full charges
(ShipFullCharges). If the costs are between 100 and 200
Euros, the online store grants a discount, so ShipReduced-
Charges is called. Orders priced more than 200 Euros are
shipped for free with the ShipWithoutCharges service.

Fig. 20. Branch Condition Example

The ResourceDemandingSEFF in Fig. 20 is an abstract
representation of the control flow through the component.
Internal computations as well as resource demands of the
service have been abstracted, because they are not relevant
for QoS analysis in this case.

Once a domain expert specifies the value of the param-
eter costs, it can be derived which of the services will be
called. In this example, the domain expert has specified the

Costs (Euro) Probability

0-49 0.35

50-99 0.25

100-149 0.20

150-199 0.15

200- 0.05

Table 1

Probability of costs; specified by Domain Expert

value as a PMF (Table 1) according to a customer analy-
sis. The PMF is used in order to represent a whole group
of customers using the service. It has been specified within
a UsageModel, which is not illustrated here for brevity. In
this case, the sample space Ω of the PMF consists of inte-
ger values N representing the costs of an order. Note, that
the specification of the domain expert only refers to pa-
rameters visible at the service interface. The usage speci-
fications can be made without referring to internals of the
component thus preserving the black box principle.

To determine the branch probabilities which are required
for the QoS analysis, random variables associated with the
branches have to be evaluated. For the first branch node, let
A and B denote the left and right branch conditions, where
A is the event that costs are below 100 Euros (costs.VALUE
¡= 100) andB the event that costs are larger than 100 Euros
(costs.VALUE > 100). With the usage profile provided by
the domain expert, their probabilities of becoming true can
be computed as: P (A) = 0.35 + 0.25 = 0.6 and P (B) =
0.20 + 0.15 + 0.05 = 0.4.

After any branching event X has occured, the sample
space Ω on subsequent nodes is restricted to Ω′ = Ω ∩X.
This has to be considered by the following evaluations. In
the example, this situation occurs at the second branch
node. Let C and D denote the left and right branch condi-
tions, where C is the event that the costs are below 200 Eu-
ros and D the event that the costs are larger than 200 Eu-
ros. When computing the probabilities, it has to be taken
into account, that the sample space has been restricted
by B. Thus, a new sample space Ω′ = Ω ∩ B has been
created. Using the usage profile from the domain expert,
the conditional probabilities are computed as: P (C|Ω′) =
P (C ∩ Ω′)/P (Ω′) = 0.35/0.4 = 0.875 and P (D|Ω′) =
P (D ∩ Ω′)/P (Ω′) = 0.05/0.4 = 0.125.

4.2. Loop Iterations

In the PCM, it is possible to assign a number of itera-
tions to a loop. This can be done in a parameterisable form,
as illustrated by the following example. Fig. 21 shows the
ResourceDemandingSEFF of the service UploadFiles. It gets
an array of files as input parameter and calls the external
service HandleUpload within a loop for each file. As an ex-
ample, the component shall be used in a new architecture
for an online music repository. Users shall upload music al-
bums via the service, which are then stored one by one in
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Number of Files Probability

8 0.1

9 0.1

10 0.2

11 0.4

12 0.2

Table 2

Probability for number of files; specified by Domain Expert

a database that is connected to the service HandleUpload.

Fig. 21. Loop Example

A domain expert has analysed user behaviour and found
that users usually upload albums with 8-12 music files.
Thus, a PMF for the number of files in the input parameter
files has been specified (Table 2).

With the specified dependency to the number of ele-
ments in the input collection, the probability distribution
of random variable Xiter for the number of loop iterations
in the ResourceDemandingBehaviour can be determined.
The required service HandleUpload will be called 8 times
(probability 0.1), 9 times (0.1), 10 times (0.2), and so on
(see Table 2). If the dependency had not been specified, it
would not have been known from the interfaces how often
the required service would have been called. Thus, with the
specified PMF, a more refined prediction can be made for
varying usage contexts.

4.3. Parametric Resource Demand

Besides branch conditions and loop iterations, resource
demands can be specified in a parameterised form. In many
cases, this is the most influencing factor for varying re-
sponse times. In Fig. 22, the component service Process-
File(byte[] file) receives an input parameter file, which is
processed internally. The component developer has speci-
fied that the resource demand of this service depends on
the size of the input file (file.BYTESIZE assigned by the
method’s caller), in particular 3 CPU operations are exe-
cuted for each byte of the file.

Because of varying file sizes due to varying usages, the
domain expert has specified a PMF for the size of the input
file. After analysing a large number of usage traces from a
similar system, a fine grained distribution function could
be specified, which is shown in Fig. 23. Note, that in this

Fig. 22. Resource Demand Example

example the size of the file is the only attribute relevant for
the QoS analysis. Other attributes of the file parameter,
such as the value or the type of the file, are irrelevant in this
case and do not need to be specified. This is an example
of abstracting unnecessary details from the model and in
many cases such abstractions model reality well enough to
make sufficiently accurate predictions.

Fig. 23. File Sizes (PMF), from Domain Expert

To compute the actual resource demand on the CPU
from the specification in Fig. 22, the underlying PMF can
be obtained by multiplying the PMF for the file sizes by a
factor of 3, thus streching the PMF as depicted in Fig. 24.
Instead of file sizes, the PMF now denotes the probabilities
for the number of CPU operations, which are executed for
the given usage context. Once the actual CPU is known
from the allocation to the resource environment, to which
the component is deployed, the time for executing service
ProcessFile can be computed after specifying the execution
time for a single CPU operation.

Fig. 24. CPU operations (PMF), computed

4.4. Parametric Parameter Usage

When calling required services, component services may
pass parameters. In many cases, these parameters can be
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fixed in the implementation. However, sometimes, input
parameters for required service calls actually depend on the
provided service’s own input parameters. In the PCM, such
a dependency can be expressed by attaching a Variable-

Usage to an ExternalCallAction.

Fig. 25. Propagating Input Parameters Example

As an example, in Fig. 25, the ResourceDemandingSEFF
of the service SendCompressed is shown. It receives a file

as an input parameter, compresses it using a ZIP algorithm,
and then passes it to another component by calling the
service SendFile. The component developer has specified
that the compression reduces the size of the input files by
50%. If a domain expert specifies the input file size, or
if it has been specified in the VariableUsage of another
component calling this component, the file size for the input
parameter of the ExternalCallAction can be determined.
If the file size has been specified as a PMF (like in the
previous example), its domain values have to be multiplied
by a factor of 0.5, thus contracting the PMF.

5. Tool Support

Tool support is crucial for the specification and analysis
of PCM instances. We provide an integrated tool set based
on the Eclipse platform. Our tool combines modelling, per-
formance prediction based on the models, skeleton code-
generation for later implementation of the modelled sys-
tem and reverse engineering of code into model instances
into a single IDE. It is expected that the integration of the
modelling process into the development environment leads
to a broader applicability of performance prediction during
early development cycles.

Modelling Support: Our IDE offers graphical editors
to create model instances. The editors have been generated
using the Graphical Modelling Framework (GMF) frame-
work (see Fig. 26) and supplemented with manual code ad-
ditions. These graphical editors visualise a UML-like con-
crete syntax for PCM instances to increase developer ac-
ceptance. To avoid the ambiguities of UML, our syntax is
more restrictive than UML. For example, control flow links
cannot link backwards in a RDSEFF which forces compo-
nent developers to make branches and loops explicit. In ad-
dition to graphical modelling, our tools also conveniently
support entering performance annotations. Special textual
dialogs utilise the grammar and semantics of our stochastic
expressions to offer context-sensitive code completion and
on-the-fly error reporting.

Performance Prediction: The developer can start
performance analyses directly from the model editors due

Fig. 26. PCM Bench: Modelling Perspective

to their integration into Eclipse. The tools fully encap-
sulate both model-2-model and model-2-code transfor-
mations, which relieves the developer from the burden of
transforming and analysing models manually. Section 6
gives details of the internals of the model-drivens simu-
lation used in the case study of this paper. Additionally,
there is an analytical solver based on stochastic regular ex-
pressions capable of solving single-user scenarios involving
arbitrary distribution functions. Details on this analytical
solver are out of the scope of this paper and can be found
in [34]. Section 7 compares capabilities of the simulation
and the analytical solver.

Fig. 27. PCM Bench: Analysis Perspective

Results Visualisation: A framework with charting ca-
pabilities plots histograms or cumulative distribution func-
tions of predicted response times and supports the software
architect in drawing conclusions on the expected perfor-
mance of a modelled architecture. Statistical data, such as
mean values, standard deviations etc. are provided with an
interface to the statistics package R. We also use this inter-
face to compare predictions and measured values by means
of statistical tests to validate our prediction models.

Model-2-Code Transformations: Our toolset con-
tains two model-2-code transformations. The first gener-
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ates a J2EE implementation prototype which is ready to
be deployed. When executed, the prototype records real
performance metrics by issuing dummy demands accord-
ing to its PCM specification on its environment replacing
estimates of the processing speed with real measurements.
Current support for resources is limited to dummy CPU
demands, however, other resource types will be added soon.

The second transformation generates code skeletons for
component developers as well as for the software archi-
tect. If some components in the modelled architecture have
only been specified but not been implemented, this trans-
formation provides a convinient way to start their imple-
mentation. The current model-2-code transformation gen-
erates source code for the J2EE platform including deploy-
ment descriptors and build scripts. The component devel-
oper needs to add missing business logic to the code skele-
tons generated from RDSEFFs. Afterwards, the compo-
nents can be deployed on a J2EE application server.

Section 7 also discusses conducting performance mea-
surements with code generated by the two model-2-code
transformations. It relates measurements to predictions
with our analytical approach and the simulation presented
in the next section.

State of the Tool: Our tools have undergone a matura-
tion phase of six month during the preparation phase of an
empirical case study with students [41]. The stable version
is available from the PCM’s homepage [50]. Development of
the tool continues in the publicly available unstable branch.

6. SimuCom Simulation Framework

To evaluate the model concepts introduced in the pre-
vious sections, we have built a simulation tool. This tool
takes an instance of the PCM as an XMI serialisation and
builds a simulation in order to get the response times un-
der the specified workloads. We validate whether the meta-
model is appropriate and can be used to model an example
system, e.g., if all necessary model concepts are available.
Furthermore, by comparing the predicted values to mea-
sured values of an implemented architecture, we can evalu-
ate if the introduced parametric specifications can be used
to give realistic predictions. The latter are presented in the
next section. This section briefly gives some details on the
implementation of our simulation.

6.1. Technical foundation

In contrast to the initial presentation of our simulation
framework in [7], we changed the analysis of a PCM in-
stance’s performance from a visitor-based, interpreter ap-
proach to a generative approach for shorter simulation run-
time. Our current version generates Java simulation code
from PCM instances using a model-2-code transformation
with the openArchitectureWare framework [49]. The simu-
lation’s core is based on the discrete-event Java simulation
framework Desmo-J [21]. The implementation utilises fea-

tures by the Eclipse environment. The model-2-code trans-
formation generates Java source code of an OSGi plugin,
which is compiled using Eclipse’s Java Development Tools
(JDT). A controller GUI dynamically loads the compiled
plugin into the OSGi runtime and starts executing the sim-
ulation. After finishing a simulation run, the controller GUI
unloads the plugin again and cleans up the generated files.

6.2. Simulation Run

The workloads specified in the model instance are trans-
formed into simulated workload drivers, which simulate
the specified workload scenario. For this, the workload
drivers execute a generated thread per arriving user. The
threads implementation corresponds to the usage be-
haviour as given in the model instance. Depending on the
type of workload, i.e., closed workload or open workload,
the workload’s semantics is different. For closed workloads,
the behaviour of each simulated user is executed, then the
workload driver waits for the given think time and after-
wards starts from the beginning. For open workloads, the
workload driver starts a user thread in the frequency of
the specified arrival rate.

For each component in the model, code is generated im-
plementing the component. For BasicComponents a class
is generated containing the components services and their
implementation as given by their corresponding RDSEFF.
In this code, RDSEFF’s control flow constructs map directly
to their corresponding Java constructs and the RDSEFF’s
ExternalCallAction map on direct method invocation.
For InternalActions, the generated code loads the respec-
tive resource with the resource demand as determined by
the stochastic expression describing the demand.

Several specifications in the SEFF like number of loop it-
erations, branch conditions, and resource demand depend
on other random variables, i.e., parameter abstractions. A
sample of this random variable is generated by the evalua-
tion of the definition as outlined in Section 4. For this, the
specification of the random variable is evaluated. For any
random variable in the parse tree, the simulation frame-
work’s random number generators are used to get samples.
Mathematical operations are evaluated using their normal
semantics. The result of the evaluation is the desired sam-
ple of the depending random variable.

For each ProcessingResource, the simulation instanti-
ates a framework class implementing a request queue and
an accompanying scheduler. The scheduling strategy is con-
figurable, the current implementation supports the FIFO
and processor sharing strategies. Threads requesting the
processing of demands get delayed with respect to simula-
tion time until the demand is processed.

In order to get simulation results, generated probes exist
in the simulation code which record execution times and
queue lengths during the simulation run. The results of the
run are stored in memory for immediate analysis or in a
relational database for later evaluation.
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6.3. Simulated Stack-Frame

Special treatment is required for parameter abstractions,
since they are only valid during the execution of a called
method. To simulate this behaviour, we introduced simu-
lated stack frames in alignment with the real execution of
a software system.

StackFrame
file.INNER.BYTESIZE 20 KB
files.NUMBER_OF_ELEMENTS 23
… ...
… ...

Si
m

ul
at

io
nT

hr
ea

d
void doSth(byte[][] files)

Fig. 28. A simulation thread and the simulated stack frame

Whenever an external call is to be simulated, a new simu-
lated stack frame is built analogously to the methods stack
frame. To initialize a stack frame, the random variables
characterising the parameters of the called service are eval-
uated and the result is stored in the stack frame. It is then
passed to the called behaviour (cf. Fig. 28). This way we
simulate part of the usage context of the components rele-
vant to performance.

When the simulated control flow returns to the caller,
the evaluation is continued after the external call using the
old call stack again.

6.4. Simulation End

The simulation comes to an end as soon as the PMF
of the predicted workload scenario’s execution time has
been approximated in a way that further simulations of the
workload scenario don’t change the output PMF signifi-
cantly anymore. One option of doing this is to evaluate the
confidence interval of the mean’s estimate of the resulting
PMF. If the width of this interval drops below a certain
configurable threshold after new simulated measurements
are added, the simulation stops. However, as meeting the
stop criteria might take a long time, additionally, an upper
bound for the simulation run can also be given. Meanwhile
the simulation supports live updates of the response time’s
distribution function, so that the software architect can
watch the simulation proceed and cancel it in advance if the
results are sufficiently precise. For example, when judging
design alternatives often rough estimates of the resulting
distribution function are sufficient for making a decision.

7. Comparison of Different Evaluation Approaches

In Section 5, we briefly described four of the implemented
model-transformations for the PCM:

– a model-2-model transfomation to an analytical solver
based on stochastic regular expressions,

– a model-2-code transformation to a simulation model
based on queuing networks,

– a model-2-code transformation to a performance proto-
type capable of producing resource demands on real re-
sources, and

– a model-2-code transformation generating Java code
skeletons to start an implementation.

In this section, we compare them with respect to their per-
formance evaluation capabilities and argue why we used
the simulation in this paper. An overview of the advan-
tages and disadvantages of the transformations when used
for performance evaluation is depicted in Fig. 29. A similar
comparision can be found in [31].

The analytical solver for instances of the PCM only sup-
ports analysing single-user scenarios, because the PCM al-
lows arbitrary distributions for resource demands and the
inter-arrival rate of open workloads. For a queuing network,
this implies generally distributed service times and gener-
ally distributed arrival rates at the service centers repre-
senting resources (i.e., G/G/1 or G/G/n queues [9]). For
this kind of queuing network, no general analytical solution
is known. However, if no resource contention is present in
the network (i.e., only one user in the system), an efficient
analytical solution for the distributions of the response time
can be calculated. Such calculations can be very fast due to
efficient convolution of arbitrary probability density func-
tions with Fast Fourier Transformations (FFT). For the ex-
ample in the case study of this paper they needed ca. 200
ms. Details of the method can be found in [34].

The simulation based approach presented in this paper
is able to deal with G/G/n queues. In addition to stan-
dard queuing networks, our simulation supports network
routing based on the specification in the RDSEFFs instead
of probabilistic routes. The result of a simulation run con-
tains response time distributions of each executed service.
The simulation resolves resource contentions for the service
centres either by a FIFO or processor sharing scheduling
policy. Further scheduling policies including more realis-
tic schedulers of today’s operation systems and multi-core
handling will be implemented in the future. The simula-
tion can therefore predict the performance for more com-
plex scenarios than the analytical solver. However, execut-
ing the simulation is more time-consuming (e.g., it took 8
minutes for this paper’s simple case study). Although the
simulation time was still sufficiently short for practical use
in our examples, the time for executing the simulation with
much larger examples remains unknown.

By executing the performance prototype generated via
model-2-code transformation, the software architect can
gain more accurate figures. The simulation’s assumption
that a resource demand can be evaluated by multiplying
an abstract resource demand (i.e., 1000 CPU instructions)
with a processing rate (i.e., 1000 CPU instructions/ms) of-
ten does not hold any more in today’s environments (No-
tice, that this computation does not include scheduling and
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Method Pro Contra

Analytical

– High Precision
– Fast Solver
– Applicable during early life-cycle
– Inexpensive

– No support for G/G/n queues
– Only single user scenarios

Simulation

– Support for G/G/1 or G/G/n queues
– Support for multiple user scenarios
– Arbitrary Scheduling Policies (FIFO, PS, etc.)
– Easy extensibility
– Applicable during early life-cycle
– Moderately expensive

– Slow simulation runs
– Only approximated result
– Abstract simulation model
– Time-consuming sensitivity analysis

Prototyping

– Supports complex, real execution environments
– Increased saleability of the results

– Test setup costly
– Time-consuming measurements
– Only approximated result

Testing

– Accurate and realistic results
– Supports complex, real execution environments
– High saleability of the results

– Only during late life-cycle
– Implementation of business logic required
– Test setup costly
– Time-consuming measurements

Fig. 29. Overview of Prediction Methods with their Pros and Cons

multi-core effects which is handled by the queueing centres
in the simulation). Several types of hardware would need
much more fine-grained specifications for a realistic charac-
terisation. For example, the speed of a CPU is influenced by
its caching structure, pipelining algorithm, branch predic-
tion, etc. Additionally, also the software environment may
change. For example, server virtualisation results in vary-
ing processing speed per virtual server. Expressing all these
factors in a performance model would result in a complex
model, which might be unsolvable. The performance pro-
totype can take these aspects into account. It requires that
the dummy resource usage is not overly artificial compared
to the final system. To execute the performance prototype,
a complex experiment setup is needed, as the execution en-
vironment has to be created in a realistic manner. For the
setup, an application server and client machines simulat-
ing the workload are needed. Measurements are performed
in real time compared to simulation time in the simulation
approach. Collecting a sufficient amount of measurements
may take hours. For example, our case studies measure-
ments took half a day.

Finally, the real system implemented using the code
skeletons offers the real performance - no modelling is
necessary here. However, in addition to the effort already
needed for the prototype to setup and measure the perfor-
mance figures, the time to implement the system has to be
added. This approach of gaining performance values is only
applicable in late life-cycles of the software system. When
performance problems are discovered after the system has
been implemented, a redesign and reimplementation is
costly.

From the discussion, a trade-off becomes clear. The more
realistic and accurate the predictions should be, the more
time consumption and costs is involved. Based on analyti-
cal and simulation models, the software architect develops
an initial system design. Only if this design offers sufficient
performance figures, a prototype is generated to validate
the figures in the real environment. Finally, the actual sys-
tem is implemented.

8. UML2 versus PCM

In this section we provide rationale why we chose to de-
fine a new modelling language instead of extending UML2.
The given discussion is compareable to the one published
by Medvidovic et al. [43]. However, our discussion is more
recent as it covers UML2 and its extended profiling mech-
anism and also recent advances in model-driven software
development.

There are at least three alternatives for introducing new
modelling constructs [62]:

(i) Defining or Extending a UML Profile: The UML
provides a lightweight extension mechanism via pro-
files, which enable adapting UML models with stereo-
types, tagged values.

(ii) Extending the UML Meta Model: The UML
meta model can serve as the basis for a new modelling
language (heavyweight UML extension), which in-
herits classes from the UML meta model and defines
its own extensions by instantiating MOF classes.

(iii) Defining a new MOF-based Meta Model: Fi-
nally, it is possible to define a new MOF instance,

16



which serves as meta model and is not tied to the
UML meta model. We chose this alternative when
designing the PCM.

We will discuss the advantages and disadvantages of these
three approaches in the following in order to justify our
decision for a new MOF-based meta model.

8.1. Defining or Extending a UML Profile

This is the most prominent way of introducing new mod-
elling constructs and has many advantages. It extends a
standardised modelling language with wide-spread prac-
tical use. Designers are familiar with the UML notation
and can quickly incorporate the extensions. Many tools are
available and established in the software industry, which
enable editing UML models and also support using profiles.
Designers have already modelled many software systems
with UML, and they could extend the existing models.

However, this approachs also bears several disadvan-
tages. Existing UML diagrams are often unsuited for
model transformations, because they usually have been
defined for documentation and human communication and
lack the formality needed for tool processing [28]. Many
UML diagrams only exist as Power Point slides or Visio
diagrams with further textual, informal explanations and
annotations. These diagrams require a significant effort to
extract formal UML models and be prepared for machine
interpretation and automated predictions in addition to
the effort of extending them with a profile.

Defining a new UML profile is not necessary, because the
existing UML profile for Schedulability, Performance, and
Time (SPT) [46] could be extended. This profile lacks con-
structs such as message sizes, time intervals, and character-
isation of input parameters. The upcoming UML MARTE
profile [47] may solve some of these deficits, but will not be
finished until 2009. Furthermore, the SPT profile aims at
object-oriented systems and lacks special means to specify
the factors influencing the performance of software compo-
nents.

While designers can use existing UML tools to add the
SPT profile’s stereotypes and tagged values to their models,
support for entering the complex and error-prone tagged
values for performance annotations is missing. Tagged val-
ues are strings in the SPT profile, so that syntax highlight-
ing, code completion, and on-the-fly error reporting would
be valuable for practical use. However, this would require
proprietary extensions to existing UML tools.

Using a standardised model-to-model transformation
language such as QVT [48] for processing UML models
extended with the SPT profile is difficult, because QVT
needs to process the abstract syntax of parsed tagged val-
ues. Therefore, processing these values requires additional,
proprietary ad-hoc transformations (e.g., in Java), which
decreases the advantage of using a standardised transfor-
mation engine.

Besides the deficits of the existing profiles and the de-

scribed issues with UML’s profiling mechanism, using pro-
files also implies inheriting UML’s complexity and ambigu-
ities, whose problems will be elaborated in the next para-
graph.

8.2. Extending the UML Meta Model

This approach has only seldomly been attempted in in-
dustry and academia. Changing and extending the UML
meta model implies many disadvantages such as losing
standard conformity, tool support, and designer familiarity
(some of them also apply for an own MOF-based meta-
model, c.f. subsection 8.3). Furthermore, this approach
leads to inheriting the complexity and ambiguity of UML.

The complexity of UML2 (more than 1200 pages speci-
fication) is a major problem for model-driven approaches,
because it complicates creating model transformations. For
performance predictions, many UML constructs are not
needed, because they have no counterparts in the perfor-
mance domain (e.g., use cases diagrams, steps consuming
no time, etc.). Model transformations have to ignore such
model constructs. Performance analysis tools might not
support many UML constructs, which would have to be ex-
cluded from the altered UML meta model via constraints
to create a sound approach. But due to the complexity of
UML, defining OCL constraints for all unsupported con-
structs can require more effort than designing a new lan-
guage.

UML2 includes several ambiguities, which further com-
plicate implementing model transformations. For example,
designers can specify a loop within a UML2 activity dia-
gram either by iterator nodes or by a control flow pointing
backwards. A model transformation has to support all pos-
sible cases, which increases its complexity.

8.3. Defining a new MOF-based Meta Model

We chose this approach due to the advantages to explore
modelling and analysing advanced component concepts and
performance predictions. UML2 is a general purpose mod-
elling language aiming at providing model constructs for
mainly object-oriented systems without focussing on any
domain. Opposed to this, the PCM is a domain specific
modelling language for component-based software archi-
tectures and performance properties. It targets specific de-
veloper roles in CBSE providing restricted modelling lan-
guages for each of these roles, which intentionally do not
inherit UML2’s complexity. Model constructs in the PCM
are defined unambigiously and are limited to constructs
mappable to the performance domain.

The PCM includes several concepts also present in UML2
or the SPT profile, such as interfaces, resource specifica-
tion, workloads, and performance annotations. Addition-
ally, the PCM includes concepts from CBSE not explicitly
present in UML2, such as service effect specifications [34],
a component type hierarchy [53], better support for perfor-
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mance annotations [7], and an explicit component context
model for expressing a component’s QoS in dependence of
its environment [6]. In this paper, we focus on QoS-relevant
modelling elements, a specification of the other concepts
can be found on the PCM’s website [50].

We implemented the PCM in Ecore from the Eclipse
Modelling Framework (EMF), which is an implementation
of Essential MOF (EMOF), a subset of MOF. We chose
Ecore instead of MOF due to strong tool and community
support, which eases implementing graphical editors and
analysis tools.

While our approach includes the described advantages,
it also bears several disadvantages. We do not follow an in-
dustry standard, therefore wide-spread use of the language
is a long-term goal. We cannot use existing UML tools to
create PCM instances and have implemented our own pro-
prietary tools. The learning curve for developers familiar
with UML is potentially higher. However, due to the re-
stricted nature of the role-specific modelling languages, the
specification is not overly complex. We reused the UML2
graphical notation for PCM instances where possible to in-
crease the willingness of designers to accept and use the
new technology.

Finally, existing UML models are not supported by the
PCM analysis tools and have to be transformed to PCM
instances to carry out performance predictions. While im-
plementing such a transformation is complicated for the
reasons described above, it would increase the practical use
of the PCM and is subject to our future work.

9. Limitations / Assumptions

There are several assumptions and limitations in the cur-
rent version of the PCM and the accompanying tools. We
briefly summarise the most important ones in the following.

Static architecture: The modelled architecture is as-
sumed to be static. This means that neither the connectors
change nor that the components can move like agents to
different hardware resources.

Limited Connectors: Only a single connector can be
attached to a required interface. While it is possible to
model such connectors in UML2 their semantics remain
unclear.

Abstraction from state: It is assumed that the be-
haviour of the system is determined by the parameters of
the service calls only. No internal state of components or
the runtime environment is regarded. We do not consider
components at runtime, which may adapt their behaviour
to change their QoS properties dynamically. These QoS-
aware components are beyond the scope of the PCM.

No memory effects: The components might allocate
and free memory during request processing. In the multi-
user case, the components may in addition struggle for get-
ting access to the memory bus which is often granted on
only mutually exclusive. Both effects can have a significant
impact on the resulting performance (for measurements

see [26]). However, our method still disregards them.
Information availability: It is assumed that the nec-

essary model information like service effect specifications
and parametric dependencies are available and have been
specified by the component developer, software architect,
system deployer and domain expert. We also assume that
different component developers are able to agree on com-
mon parameter abstractions. Future work is directed to re-
trieve as much information as possible from the automated
analysis of component code.

Limited support for concurrency: Quality properties
of concurrent systems are hard to predict. Especially on
multi-core processor systems several effects like the CPU
caches and scheduling strategies lead to differences between
an observed system timing behaviour and an appropriate
prediction in our experience.

Limited support for modelling the runtime envi-
ronment: Our resource model assumes that processing re-
sources can be described by a processing rate only. But of-
ten more than a single influence factor is important. For
example, to characterize modern CPUs by the clock fre-
quency alone, is often not sufficient any more. The CPU
architecture, pipelining strategy, or the cache sizes as well
as the runtime and middleware platform and their config-
urations can have a significant influence on the execution
time (of an operation) [40]. The performance prototype is
a countermeasure for this limitation as the availability of
a precise model of the resource environment is dropped by
using the real one.

Mathematical assumptions: Mathematical assump-
tions and limitations are needed in order to reduce the mod-
els’ complexity in order to allow the analytical single-user
evaluation and to reduce simulation run length and memory
consumption. Our current version of the PCM assumes for
example stochastical independent resource demands. The
only exception to this is the CollectionIteratorAction

which allows a dependency on parameter characterisations
of the current iteration element.

Many of the listed limitations are not specific to the
PCM, but can also be found in other performance predic-
tion methods. In our case studies, particularly the limited
support for concurrency and multi-processor systems lead
to inaccurate predictions in some settings [26]. In order to
determine the most industry-relevant limitations, we are
currently conducting several industrial case studies.

10. Case Study

In the following, we report on an initial case study to vali-
date predictions made by simulating instances of the PCM.
This case study is meant as a proof-of-concept evaluation,
not as a sound experimental evaluation of the approach on
an industrial sized application, which is planned for the fu-
ture. We compare predictions based on architectural spec-
ifications with measurements made with an implementa-
tion of the architecture. The case study involves an online
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Fig. 30. Web Audio Store Architecture

shop, which allows users uploading and downloading music
files [36]. In the former paper, we have predicted the per-
formance of this shop with a restricted analytical method
instead of the more feature-rich simulation described here.
Several parameter dependencies, which will be explained in
the following, can be found in the architecture, so we can
test the modelling capabilities of our component model.

As we want to support early design decisions with our
approach, we modelled and implemented two design alter-
natives for the online shop. Before the case study, we raised
the following questions:

(i) Are the predictions based on our simulation model
good enough to support the decision for the design
alternative with the actual best performance given a
specified usage model?

(ii) Can the errors made by the predictions be quantified
and explained? To answer this question, we analysed
deviations between predictions and measurement in
more detail.

10.1. Architecture

The architecture of the “Web Audio Store” (Fig. 30) con-
sists of three tiers (client, application server, database) [36].
Customers interact with the store via web browsers that ac-
cess the component WebForm using digital subscriber lines
with a throughput of 128 KBits/s. Several components are
located on the application server in the middle tier: The
component WebForm is connected to the AudioStore com-
ponent, which controls and manages the whole store. It in-
teracts with a user management component and a database
adapter that handles the connection to a MySQL server
on the database tier. The network between the application
server and the database is a dedicated line with a maximum
throughput of 512 KBit/s.

As a performance critical use case, the response times
for uploading music files to the store shall be analysed and
improved. It is possible for users to upload multiple files at
once to add complete music albums to the store. This usage
scenario is described in Fig. 31. In this case, users upload
8-12 files with the probabilities found in the Fig. 31 and
files sizes between 3500 and 4500 KBytes. Upon clicking
the button “Upload Files” the service UploadFiles of the

WebForm component is invoked, whose behaviour is shown
in Fig. 32. This behaviour in turn invokes services from the
AudioStore component. The parametric dependencies for
the loop and the byte size of subsequent input parameters
are shown in the figure. For example, the number of loop
iterations depends on the number of input files. Other an-
notations needed for the simulation are omitted in the il-
lustration for brevity.

Because response times of this use case are considered
too high, the software architect has come up with a design
alternative, which is shown within the dashed box in Fig. 30
and which is transparent for the clients. It is proposed to
insert an encoder component (OggEncoder) into the archi-
tecture using an adapter (EncodingAdapter), which im-
plements the IAudioDB interface. The SEFFs of these com-
ponents are illustrated in Fig. 33(a)-33(b). The encoder is
able to reduce the size of the music files by a factor of aprox.
2/3. Thus, the time for using the network connection to the
database server can be reduced, because smaller files have
to be sent. However, encoding the files is computational in-
tensive and hence, costs an amount of time. With the per-
formance prediction, the tradeoff between faster network
transfer and reencoding overhead shall be evaluated.

Fig. 31. Original Design: Usage Model

10.2. Results

First, we modelled and simulated both design alterna-
tives, then we also implemented both alternatives in C#
using ASP.NET. Using the workloads from the models, the
response times for the described use case of the implemen-
tations were measured.
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Fig. 32. Original Design: SEFF

(a) (b)

Fig. 33. Design Alternative: Encoding Adapter

Compared to [36], we only used measured time consump-
tions in our prediction model for calls to the database, i.e.,
for submitting uncompressed files. The time consumption
for submitting compressed files as well as the encoding of
files had been specified parametrically as introduced in the
previous section. In so doing, we further weakened the as-
sumptions which we made when we did the predictions
in [36].

For the original design without encoder, the simulation
results and the measured time consumptions are presented
in Fig. 34(a). To allow a visual comparison of the results,
we show both histograms in a single diagram by putting
them on top of each other. The simulation results are drawn
using a plain line and the measured results as dotted line.

Both functions match to a large extent. Hence, our sim-
ulation is capable to predict the response time behaviour
of this design alternative based on a system model. In this
variant of the architecture, the main influence on the re-

Response Time Probability Probability

(Seconds) (simulated) (measured)

5.5 - 6.5 0.00 0.00

6.5 - 7.5 0.10 0.18

7.5 - 8.5 0.58 0.58

8.5 - 9.5 0.31 0.25

9.5 - 10.5 0.00 0.00

Table 3

Response Time for EncodeFile

sponse time is created by the amount of files in a batch
upload. As we modelled the distribution of the amount of
files according to what we actually used when we measured
our system, this result was expected. Additionally, the close
match between both functions also results from the use
of measured times for the basic functions (like encoding,
database storage, etc.). However, if there is a larger gap be-
tween the (abstract) architecture and its implementation,
the results might not be as good. Ongoing industrial case
studies will provide additional insights in the question how
to choose the right abstraction.

For the design alternative with the encoder, we first com-
pared the simulation results of the call to EncodeFile with
the measured values as we used a parametric dependency
on the bytesize of the file to encode. The dependency was
derived by a rough guess looking at a few sample encoder
runs. The result is depicted in Fig. 3.

It can be seen that our estimated dependency is not ex-
actly matching, but still quite good. Using the estimated
times of EncodeFile and the compression rate of 2/3 we
simulated the whole system. The results are shown as
response time histogram in Fig. 35(a). The cumulative
distribution function (CDF) of the results are shown in
Fig. 35(b).

Although we used the mentioned approximations of the
parametric dependencies, the measured and the simulation
results still match quite good. Moreover, we are able to
see that the design alternative with the encoder is approx-
imately 200 seconds faster. Our result favoured the design
alternative with the encoder, which is indeed the faster one
as validated by the measurements.

To answer the question whether observable prediction
errors can be explained, we take a closer look at Fig. 35(a)
which has minor prediction errors that can be explained by
the guessed dependency for EncodeFile and the database
connection. Both are not as accurate as they could be. A
linear regression based on some measured time consump-
tions for different bytesizes could help to build a better es-
timation of the actual dependency. However, software ar-
chitects often have to rely on estimates in practice which is
why we also used the estimates.
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Fig. 34. Measurement and simulation result of response time of UploadFiles (architecture without encoder)
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Fig. 35. Measurement and simulation result of response time of UploadFiles (architecture with encoder)

11. Conclusions

This paper presents a meta-model designed to support
the prediction of extra-functional properties of component-
based software architectures. Different possible usage con-
texts of a component are supported by this model. Ad-
ditionally, parametric context dependencies to system re-
sources and dependencies to parameter usages can be mod-
elled. We present tool support for modelling and model-
transformations which transform instances of the PCM in
different types of prediction models. The paper presents
technical details on a simulation framework for a model-
driven analysis of PCM instances and validates the sound-
ness of the predictions in a case study.

The presented method is designed to support early de-
sign time quality evaluations of component-based software
architectures. Based on models, a software architect can
evaluate the quality of the modelled system. The evalua-
tion of design alternatives can be performed by changing
the input models and re-running the transformations. The
focus on system models enables a quick feedback cycle by
the use of ideas from model-driven development.

A new hybrid (analytical and simulation) method based
on an extended stochastic process algebra is currently un-
der development which is supposed to speed up the simu-
lation runs by evaluating sub-processes using results from
our analytical single user method in advance.

Simulation based predictions for concurrent system us-
age are still limited due to the state and memory usage
assumptions. However, for systems with a lot of concur-
rency the simulation can serve as a basis for experiments
and comparisons with running systems in order to improve
the model to increase prediction precision.

Additionally, we are currently conducting a student
experiment to gain insights in the applicability and under-
standability of our models and tools by common software
developers. Special attention is payed to the question
whether annotating models with performance and usage
information is feasible.

Further enhancements to our toolset are planned for im-
proved evaluation of prediction results. Performance crit-
ical InternalActions could be highlighted in the editors.
Support for automated generation of design alternatives to
cope with performance issues is still an open issue.

Finally, our first results in recovering RDSEFFs from ex-
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isting Java source code will be included into our toolset.
The availability of the reverse engineering facility allows for
creating PCM model instances for legacy components.
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