
Combining Architecture-based Software
Reliability Predictions with Financial Impact

Calculations

Franz Brosch 1

Forschungszentrum Informatik (FZI) Karlsruhe
76137 Karlsruhe, Germany

Ralf Gitzel2, Heiko Koziolek3

ABB Corporate Research
68526 Ladenburg, Germany

Simone Krug4

Chair in Information Systems III, University of Mannheim
68131 Mannheim, Germany

Abstract

Software failures can lead to substantial costs for the user. Existing models for software reliability prediction
do not provide much insight into this financial impact. Our approach presents a first step towards the
integration of reliability prediction from the IT perspective and the business perspective. We show that
failure impact should be taken into account not only at their date of occurrence but already in the design
stage of the development. First we model cost relevant business processes as well as the associated IT layer
and then connect them to failure probabilities. Based on this we conduct a reliability and cost estimation.
The method is illustrated by a case study.

Keywords: Software failure, Reliability, Cost.

1 Introduction

Our approach targets financial risks of failing software systems. There are numer-
ous examples where software defects had major financial impact. For example, a

1 Email: brosch@fzi.de
2 Email: ralf.gitzel@de.abb.com
3 Email: heiko.koziolek@de.abb.com
4 Email: skrug@wifo.uni-mannheim.de

Electronic Notes in Theoretical Computer Science 264 (2010) 3–17

1571-0661/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2010.07.002

mailto:brosch@fzi.de
mailto:ralf.gitzel@de.abb.com
mailto:heiko.koziolek@de.abb.com
mailto:skrug@wifo.uni-mannheim.de
http://www.elsevier.com/locate/entcs

debt product was incorrectly awarded a prime rating by a major agency due to a
coding error in their rating model [4]. Lufthansa, one of the largest airway carriers
worldwide, suffered from several outages of their check-in system, leading to flight
cancellations and delays for passengers [20] [9]. British Airways reported an esti-
mated loss of GBP 16’000’000 in the first five days of operation after the opening
of Heathrow’s Terminal 5. It was caused by the incorrect recognition of messages
received and the incapability of the new baggage handling system to cope with the
amount of messages generated [6].

Forecasting such extreme failure induced impact is hard. Software reliability
prediction requires knowledge about how a system is used, which includes the busi-
ness process supported by the software. The financial impact of a systems’s failure
has to be considered according to the frequency of its use. Functionality with small
cost impact but high occurrence rates can lead to higher overall impact than the
one rarely used.

Our approach presents a method to bridge the gap between the reliability pre-
diction calculated from the model of the IT layer and the cost impact modeled as a
business case. The objective is to support business analysts in comparing different
system alternatives during design. Our method is also of use for the software de-
veloper, as it allows focusing on the customers’ needs and helps to assess possible
compensation costs.

Applicability of our method is demonstrated in a case study modeling an in-
dustrial maintenance management system from ABB. We support our case study
with the Palladio Component Model (PCM) [2] [14]. A distinctive feature of the
PCM, compared to other reliability prediction approaches, is its combined consid-
eration of software failures and hardware unavailability, as well as the support for
service usage propagation through parameterized behavioral specifications [14]. Its
relevant inputs are the usage profiles and failure probabilities of individual software
components. The PCM is well suited for our approach, since it explicitly takes these
parameters into account.

An inherent aspect of our approach is the shift from the software provider’s
perspective to the view from the customer’s side to decide how severe a failure
is. This paper is organized as follows. Section 2 introduces the basic concepts of
our approach, describing the steps taken to establish the link between the business
process and the IT layer. Section 3 describes the case study to illustrate the appli-
cation of the approach, followed by a discussion of limitations in Section 4. Section
5 discusses work related to our approach. Finally, section 6 concludes the paper.

2 Method

We propose a two-phase method. First, a model of the business processes (called
business layer) and its links to the hardware/software system (called IT layer) is
created. In a second phase, additional reliability and cost information is added to
the layers to determine various forms of cost information.

There are business processes that occur during regular operation and some that

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–174

will be triggered by failures. Based on the modeled business processes, we determine
which parts of the computer systems have to be represented in the IT layer. As
shown in figure 1, not all business process steps are connected to the IT layer. Later,
these steps of the different business processes have to be associated with cost data.

Business Process

Step

Function Call

Success
Failure

1

Failure

2

1-p2-ps 1-p1-ps 1-p1-p2

Next Business

Process Step A
If successful

Next Business

Process Step B

Next Business

Process Step C

If Failure 1

If Failure 2

Business Layer

IT Layer

Not IT-related

Business Process

Step

X

ps = probability of success

p1 = probability of failure 1

p2 = probability of failure 2

Fig. 1. Connection between Business Layer and IT Layer

Our approach models the IT layer using the PCM notation as a source of fail-
ure information for the business layer. Therefore, failure probabilities for software
components and availability properties for hardware resources are added to the IT
layer. The addition of this data finally allows a calculation of probabilities for the
different process variants based on the system reliability.

In the next step, the system reliability (i.e., the probability of failure on demand
for an IT service) is calculated based on the transformation of the PCM model into
a discrete-time Markov chain (DTMC). The results include a distinction between
failure modes.

Selected failures along with their calculated probability of occurrence can be
combined with the cost information to predict the overall expected cost. The ex-
pected cost can be used for comparing design alternatives. In the following subsec-
tions, we will further elaborate the different steps of our method.

2.1 Modeling the business layer

The cost of a failure for the end user depends on the business case the software
supports. The business case can be described as a combination of the business
processes triggering the hardware/software system as well as cost information for
each of the steps. The business steps using the IT layer form the connection between
the two layers as shown in figure 1. Each business process step can make at most
one call to the IT layer. The call can be either successful or lead to a failure with
a certain probability. On success, the planned business process continues. In the
case of failure, the business process will deviate from the original plan, incurring
additional cost for the necessary extra steps.

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–17 5

The Object Management Group has developed a standard for business process
modeling, the Business Process Modeling Notation (BPMN). We aim to use this
language and augment it with cost information that we attach to each step of the
process. Because of space restrictions, we will not explain the details of BPMN [19].
We use the term process step synonymously for the BPMN object activity.

Due to the possible failures, the business layer contains not only a model for
the planned business case but also for the deviant processes incurred by a failure.
For example, if a server crashes, a member of the IT staff might have to restart
the machine. Since there is an almost unlimited number of failure scenarios, a pre-
selection has to be made in order to focus on the most relevant options. As our
example shows, some failures (i.e. the cost drivers) have a dominant cost impact
while others are irrelevant.

The cost deviation is calculated as the difference between the total cost of the
standard and the deviant process. For each process step the required time for
rework, consumption of material, cost of opportunity, and other costs (such as fees
for using software as a service) can be considered. We focus on the factors most
comprehensible and highly influential in industrial settings: downtime related costs
and additional work labor costs. The first includes lost profits and penalty costs
for late delivery to the customer. Additional labor costs cover expenses related to
tasks which have to be executed in order to correct the system’s faulty state and to
perform rework of certain process steps which were disrupted during first execution.
Labor costs can be calculated by the estimated work effort in time units multiplied
with the estimated labor cost per time unit. The analysis of deviant costs should
be conducted in close cooperation with the accounting department. The costs of
consequences in safety-critical systems, such as the harming of human beings or the
environment, is beyond our scope.

2.2 Modeling the IT layer

In our approach, we use the Palladio Component Model (PCM) for modeling the
IT layer. The PCM is specifically designed to model component-based software
architectures and evaluate their non-functional properties, in particular performance
and reliability. We describe the PCM here very briefly; for a more comprehensive
description see [2].

The PCM captures the important aspects of IT service reliability within four
architectural views: The structural view describes service components, service inter-
faces, and their composition into an overall IT system. The behavioral view specifies
probabilistic data and control flow through the system in terms of sequences of ac-
tions, including branches and loops. The deployment view specifies the hardware
and communication links that form the execution environment for the IT system,
as well as the allocation of service components to the hardware. Finally, the us-
age view describes how the system’s services are used in terms of number of users,
service invocation sequences, and service input parameters.

Several sources of failure are considered when evaluating IT service reliability
with the PCM. Software failures are caused by faults within the software com-

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–176

ponents, which are eventually activated depending on the system state and the
input parameters of the actual service invocations. The modeler specifies the like-
lihood of such failures by annotating certain actions within the control flow with a
failure probability. Hardware unavailability may lead to service failure, if a hard-
ware device is unavailable just when service execution needs it. The modeler spec-
ifies the Mean Time To Failure (MTTF) and Mean Time To Repair (MTTR)
of a physical resource, which is used to determine its steady-state availability
A = MTTF/(MTTF + MTTR), enabling the analysis of unavailability effects.
Furthermore, the PCM considers the possibility of communication link failures,
namely failures in transmission of a service invocation or return message sent over
a network communication link. Comprehensive tool support exists for specifying all
model parts and evaluating system reliability (see Section 2.4).

A planned key feature that will be added to the PCM in the future is a distinction
between failure modes. So far, the PCM in essence only calculates the probability
of any failure affecting the system as a whole. Effectively, for all the relevant points
of failure in the business layer, a failure probability has to be calculated. In the
context of this motivational paper, we do the calculations by hand, following the
basic principles of the PCM as described above.

2.3 Estimating failure probabilities

With the business processes defined and connected to the components of the IT
layer, it now becomes necessary to annotate the software components in the IT layer
with the failure probabilities to run the calculation. Estimating failure probabilities
is an important step of our method, as they serve as an input for the subsequent
reliability calculation. We rely on estimations of domain experts. Limitations of
expert estimations will be discussed in Section 4.

2.4 Calculating the reliability

Our approach uses the PCM to calculate the reliability of an IT service invoked
from the business layer. Thereby, reliability is expressed through the probability of
success of the service invocation, which means: the probability that no software and
communication link failures occur during service execution, and none of the used
hardware devices is unavailable (see Section 2.2).

For the reliability evaluation, a fully specified PCM instance is transformed
into an absorbing DTMC, that represents all possible execution paths through the
architecture, together with their probabilities. This transformation requires the
propagation of service input parameters throughout the architecture in order to
determine the execution path probabilities [14]. Three special states in the Markov
chain mark the beginning, failure and success of the execution. Applying Markov
theory [23] on the DTMC allows for calculation of the probability that the success
state is reached from the execution start (and not the failure state).

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–17 7

2.5 Calculating the costs

After the probabilities for the failure scenarios have been determined with Markov
models, it is trivial to calculate the expected cost of the failure scenarios. As
described in Section2.1, the cost for each failure scenario is the difference to the
cost of the baseline scenario. The overall expected cost is therefore the sum of all
deviating costs in scenario i :

C =
∑n

i=1 pi ∗ (ci + di),

where pi denotes the failure probability as calculated in Section 2.4, ci additional
labor costs and di downtime induced costs as calculated in 2.1.

3 Case Study

This section describes a case study to illustrate our approach to integrate reliability
predictions with financial impact calculations. Initially the system under study
is introduced (see Section 3.1). Afterwards, the method outlined in Chapter 2 is
applied step by step: first the business layer (Section 3.3) and IT layer (Section
3.2) are modeled and then annotated with costs (Section 3.4) in order to calculate
the reliability (Section 3.5). Based on this the total estimated deviating cost are
calculated for the example (Section 3.6).

3.1 System under study

Our example case examines the failure cost of a software system used in a manu-
facturing plant that produces paper. The plant has a number of machines (pumps,
valves, motors) that require maintenance and repair by a crew of workers (Tech-
nical staff). Often a problem can be recognized before it becomes critical and
repairs can be conducted before production downtime occurs. Key challenges are
the assignment of work orders and the traceability of problems. In order to support
repair tasks, a Computerized Maintenance Management System (CMMS) is used.
The CMMS is essentially a database application tailored to the problem domain of
production plant maintenance.

The Technical staff takes its repair orders from the CMMS. This application
contains a data structure with all assets/machines in the plant. To these, Defect
reports can be attached. The Supervisor is notified automatically by the CMMS
about problems that have been detected in the plant and defines repair tasks that
are put into the Staff schedule. The Technical staff receives a message (in whatever
form) when a new task has been put into their schedule. They will execute the
repairs described at the scheduled time. For this purpose, they use information
from the CMMS (from the Defect report) and then fix the problem according to
what is required. After the repair, they will write a Repair report to be attached
to the defect report in the CMMS. The Repair report contains information about
the actual vs. the planned times and whether the initial problem assessment was
correct. This information can be used for statistical analysis or mundane book
keeping.

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–178

A special case occurs when there are defects that require immediate attention
because they cause the production process to stop. The Technical staff detecting the
problem (or being informed by the operators) will make an immediate repair and
then create a report in the CMMS describing the incident. This report is the same
as the normal Defect report complete with attached Repair report. The difference
is that all information is added at once.

3.2 Modeling the CMMS business layer

For the purpose of the example calculation, we focus on a single procedure that is
used to submit a defect report and notify the supervisor of the new report. The
procedure has two failure modes that can prevent a successful execution. The first
problem is a non-trivial downtime of the server, i.e. the CMMS is down when the
Technical staff tries to submit a Defect report. By non-trivial downtime we mean a
problem that does not rectify itself after a moment but requires significant action by
IT staff. The second scenario is the unnoticed loss of a message to the Supervisor.
In it, the message sent to the Supervisor after a defect report has been created does
not reach its recipient. Additionally, there is nothing that indicates this loss to any
of the actors in the process. All other failure modes are considered to be trivial
failures which are small nuisance problems that will slightly delay execution but do
not have a relevant consequence on the execution of the business process.

In the case of no failure or a trivial failure, the process corresponds to the
description given above. It is shown in figure 2. The different actors (human and
computer system) are represented as so-called “swimlanes”. The process starts at
the first round shape, passes through different actors and ends at the bold round
shape. There is one point of decision where the further actions depend on whether a
problem in the production plant requires immediate action or whether it can safely
be scheduled for a future time.

Figure 3 describes the first failure scenario. In it, the server crashes just before
or during the creation of a defect report. As a result, a member of the IT staff has
to restart the server for the work to resume. This additional step adds extra cost
to the scenario.

Figure 4 shows the process that occurs when the message to the supervisor is
lost. As the Supervisor does not realize that there is a defect, he cannot assign an
appropriate job to members of the Technical staff. Consequently, the failure will
remain unrepaired. For simplicity’s sake, we assume that the failure will only be
rediscovered when it has become critical. The result are the process steps and costs
associated with a critical failure.

In order to compare the cost effects of failures, monetary values have to be added
to the process steps in the diagrams. For the baseline case of no failure, these are:

• Create Defect report: 10 minutes of Technical staff work time
• Supervisor Evaluates Defect report: 5 minutes of Supervisor work time
• Define Repair Tasks: 5 minutes of Supervisor work time

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–17 9

E
nt
er
pr
is
e

C
M
M
S

Te
ch
ni
ca
ls
ta
ff

S
up
er
vi
so
r

Defect occurs

Staff informed

Create defect
report

Supervisor
evaluates
defect report

issue resolved

Immediate action necassary

Defect
report

No immediate action necassary

Take repair
action

Staff
schedule

Define repair
tasks

Repair
report

asset

Take
immediate
action

Create defect
report

Create repair
report

Fig. 2. Business Process for Successful Execution

E
nt
er
pr
is
e

IT
st
af
f

C
M
M
S

Te
ch
ni
ca
ls
ta
ff

S
up
er
vi
so
r

Defect occurs

Staff informed

Create defect
report

Supervisor
evaluates
defect report

issue resolved

Immediate action necassary

No immediate action necassary

Take repair
action

Define repair
tasks

Take
immediate
action

Restart server

Create defect
report

Create repair
report

Fig. 3. Business Process with a Server Crash

• Take Repair Action: on average 1 hour of Technical staff work time
• Take Immediate Action: on average 1 hour of Technical staff work time
• Create Repair report: 10 minutes of Technical staff work time

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–1710

�
��
��
��
�	
�

�
�
�

�
��
��
��
��	
��
��

�
��
��
��
	�
�

������������	

��������������

�������������
������

�		�����	�����

�������
������

������������������������		���

�������
������

�		��

����
����������
������

�������������
������

�������������
������

��		������	�

���������������
�����	

��������������

Fig. 4. Business Process with a Lost Message

• Downtime: if immediate action is necessary (see first decision point in the pro-
cess), the time between defect occurs and the end of the process step Take Im-
mediate Action is downtime. With a downtime rate of 10’000 Euro per hour and
an average time span of 3 hours, this means 30’000 Euro of downtime cost.

The first failure scenario adds the following process steps:

• Restart server: 15 minutes of IT staff work time
• Rewrite defect report: 10 minutes of Technical staff work time

The difference to the original scenario are 15 minutes of IT staff work time and
10 minutes of Technical staff work time, which in this example both correspond to
100 respectively 60 Euro per hour. Thus deviant costs are 25 + 10 = 35 Euro.

The second scenario only differs from the baseline when a message is lost and
the failure resurfaces as a critical failure later. This means downtime cost and cost
for the process steps Take Immediate Action and Create Defect report. No longer
relevant is the cost for Take Repair Action. This means downtime cost of 30’000
Euro and the comparatively marginal additional labor cost of 10 Euro for the 10
minutes spent on the second defect report like in the first scenario.

3.3 Modeling the CMMS IT layer

We have created a PCM instance for the CMMS in order to evaluate the reliability
of the IT service operations invoked by the business layer, namely the process step
calling createDefectReport. Figure 5 displays the service components and interfaces
that are involved in the process. As the figure shows, all three invoked service

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–17 11

operations are part of the ReportingEngine service, which in turn uses a Database
service for storage, update and retrieval of any information, and a Notificator service
for sending notifications to staff and supervisors. In the context of the paper, we
limit our calculations to the failure modes of createDefectReport.

+createDefectReport()

+createRepairTask()

+createRepairReport()

«Interface»

IReportingEngine

«Service Component»

ReportingEngine +getContactData()

+storeDefectReport()

+storeRepairTask()

+updateSchedule()

+storeRepairReport()

«Interface»

IDatabase «Service Component»

Database

+notifyDefectReport()

+notifyRepairTask()

«Interface»

INotificator
«Service Component»

Notificator

«Provides»

«Provides»

«Requires»

«Requires»

«Requires»

«Provides»

Fig. 5. CMMS Service Components and Interfaces

We have modeled the control and data flow through the components in PCM
for createDefectReport. When a staff member creates a defect report, the Reportin-
gEngine stores it in the Database, and issues a request to the Notificator to send
an e-mail to the corresponding supervisor.

Regarding the execution environment, we have modeled a Main server and a
Database server, and assumed that the ReportingEngine and Notificator are allo-
cated to the main server, while the database is separated and runs on the Database
server.

Finally, we have completed the PCM instance by creation of an own usage sce-
nario for the scenario createDefectReport. Together with the failure probability
annotations (see Section 3.4), all required information for the evaluation of IT ser-
vice reliability is present.

3.4 Estimating failure probabilities and deviant costs

In our example, we estimate the failure probabilities of the CMMS system to be:

• Main server unavailable (0,01%)
• Database server unavailable (0,001%)
• Communication link between servers failed (0,01%)
• Storing of report in database failed due to software failure (0,01%)
• Retrieval of Supervisor contact data from database failed due to software failure

(0,01%)
• Notification of Supervisor failed due to software failure (0,02%)

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–1712

3.5 Calculating the reliability

As an example, we have evaluated the reliability (that is, probability of success) of
the service operation createDefectReport, which is invoked by the business layer in
the step Create Defect report (see Section 3.3). The DTMC for the createDefectRe-
port operation is shown in figure 6. The DTMC represents the sequence of actions
involved in the service execution, and determines the risk of failure for each action.
The service operation’s reliability is the product of the individual success probabil-
ities of all actions, namely R = (1 − 10−4)7 ∗ (1 − 10−5) ∗ (1 − 2 ∗ 10−4) ≈ 0.99909.

The probability of the first failure mode (server failure) can also be calculated
from the DTMC. It is approx. 0.00011, which is the possibility that the call fails
due to a server problem (but not due to anything else). The probability of a lost
message is the probability of a failure in the last step (but in none of the steps
before), which is approx. 0.0002.

Database:

StoreDefectReport

ReportingEngine:

SendMessage(Main Database)

Database:

ReturnMessage(Database Main)

Notificator:

SendMessage(Main Database)

Database:

RetrieveData

Database:

ReturnMessage(Database Main)

Notificator:

SendNotification

ReportingEngine:

UseMainServer

Database:

UseDataBaseServer

S

0.00011.0

0.9999

0.0001

0.0001

0.0001

0.0001

0.9999

0.9999

0.9999

0.9999

0.00001

0.99999

0.0001

0.9999

0.0001

0.9999

0.00020.9998

START

SUCCESS

F
FAILURE

(PROCESSING)

F
FAILURE

(SERVER)

F
FAILURE

(NOTIFICATION)

Fig. 6. DTMC for the CreateDefectReport Operation

3.6 Results

With the numbers given in sections 3.2 and 3.5 we can now calculate the cumulated
costs for the two scenarios:

C = (0.00011 ∗ (35 + 0)) + (0.0002 ∗ (10 + 30′000)) ≈ 6

Even though the numbers appear very suggestive, they should be handled with
care. These numbers describe only the average case for a single execution for the

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–17 13

process. Given a single installation and a short time span, the actual average cost
per call can differ vastly. However, the numbers can be used to compare this software
with design alternatives or to evaluate potential improvements. For example, the
decision maker can support the choice for one particular system with the advantages
due to better reliability properties expressed in monetary values. He can also decide
to substitute an old software component responsible for the execution of a process
step with high failure costs. In our example server, crashes are irrelevant when
compared to the problem of lost messages. Thus the latter has to be scrutinized in
more detail.

4 Assumptions and Limitations

Observation of systems at run-time is most suited to represent the perspective of
the business user who is confronted with the software product after the develop-
ment phase. A software system used in a business environment cannot be regarded
to remain unchanged over a longer period of time. Adding or exchanging one of
the components represents a not to be underestimated factor in the calculation of
downtime induced by failures. Unlike other authors (e.g., [17]), we do not incorpo-
rate repair actions and their implications on the failure rate. As bug fixing and the
introduction of new faults by system extensions are usually not within the area of
control of the end user, we do not consider this aspect. Also the application of fault
tolerance mechanisms, e.g. integrated into components or one component taking
over the functionality of a faulty one, are out of our scope.

Estimation of the failure probabilities is one of the most critical assumptions.
We take a parameterized approach, which relies on estimations of domain experts.
The main drawback here is that the assessment of such a domain expert is strongly
subjective and an expert may not be available [5]. Even though these findings
refer to a different problem domain, expert judgment is valuable for estimation, as
recent work in the field of software development work effort forecasting indicates
[11] [12]. Therefore, even if we rely on rough estimates, our approach still is able to
contribute to the estimation of cost impact and especially for comparing two design
alternatives.

For the sake of simplicity our approach does not provide a mechanism to deal
with the occurrence of multiple failures at the same time. Since failure probabilities
are very low, we consider concurrent appearance to be too unlikely to have a notice-
able impact on the end result. We only take a small subset of failures into account,
where we focus on a single consequence of a failure. Also we only regard a limited
number of scenarios, as there are too many possible failures and reactions to them.
However, important cases are covered by our approach to get a good estimate and
to allow comparisons between two different software solutions.

We also do not provide any insight on the time needed for a component in
order to propagate its defective state to another, i.e. the delay between a failure
in one component leading to a failure in one or more components that depend on
the input of the first one. Markov chains are a well established method to model

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–1714

the transitions between components [5] [7]. For a detailed discussion of limitations
related to reliability in component-based architectures please refer to [14].

So far we have no conclusive method to rate the quality of a scenario, i.e. how
well it represents different kinds of impact in practice. A more sophisticated analysis
of software failure impact as well as a classification is needed and part of further
research.

5 Related Work

On the IT layer, reliability growth models observe decreasing failure rates during
testing and continuous fault-fixing in order to evaluate and predict testing effort or
the failure rate to expect at the end of testing [1] [10] [16]. In contrast, our approach
looks at a stable system at run-time, and evaluates the system-level failure rates
based on knowledge about failure rates in individual components.

Component-based approaches mainly rely on probabilistic models to determine
reliability. One recent example presented a probabilistic model checking tool for the
analysis of performance and reliability properties of system, incorporating different
failure probability measures [15]. However no account is given for the consideration
of different user profiles. [8] explicitly stress the importance of usage profiles as a
precondition to software reliability calculation but employ random testing for the
reliability calculation without specifying the dependencies of transition probabili-
ties. Our approach explicitly models the call propagation trough the components
in the IT layer, supported by the PCM.

On the business layer, widely known cost estimation approaches such as CO-
COMO do not even consider software failures as one of the cost drivers for a run-
ning system, since the focus lies only on the development stage. Even the extension
of the model [3], spanning the whole software life-cycle, falls short in this aspect.
Other approaches explicitly take these costs into account but cannot provide any
insights on the financial implications for the end user. [21] offers an overview on
Cost of Quality models which cover many aspects of costs but neither do so for the
customer nor establish any link with the IT layer. The second point is achieved by
[24], who combines efficiency metrics for defect-detection techniques with a model
for software quality costs. His model aims to support management decisions by
analyzing the relation of costs and benefits of a software project’s investment prior
to its start.

Karg and Beckhaus (2007) propose a framework that covers the investments for
the removal of defects during testing. They stress the point that there is a general
lack of empirical validation for all cost estimation models in this sector but not
provide one themselves. The approach is based on cost calculation function. They
do not offer a conclusive way to arrive at this function though [13]. [18] addressed
cost of failures during the actual use of the system. He applied a random testing
method to a black box view of the system. The implications drawn were used to
optimize testing effort. Recently [22] proposed a framework for the estimation of
software maintenance effort, again seen from the software provider’s point of view.

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–17 15

In summary, none of the approaches has arrived at bridging the gap between
the reliability of a system and software failure induced costs. They are targeted at
the costs on the side of the software developer but do not satisfy the needs of the
business user. Weyuker addresses this problem by estimating the cost of a software
failure and the probability of its occurrence [25]. She emphasizes the importance of
testing by measuring risk as a function of tests that have been run and also points
out that different usage patterns may cause a significant difference in the behavior of
the software. However, she does not elaborate on how these patters might look like.
Our approach incorporates the business layer as one layer of IT service reliability.
We show how reliability prediction on the IT layer can be associated with costs
for the end user, introducing a novel view on cost estimation based on established
methods.

6 Conclusions and Future Work

We presented a novel approach to the integration of reliability on the IT layer of
a software system with costing aspects on the business side implied by the first.
By demonstrating how business process steps can be associated with the estimated
downtime in case of a defect, we offer a method to calculate software failure induced
costs. Reliability analysis is supported by an advanced tool, widening the spectrum
of parameters to employ. We can therefore consider concrete component structures
on the technical level and diverse process scenarios on the business level.

The method allows users to anticipate the software failure related financial im-
pact of a given software system thus enabling a comparison between design alterna-
tives. It also helps software developers at design time to identify business process
steps which are highly influenced by the reliability values of the underlying IT
layer. Business experts can profit from the breakdown of cost structures to channel
optimization efforts.

Future work includes the inspection of automated generation of failure scenarios
as an approach to accelerate analysis for problems with a known resolution both on
the business and the technical level. At the moment our approach is still at an early
stage and we have yet to add further formalization to the cost assignment. We plan
to integrate more sophisticated measures, such as for example Value at Risk and
other financial key performance indicators into our model. Furthermore, a way to
handle decisions in the business process is needed.

References

[1] Almering, V., M. van Genuchten, G. Cloudt and P. Sonnemans, Using software reliability growth models
in practice, IEEE Software 24 (2007), pp. 82–88.

[2] Becker, S., H. Koziolek and R. Reussner, The Palladio component model for model-driven performance
prediction, Journal of Systems and Software 82 (2009), pp. 3–22.
URL http://dx.doi.org/10.1016/j.jss.2008.03.066

[3] Boehm, B., A. W. Brown, R. Madachy and Y. Yang, A software product line life cycle cost estimation
model, in: ISESE ’04: Proceedings of the 2004 International Symposium on Empirical Software
Engineering (2004), pp. 156–164.

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–1716

http://dx.doi.org/10.1016/j.jss.2008.03.066

[4] Charette, R., Moody’s software rating bug gives credit where credit isn’t due (2008).
URL http://spectrum.ieee.org/blog/computing/it/riskfactor/moodys_rating_bug_gives_credit

[5] Cheung, L., R. Roshandel, N. Medvidovic and L. Golubchik, Early prediction of software component
reliability, in: ICSE ’08: Proceedings of the 30th international conference on Software engineering
(2008), pp. 111–120.

[6] Computerweekly, Update: lack of software testing to blame for terminal 5 fiasco (2008).
URL http://www.computerweekly.com/Articles/2008/05/09/230629/
update-lack-of-software-testing-to-blame-for-terminal-5-fiasco-ba-executive-tells.htm

[7] Gokhale, S. S., Architecture-based software reliability analysis: Overview and limitations, Dependable
and Secure Computing, IEEE Transactions on 4 (2007), pp. 32–40.

[8] Hamlet, D., D. Mason and D. Woit, Theory of software reliability based on components, International
Conference on Software Engineering (2001), pp. 361–370.

[9] Heise, Computerprobleme legen check-in-system der lufthansa lahm (2009).
URL http://www.heise.de/newsticker/meldung/
Computerprobleme-legen-Check-in-System-der-Lufthansa-lahm-798193.html

[10] Inoue, S. and S. Yamada, Generalized discrete software reliability modeling with effect of program
size, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 37 (2007),
pp. 170–179.

[11] Jørgensen, M., Estimation of software development work effort: Evidence on expert judgment and
formal models, , 23, 2007, pp. 449–462.

[12] Jørgensen, M., B. Boehm and S. Rifkin, Software development effort estimation: Formal models or
expert judgment?, IEEE Software 26 (2009), pp. 14–19.

[13] Karg, L. M., and A. Beckhaus, Modelling software quality costs by adapting established methodologies of
mature industries, in: Proc. IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM’07), 2007.

[14] Koziolek, H. and F. Brosch, Parameter dependencies for component reliability specifications, in: Proc.
6th Int. Workshop on Formal Engineering approaches to Software Components and Architectures
(FESCA’09), ENTCS 253 (2009), pp. 23–38.

[15] Kwiatkowska, M., G. Norman and D. Parker, Prism: probabilistic model checking for performance and
reliability analysis, SIGMETRICS Perform. Eval. Rev. 36 (2009), pp. 40–45.

[16] Lyu, M., Software reliability engineering: A roadmap, in: Future of Software Engineering, 2007. FOSE
’07, 2007, pp. 153–170.

[17] Musa, J. D. and K. Okumoto, A logarithmic poisson execution time model for software reliability
measurement, in: Proceedings of the 7th international conference on Software engineering, 1984.

[18] Ntafos, S. and V. Poceciun-Benson, Improved testing using failure cost and intensity profiles, in: ASSET
’00: Proceedings of the 3rd IEEE Symposium on Application-Specific Systems and Software Engineering
Technology (ASSET’00) (2000), p. 143.

[19] Object Management Group, “Business Process Model and Notation (BPMN),” Object Management
Group, 2009.

[20] Reuters, Lufthansa cancels flights after computer failure (2004).
URL http://www.usatoday.com/travel/news/2004-09-24-lufthansa-cancellations_x.htm

[21] Schiffauerova, A. and V. Thomson, A review of research on cost of quality models and best practices,
International Journal of Quality and Reliability Management 23 (2006), pp. 647–669.

[22] Shukla, R. and A. Misra, Ai based framework for dynamic modeling of software maintenance effort
estimation, Computer and Automation Engineering, International Conference on 0 (2009), pp. 313–317.

[23] Trivedi, K. S., “Probability and statistics with reliability, queuing and computer science applications,”
John Wiley and Sons Ltd., Chichester, UK, 2002.

[24] Wagner, S., S. Xie, M. Rubel-Otterbach and B. Sell, Profitability estimation of software projects: A
combined framework, in: The First International Workshop on Software Productivity Analysis and
Cost Estimation (SPACE’07), 2007.

[25] Weyuker, E. J., Difficulties measuring software risk in an industrial environment, in: DSN ’01:
Proceedings of the 2001 International Conference on Dependable Systems and Networks (formerly:
FTCS) (2001), pp. 15–24.

F. Brosch et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–17 17

http://spectrum.ieee.org/blog/computing/it/riskfactor/moodys_rating_bug_gives_credit
http://www.computerweekly.com/Articles/2008/05/09/230629/update-lack-of-software-testing-to-blame-for-terminal-5-fiasco-ba-executive-tells.htm
http://www.computerweekly.com/Articles/2008/05/09/230629/update-lack-of-software-testing-to-blame-for-terminal-5-fiasco-ba-executive-tells.htm
http://www.heise.de/newsticker/meldung/Computerprobleme-legen-Check-in-System-der-Lufthansa-lahm-798193.html
http://www.heise.de/newsticker/meldung/Computerprobleme-legen-Check-in-System-der-Lufthansa-lahm-798193.html
http://www.usatoday.com/travel/news/2004-09-24-lufthansa-cancellations_x.htm

	Introduction
	Method
	Modeling the business layer
	Modeling the IT layer
	Estimating failure probabilities
	Calculating the reliability
	Calculating the costs

	Case Study
	System under study
	Modeling the CMMS business layer
	Modeling the CMMS IT layer
	Estimating failure probabilities and deviant costs
	Calculating the reliability
	Results

	Assumptions and Limitations
	Related Work
	Conclusions and Future Work
	References

