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Abstract. Critical properties of software systems, such as reliability,
should be considered early in the development, when they can govern cru-
cial architectural design decisions. A number of design-time reliability-
analysis methods has been developed to support this task. However, the
methods are often based on very low-level formalisms, and the connection
to different architectural aspects (e.g., the system usage profile) is either
hidden in the constructs of a formal model (e.g., transition probabilities
of a Markov chain), or even neglected (e.g., resource availability). This
strongly limits the applicability of the methods to effectively support
architectural design. Our approach, based on the Palladio Component
Model (PCM), integrates the reliability-relevant architectural aspects in
a highly parameterized UML-like model, which allows for transparent
evaluation of architectural design options. It covers the propagation of
the system usage profile throughout the architecture, and the impact of
the execution environment, which are neglected in most of the existing
approaches. Before analysis, the model is automatically transformed into
a formal Markov model in order to support effective analytical techniques
to be employed. The approach has been validated against a reliability
simulation of a distributed Business Reporting System.

1 Introduction

Software reliability is defined as the probability of failure-free operation of a
software system for a specified period of time in a specified environment [1].
In practice, developers often ensure high software reliability only through soft-
ware testing during late development stages. Opposed to this, architecture-based
software reliability analysis ([2–4]) aims at improving reliability of component-
based software architectures already during early development stages. This helps
software architects to determine the software components mostly affecting sys-
tem reliability, to study the sensitivity of the system reliability to component
reliabilities, and to support decisions between different design alternatives.

To enable architecture-based software reliability analyses, reliability specifi-
cations of individual software components are required. Ideally, they are created
by the component vendors. However, it is hard for a component vendor to specify



a software component’s reliability, because it depends not only on the compo-
nent implementation, but also on factors outside the vendor’s control. Besides its
implementation, a software component’s reliability depends on (i) its usage pro-
file [5] (e.g., how often the component is called, which parameters are used), (ii)
the reliability of external services [6] (e.g., how reliable the component’s required
services are), and (iii) the reliability of the execution environment [1] (e.g., how
reliable the underlying middleware/hardware is). Existing reliability prediction
methods, typically Markov-chain based, either do not cover all these aspects
(mainly neglecting the execution environment reliability), or hard-code their in-
fluence into the model (transition probabilities), which reduces the reusability
of the model in assessing architectural design alternatives.

We introduce a novel approach that takes all the above mentioned factors into
account. We extend the work presented in [6] with the propagation of the usage
profile throughout a component-based software architecture, as well as the avail-
ability of the underlying hardware resources. We use the Palladio Component
Model (PCM) [7] as a design-oriented modelling language for component-based
software architectures, and extend the PCM with capabilities for reliability pre-
diction. Besides the inclusion of multiple influence factors to component reliabil-
ity, our approach bears the advantage of providing a modelling language closely
aligned with software architecture concepts (instead of Markov chains, which are
then generated automatically).

Using the PCM, multiple developer roles (e.g., component developer, domain
expert, etc.) can independently contribute their parts to the architectural model
thus reducing the complexity of the overall task. Through parameterisation,
software component reliability specifications are reusable with respect to vary-
ing system usage profiles, external services, and hardware resource allocations.
Software architects can conduct reliability predictions using automatic methods.

The contributions of this paper are (i) a highly parameterized reliability
model including all architectural aspects explicitly, (ii) a novel method of propa-
gating hardware-level availability to the system-level reliability based on the real
usage of the hardware, and (iii) a developer-friendly support of model creation
in a UML-like notation with automatic transformation to Markov chains. The
approach is validated on a case study of a distributed business reporting system.
The whole approach is implemented as an Eclipse-based tool [8], supporting not
only the modelling process and reliability analysis, but also the reliability sim-
ulation and sensitivity analysis, which aim to further facilitate the architecture
design.

This paper is organised as follows: Section 2 surveys related work. Section 3
describes the models used in our approach and focuses on the PCM reliability
extensions. Section 4 explains how to predict the reliability of a PCM instance,
which includes solving parameter dependencies, generating a Markov model, and
solving the Markov model. Section 5 documents the case study before Section 6
concludes the paper.



2 Related Work

Seminal work in the area of software reliability engineering [1] focussed on system
tests and reliability growth models treating systems as black boxes. Recently,
several architecture-based reliability analysis approaches have been proposed [2–
4] treating systems as a composition of software components. In the following,
we examine these approaches regarding their modelling of the influence factors
on component reliability, namely usage profile, and execution environment.

To model the influence of the usage profile on system reliability, the propa-
gation of inputs from the user to the components and from components to other
components (i.e., external calls) have to be modelled. Goseva et al. [2] state that
most approaches rely on estimations of transition probabilities between software
components. Cheung [5] states that the transition probabilities could be ob-
tained by assembling and deploying the components and executing the expected
usage profile against them. However, this requires software architects to set up
the whole system during architecture design, which is often neither desired nor
possible.

Recent approaches by Wang et al. [9] and Sharma et al. [10] extend Che-
ung’s work to support different architectural styles and combined performance
and reliability analysis. However, they rely on testing data or the software archi-
tecture’s intuition to determine the transition probabilities. Reussner et al. [6]
assume fixed transition probabilities between components, therefore their mod-
els cannot be reused if the system-level usage profile changes. Cheung et al. [11]
focus on the reliability of individual components and do not include calls to other
components.

Several approaches have been proposed including properties of the execu-
tion environment into software reliability models. Sharma et al. [12] provide a
software performability model incorporating hardware availability and different
states of hardware resources, but disregard the usage profile propagation and
component dependencies. Furthermore, the approach calculates the throughput
of successful requests in presence of hardware failures, but not the system reli-
ability. The same holds for the approaches of Trivedi et al. [13] and Vilkomir et
al. [14], who design complex availability models of the execution environment,
but do not link it to the software level to quantify the overall system reliability.

Popic et al. [15] take failure probabilities of network connections into ac-
count, but not the failure probabilities of other hardware resources. Sato and
Trivedi [16] combine a system model (of interacting system services) with a re-
source availability model. However, they do not include pure software failures
(not triggered by execution environment), assume fixed transition probabilities
among services, and do not model usage profile dependencies of services. Yacoub
et al. [17] include communication link reliabilities in their approach but neglect
hardware availability.

We described a preliminary work to the approach in this paper, which was
not related to the PCM and did not consider hardware availability, in [18].



3 Modelling Reliability with the PCM

To provide the reader with a quick introduction to the modelling capabilities of
the PCM we first discuss a simple example (Section 3.1), then describe the mod-
elling capabilities more in detail structured according to the involved developer
roles (Section 3.2), and finally introduce our extension to the PCM to allow for
reliability analysis (Section 3.3).

3.1 Example

Figure 1 shows a condensed example of a PCM instance. It is composed out of
four kinds of models delivered independently by four different developer roles.

Component 1 Component 2

CPU HDCPU

Resource Container 1 Resource Container 2

MTTF = 100h
MTTR = 6h

MTTF = 200h
MTTR = 8h

Failure Probability 
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Fig. 1. PCM Example

Component developers provide abstract behavioural specifications of compo-
nent services. They can annotate internal computations of a service with failure
probabilities. Additionally, they can annotate external calls as well as control
flow constructs with parameter dependencies. The latter allow the model to
be adjusted for different system-level usage profiles. Software architects com-
pose the component specifications into an architectural model. System deployers
model the resource environment (e.g., CPUs, network links) annotated with fail-
ure properties and allocate the components in the architectural model to the
resources. Finally, domain experts specify the system-level usage model in terms
of stochastic call frequencies and input parameter values, which then can be
automatically propagated through the whole model. Once the whole model is
specified, it can be transformed into a Markov model to conduct reliability pre-
dictions (cf. Section 4).

3.2 Modelling Software and Hardware with the PCM

In this section, we informally describe the features of the PCM meta-model
and then focus on our extensions for reliability prediction. The division of work



targeted by component-based software engineering (CBSE) is enforced by the
PCM, which structures the modelling task to different languages reflecting the
responsibilities of the discussed developer roles.

Using the PCM, component developers are responsible for the specification
of components, interfaces, and data types. Components can be assembled into
composite components making the PCM a hierarchical component model. For
each provided service of a component, component developers can supply a so-
called service effect specification (SEFF), which abstractly models the usage of
required services by the provided service (i.e., external calls), and the consump-
tion of resources during component-internal processing (i.e., internal actions).
SEFFs may include probabilistic or value-guarded branches, loops, and forks to
model the control flow of the component service. To specify parameter depen-
dencies on control flow constructs, we have developed a so-called stochastic ex-
pression language [19], which enables modelling arithmetic or boolean operations
on input parameter values. At design time developers model SEFFs manually.
After implementation developers can apply static code analysis [20] or execute
the component against different test cases to derive SEFFs.

Software architects retrieve the component specifications of the component
developers from a repository and connect them to form an architectural model
that realises a specific application. They create assembly connectors, which con-
nect required interfaces of components to compatible provided interfaces of other
components. They ideally do not deal with component internals, but instead fully
rely on the SEFFs supplied by the component developers. Furthermore, software
architects define the system boundaries and expose some of the provided inter-
faces to be accessible by users.

System deployers are responsible for modelling the resource environment,
which is a set of resource containers (i.e., computing nodes) connected via net-
work links. Each resource container may include a number of modelled hardware
resources (e.g., CPU, hard disk, memory, etc.). Resources have attributes, such
as processing rates or scheduling policies. System deployers specify concrete re-
sources, while component SEFFs only refer to abstract resource types. When
specifying the allocation of components to resource containers, the resource de-
mands can be directed to concrete resources. This method allows to easily ex-
change the resource environment in the model without the need to adapt the
component specifications.

Domain experts specify the usage model, which involves the number and
order of calls to component services at the system boundaries. The model can
contain control flow constructs (e.g., branches, loops). For each called service, the
domain experts also characterise its input parameter values. They can use the
stochastic expression language to model a parameter taking different values with
specific probabilities. Once the usage model is connected to the system model
by the software architect, tools can propagate the parameter values through the
parameterised expressions specified by component developers. Because of the pa-
rameterisation, the usage model can easily be changed at the system boundaries
and the effect on the component specifications can be recalculated.



3.3 PCM Extensions for Modelling Reliability

In this paper, we incorporate the notion of software failures, communication link
failures, and unavailable hardware into the PCM and extend its meta model
accordingly. The following paragraphs briefly describe the rationale behind our
approach.

Software failures occur during service execution due to faults in the imple-
mentation. A PCM internal action from a SEFF abstracts component-internal
processing and can be annotated with a failure probability, describing the prob-
ability that the internal action fails while being executed. We assume that any
failure of an internal action leads to a system failure. To estimate the failure prob-
abilities component developers can use software reliability growth models [1],
statistical testing [2], or code coverage metrics on their components. Our ap-
proach relies on these proven approaches to determine the failure probabilities.
We will show in Section 5 on how to deal with uncertain failure probabilities
using a sensitivity analysis.

Communication link failures include loss or damage of messages during trans-
port, which results in service failure. Though transport protocols like TCP in-
clude mechanisms for fault tolerance (e.g., acknowledgement of message trans-
port and repeated message sending), failures can still occur due to overload,
physical damage of the transmission link, or other reasons. As such failures are
generally unpredictable from the point of view of the system deployer, we treat
them like software failures and annotate communication links with a failure prob-
ability in the PCM model. System deployers can define these failure probabilities
either from experience with similar systems or by running tests on the target
network.

Unavailable hardware causes a service execution to fail. Hardware resource
breakdowns mainly result from wear out effects. Typically, a broken-down re-
source (e.g., a CPU, memory, or storage device) is eventually repaired or replaced
by a functionally equivalent new resource. In the PCM, we annotate hardware
resources with their Mean Time To Failure (MTTF) and Mean Time To Re-
pair (MTTR). System deployers have to specify these values. Hardware vendors
often provide MTTF values in specification documents. System deployers can
refine these values on experience [21]. MTTR values can depend on hardware
support contracts. For example, IT administration could warrant replacing failed
hardware resources within one working day.

While we are aware that there are other reasons for failure (e.g., incompat-
ibilities between components), we focus on the three failure classes described
above, which in many cases have significant impact on overall system reliability.
We will target further failure classes as future work.

4 Predicting Reliability with the PCM

Once a full PCM instance is specified by combining the different models de-
scribed in the former section, we can predict its reliability in terms of the prob-



ability of failure on demand (POFOD) for a given usage model. The predic-
tion process requires solving parameter dependencies (Section 4.1), determining
probabilities of physical system states (Section 4.2), and generating and solving
Markov chains (Section 4.3).

4.1 Solving Parameter Dependencies

Once the domain expert has specified input parameters in the usage model and
the software architect has assembled an architectural model, a tool can propagate
the parameter values of the usage model through the architectural model to solve
the parameter dependencies on branch probabilities and loop counts.

The algorithm behind the tool [18] requires to separate the input domain
of a component service into a finite number of equivalence classes and to pro-
vide a probability for each class. The equivalence classes can be derived using
techniques from partition testing [22]. The probabilities for input classes of com-
ponents directly accessed by users (i.e., the system-level usage profile) have to
be estimated by domain experts. After running the algorithm, all parameter
dependencies are resolved and all SEFFs contain calculated branch probabili-
ties and loop iteration counts, which can later be used for the construction of
Markov chains. We have documented the model traversal algorithm for resolving
the parameter dependencies formally in [19].

Consider the example in Fig. 1. The domain expert (lower left) has specified
that the parameter X for calling Service 1 will always have the value 1, while
the parameter Y will take the value 0 with a probability of 10 percent, 3 with a
probability of 70 percent, and 5 with a probability of 20 percent. Our tool uses
the values for Y to derive the branch probabilities in the SEFFs of Component
Developer 1 from the parameter dependencies Y ≤ 3 and Y > 30 to 0.8 and 0.2
respectively. Furthermore, it uses the value for X (= 1) to resolve the value for
Z in the SEFF to 6 = 1 + 5 for the call to Service 2 and to 30 = 27 ∗ 1 + 3 for
the call to Service 3. In the SEFF for Service 2 (Component Developer 2), the
current value for Z (= 6) can be used to resolve the parameter dependency on
the loop count, which is determined to be 8 according to the calculated input
parameter values.

4.2 Determining Probabilities of Physical System States

After solving the parameter dependencies, our approach generates Markov chains
for all possible cases of hardware resource availability. We call each of these
cases a physical system state and calculate their occurrence probabilities from
the MTTF/MTTR values specified in a PCM instance. Let R = {r1, r2, .., rn}
be the set of resources in the system. Each resource ri is characterized by its
MTTFi and MTTRi and has two possible states OK and NA (not available).
Let s(ri) be the current state of resource ri. Then, we have:

P (s(ri) = OK) =
MTTFi

MTTFi + MTTRi



P (s(ri) = NA) =
MTTRi

MTTFi + MTTRi

This calculation of the resource availabilities can be refined using continuous
time Markov chains (CTMC), also see [12]. Let S be the set of possible physical
system states, that is, S = {s1, s2, .., sm}, where each sj ∈ S is a combination of
states of all n resources:

sj = (sj(r1), sj(r2), .., sj(rn)) ∈ {OK,NA}n

As each resource has 2 possible states, there are 2n possible physical system
states, that is, m = 2n. At an arbitrary point in time during system execution,
let P (sj) be the probability that the system is in state sj . Assuming independent
resource failures, the probability of each state is the product of the individual
resource-state probabilities:

∀j ∈ {1, ..,m} : P (sj) =
n∏

i=1

P (s(ri) = sj(ri))

Considering the example from Figure 1, there are three hardware resources
included in the model (two CPUs and one HD), leading to 23 = 8 possible physi-
cal system states, whose probabilities are listed in Table 1. The state probabilities
are used for calculation of overall system reliability (see Section 4.3).

Table 1. Physical System State Probabilities for the Example PCM Instance

Resource 1 Resource 2 Resource 3
MTTF 100 150 200
MTTR 6 8 8
OK 0,943396226 0,9493671 0,9615385
NA 0,056603774 0,0506329 0,0384615 State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

CPU1 NA NA NA NA OK OK OK OK
CPU2 NA NA OK OK NA NA OK OK
HD NA OK NA OK NA OK NA OK

0,000110 0,002756 0,002067 0,051671 0,001837 0,045930 0,034447 0,861182

Resource 
Status

Probability

4.3 Generating and Solving Markov Chains

For each physical system state determined above, our tool generates a separate
absorbing discrete-time Markov chain (DTMC). The chain represents all possi-
ble service execution paths, together with their probabilities, under the specific
physical system state. Thus, the state (availability of hardware resources) is fixed
along a system service execution, which better reflects the fact that resource fail-
ure and repair times are orders of magnitude longer than the duration of a single
service. Note that this means that resources are not expected to fail or be re-
paired during service execution. However, this inaccuracy is negligible, which is
confirmed also by the validation (see Section 5).

The DTMC is based on a combination of all SEFFs in a PCM instance trig-
gered by the usage model. It contains a state for each action of each SEFF. Three
additional states represent execution start, success, and failure. The DTMC tran-
sitions denote all possible execution paths and their probabilities.



Figure 2 illustrates the DTMC generated for the example from Figure 1,
assuming that the system is in a state where both CPUs are ok, but the HD is
unavailable. The execution starts with a call to Service 1, followed by an internal
action requiring the first CPU. Afterwards, either Service 2 or 3 are called over
the network, which then use the second CPU and the HD respectively.

Service 1
START

Int. Act.
CPU

Network
CALL

Network
CALL

Service 2
START

Service 3
START

Int. Act.
CPU

Int. Act.
HD

Service 2
STOP

Service 3
STOP

Service 1
STOP

1.0

1.0

1.0

1.0

1.0

0.1998

0.7992

0.001

0.998 1.0 0.999

0.01.00.998

0.002 0.001

0.002 1.0

FAILURE

SUCCESS

START

Fig. 2. Discrete-time Markov Chain

Markov states originating from internal actions and network calls have a
transition to the failure state. For internal actions the transition can be triggered
by either software failure (with given failure probability) or by unavailability of
required hardware. Depending on the physical system state represented by the
Markov chain, the failure probability of the internal action is either equal to the
specified failure probability or equal to 1.0 if the required resource is unavailable.
In the example, the internal action of Service 3 requires the unavailable HD and
thus fails with probability 1.0. For network calls, the transition probability to the
failure state is the failure probability of the communication link. In the example,
each of the calls to Services 2 and 3 involves the communication link between
Resource Container 1 and 2.

For each physical system state sj , we denote P (SUCCESS|sj) as the prob-
ability of success on condition that the system is in state sj . We calculate
P (SUCCESS|sj) as the probability to reach the success state (from the start
state) in the corresponding DTMC. In the example, we have P (SUCCESS|sj) =
0.1992. Having determined the state-specific success probabilities, the overall
probability of success can be calculated as a weighted sum over all individual
results:

P (SUCCESS) =
m∑

j=1

(P (SUCCESS|sj)× P (sj))

In our example, we have P (SUCCESS) = 0.8881.

5 Case Study Evaluation

The goal of the case study evaluation described in this section is (i) to assess
the validity of our prediction results, (ii) to demonstrate the new prediction
capabilities with sensitivity analyses, and (iii) to assess the scalability of our
approach.

We have applied our modelling and prediction approach on the PCM instance
of a distributed, component-based system (Section 5.1). To reach (i), we have



predicted its reliability and compared the results to data monitored during a
reliability simulation (Section 5.2). To reach (ii), we ran several prediction series,
where we analysed the impact of usage profile and hardware changes on system
reliability (Section 5.3). To reach (iii), we investigated the execution time for
predictions based on different model sizes (Section 5.4).

5.1 Model of a Business Reporting System

Fig. 3 illustrates some parts of the so-called Business Reporting System (BRS),
which is the basis for our case study evaluation (the PCM instance for the BRS
can be downloaded at [8]). The model is based on an industrial system [23], which
generates management reports from business data collected in a database.

WebServer Scheduler Reporting
Engine Cache Database

WebServer

CPU
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CPU

ApplicationServer

CPU HD
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CPU
fp=0,000012

CPU
fp=0,000050

Call
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Input:
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Fig. 3. PCM Instance of the Business Reporting System (Overview)

Users can query the system via web browsers. They can simply view the
currently collected data or generate different kinds of reports (coarse or detailed)
for a configurable number of database entries. The usage model provided by the
domain expert (left hand side of Fig. 3) shows that a user requests a report in
30 percent of the cases, from which 10 percent are detailed reports. An average
user requests reports for 7 database entries.

On a high abstraction level, the system consists of five independent software
components running on four servers. The web server propagates user requests to
a scheduler component, which dispatches them to possibly multiple application



servers. The application servers host a reporting engine component, which either
directly accesses the database or queries a cache component.

As failure data was not available for the system, we estimated the failure
rates of the software components and hardware devices. Determining failure
probabilities for software components is beyond the scope of this paper (cf. [1]).
However, to make our model as realistic as possible, we used empirical data
as a basis for failure rates estimation. Goseva et al. [24] reported on failure
probabilities for software components in a large-scale software system, which
were derived from a bug tracking system. We aligned the failure probabilities
of the internal actions in the BRS with these failure probabilities. Schroeder
et al. [21] analysed the actual failure rates of hardware components of several
large systems over the course of several years. Their data provided a basis for
estimating the MTTF and MTTR numbers of our case study model, which are
considerably lower than the ones provided by hardware vendors in specification
documents.

Having the model of the system, we can use our analysis tool to predict
system reliability under the given settings (see Section 5.2), or start evaluat-
ing alternative design decisions. These may include changing the usage profile,
topology of software components, their deployment to hardware resources, or
even replacing the components (changing their implementation) or hardware
nodes (changing their parameters). Any of these local and transparent changes
may significantly influence the generated Markov-chain model and hence also
the predicted reliability, which is then reported to the architect to evaluate the
alternatives.

5.2 Validity of the Predictions

To validate the accuracy of our prediction approach, we first executed our ana-
lytical Markov chain solver described in Section 4 and then compared the pre-
dicted system reliability to the results of a reliability simulation performed over
the PCM instance of the BRS. Notice that the goal of our validation is not to
justify the annotations used for reliability, like software failure probabilities or
hardware MTTF / MTTR values, which are commonly used and described in
literature [2, 12]. Instead, we validate that if all inputs (architectural model in-
cluding reliability annotations) are accurately provided, our method produces
an accurate result (system reliability prediction).

For simulation purposes, we have implemented a tool based on the SSJ frame-
work [25]. The tool uses model transformations implemented with the OAW
framework to generate Java code from the PCM instance under study. During a
simulation run, a generated SSJ load driver creates requests to the code accord-
ing to the usage model specified as a part of the PCM model. Software failures,
communication link failures, and the effects of unavailable hardware are included
into the simulation to assess system reliability.

To simulate a software failure, an exception may be raised during execution of
an internal action. A random number is generated according to the given failure
probability, and decides about success or failure of the internal action. Commu-
nication link failures are handled in the same way. Furthermore, the simulation



includes the notion of hardware resources and their failure behaviour. It uses
the given MTTF/MTTR values as mean values of an exponential distribution
and draws samples from the distribution to determine actual resource failure
and repair times. Whenever an internal action requires a currently unavailable
hardware resource, it fails with an exception. Taking all possible sources of fail-
ure into account, the simulation determines system reliability as the ratio of
successful service executions to the overall execution count.

Compared to our analysis tools, simulation takes longer, but is more realistic
and therefore can be used for validation. Values of variables in the control flow
are preserved within their scope, as opposed to analysis, where each access to
a variable requires drawing a sample from its probability distribution (cf. [19]).
Resources may fail and be repaired anytime, not only between service executions.
Resource states are observed over (simulated) time, leading to more realistic
failure behaviour of subsequent service executions.

Regarding the case study, our analysis tools predicted the probability of suc-
cessful service execution as 0.9960837 for the usage model of the BRS sketched
in Fig. 3. Because the model involves 5 resources, 32 (= 25) different Markov
chains were generated to include all possible physical system states. Each gener-
ated Markov chain consisted out of 6 372 states and 6 870 transitions, because our
approach involves unrolling the loops of the service effect specifications according
to the specified usage profile and incorporating hardware resources. Solving the
parameter dependencies, generating the different chains, and computing their
absorption probabilities took less than 1 second on an Intel Core 2 Duo with 2.6
GHz and 2 GB of RAM.

To validate this result, we applied the simulation tool on the BRS PCM
instance and simulated its execution for 1 year (i.e., 31 536 000 seconds of sim-
ulation time). The usage model described above was executed 168 526 times
during the simulation run taking roughly 190 simulated seconds per execution.
We recorded 562 internal action failures, 75 communication link resource failures
and 26 resource failures during the simulation run. The simulation ran for 657
seconds (real time) and produced more than 800 MB of measured data. The suc-
cess probability predicted by the simulation tool was 0.9960658, which deviates
from the analytical result by approximately 0.00179 percent.

The high number of resource failures during simulation stems from the fact
that we divided all given MTTF/MTTR values in the model by a constant
factor. This measure allowed us to observe a statistical relevant number of over
20 resource failures during simulation, while leaving probabilities of physical
system states (see Section 4.2) and the calculated system reliability unchanged.

Considering validation results, we deem the analytical method and tool im-
plementation sufficiently accurate for the model described in this paper.

5.3 Sensitivity Analyses

To further analyse the system reliability of the BRS, we conducted several sen-
sitivity analyses involving changing failure probabilities and usage probabilities

Fig. 4 shows the impact of different failure probabilities of component in-
ternal actions to the system reliability. The failure probabilities of the actions



’acceptView’, ’prepareSmallReport’, and ’getBigReport’ have been varied around
fp = 0.00005. The slopes of the curves indicate that the system reliability of the
BRS under the given usage model is most sensitive to the action ’acceptView’ of
the web server component. This information is valuable for the software archi-
tect, who can decide to put more testing effort into the web server component,
to exchange the component with another component from a third party vendor,
or to run the web server component redundantly.
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Fig. 4. Sensitivity to Failure Probabilities

Our parameterised behavioural descriptions allow to easily change the system-
level usage model and investigate the impact on the system reliability. The pa-
rameter values are propagated through the architecture and can influence branch
probabilities and loop iteration numbers. Former approaches require to change
these inner component annotations manually, which is laborious and may be
even hard to determine due to complex control and data flow in a large system.
Fig. 5 shows the impact of different usage probabilities on system reliability. The
figure suggests that the model is more sensitive to the portion of detailed reports
required by the user. The impact of having more users requesting view queries
is less pronounced as indicated by the lower slope of the curve.

5.4 Scalability

The scalability of our approach requires special attention. The method for in-
corporating hardware reliability described in Section 4 increases the number of
Markov chains to be solved exponentially in relation to the number of resources
in the model. To examine the impact of this relation to the practicability of
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Fig. 5. Usage Profile Change 1: Usage Probabilities

our approach, we analysed a number of simple PCM instances with a growing
number of resources and recorded the execution time for our prediction tool.

We found that we can analyse models with up to approximately 20 re-
sources within one hour. This involves generating and solving more than 1 000 000
Markov chains. We believe that the number of 20 different resources is suffi-
cient for a large number of realistic systems. Larger models need to be analysed
partially or resources have to be grouped. It is also possible to assume some
resources in a large model as always available, which then decreases the effort
for the predictions. Other techniques, like the possibilities for distributed anal-
ysis and multi-core processors, or employment of more efficient Markov model
solution techniques, are meant for future research.

6 Conclusions

We presented an approach for reliability analysis of component-based software
architectures. The approach allows for calculation of the probability of success-
ful service execution. Compared to other architecture-based software reliability
methods, our approach takes into account more influence factors, such as the
hardware and usage profile. The usage profile on the system level is automati-
cally propagated to determine the individual usage profiles of all involved soft-
ware components. We have used an absorbing discrete-time Markov chain as
analysis model. It represents all possible execution paths through the architec-
ture, together with their probabilities.

The extensive parameterization of our model allows for sensitivity analysis in
a straightforward way. In our case study, we examined the sensitivity of system
reliability to individual failure probabilities, variations in the system-level usage



profile, and changing hardware availability due to wear out effects. Furthermore,
we implemented a reliability simulation to validate our results. In the case study,
simulation results differed less than 0.002 percent from the analytical solution.

We will extend and further validate our approach in future work. We plan to
include fault tolerance mechanisms, error propagation, concurrency modelling,
and probabilistic dependencies between individual software and hardware fail-
ures. Furthermore, we want to include the reliability of middleware, virtual ma-
chines, and operating systems into our approach. With these extensions, we aim
to further increase the accurateness of our approach and support analysis for a
larger class of systems.
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