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Abstract— With the increasing importance of reliability in business and industrial software systems, new techniques of architecture-
based reliability engineering are becoming an integral part of the development process. These techniques can assist system architects
in evaluating the reliability impact of their design decisions. Architecture-based reliability engineering is only effective if the involved
reliability models reflect the interaction and usage of software components and their deployment to potentially unreliable hardware.
However, existing approaches either neglect individual impact factors on reliability or hard-code them into formal models, which limits
their applicability in component-based development processes.
This paper introduces a reliability modelling and prediction technique that considers the relevant architectural factors of software
systems and explicitly models the component usage profile and execution environment. The technique offers a UML-like modelling
notation, whose models are automatically transformed into a formal analytical model. Our work builds upon the Palladio Component
Model, employing novel techniques of information propagation and reliability assessment. We validate our technique with sensitivity
analyses and simulation in two case studies. The case studies demonstrate effective support of usage profile analysis and architectural
configuration ranking, together with the employment of reliability-improving architecture tactics.

Index Terms—D.2.11 Software architectures; D.2.10.h Quality analysis and evaluation; D.2.5.h Reliability; D.2.2 Design tools and
techniques.
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1 INTRODUCTION

SOFTWARE-intensive systems are increasingly used to
support critical business and industrial processes,

such as in business information systems, e-business ap-
plications, or industrial control systems. The reliability
of a software system is defined as the probability of
failure-free operation of a software system for a specified
period of time in a specified environment [1]. To manage
reliability, reliability engineering gains its importance
in the development process. Reliability is compromised
by faults in the system and its execution environment,
which can lead to different kinds of failures during
service execution: software failures occur due to faults in
the implementation of software components, hardware
failures result from unreliable hardware resources, and
network failures are caused by message loss or problems
during inter-component communication.

To support fundamental design decisions early in
the development process, architecture-based reliability
prediction [2], [3], [4], [5] can be employed to evaluate
the quality of system design, and to identify reliability-
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critical elements of the architecture. Existing approaches
suffer from the following drawbacks that limit their
applicability and accuracy.

First, many approaches do not explicitly model the
influence of the system usage profile (i.e., sequences of
system calls and values of parameters given as an input
to these calls) on the control and data flow through-
out the architecture, which in turn influences reliability.
For example, if faulty code is never executed under a
certain usage profile, no failures occur, and the system
is perceived as reliable by its users. Existing models
encode a system usage profile implicitly into formal
models, typically in terms of transition probabilities in
the Markov models characterizing the execution flow
among components (e.g., [6], [7], [8], [9]). Since the
models are tightly bound to the selected usage profile,
evaluating reliability for a different usage profile requires
repeating much of the modelling effort.

Second, many approaches do not consider the relia-
bility impact of a system’s execution environment. Even
if the software is totally free of faults, failures can occur
due to unavailability of underlying hardware resources
and communication failures across network links. Ne-
glecting these factors tends to result in less accurate and
over-optimistic reliability prediction. On the other hand,
approaches that do consider the execution environment
(e.g., [10], [11]), typically offer no means to model
application-level software failures, which also results in
a limited view of software system reliability.

Third, many approaches use Markov models as their
modelling notation (e.g., [8], [9], [10], [12]), which
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is not aligned with concepts and notations typically
used in software engineering (e.g., UML or SysML).
Although the approaches provide an implicit mapping of
Markov states to software components (or their internal
behavioural states), they do not explicitly deal with
other concepts of the software engineering domain (such
as interface descriptions incl. input parameters, connec-
tors, provided/required services, modularity, hierarchi-
cal structure of composite components, etc.). Instead,
they represent the system through a low-level set of
states and transition probabilities between them, which
obscures the original software-engineering semantics.
Direct creation and interpretation of Markov models
without any intermediate notation may be uncomfort-
able and hard to accomplish for software developers,
especially when it is to be done repeatedly during the
development process.

The contribution of this paper is a novel technique
for architecture-based software reliability modelling and
prediction that explicitly considers and integrates the
discussed reliability-relevant factors. The technique of-
fers usage-profile separation and propagation through
the concept of parameter dependencies [13] and accounts
for hardware unavailability through reliability evalua-
tion of service execution under different hardware avail-
ability states. We realize the approach as an extension of
the Palladio Component Model (PCM) [14], which offers
a UML-like modelling notation. We provide tool support
for an automated transformation of PCM models into
Markov chains and space-effective evaluation of these
chains. We discuss how software engineers can use archi-
tecture tactics to systematically improve the reliability of
the software architecture. Furthermore, we validate the
approach in two case studies.

The rest of the paper is organized as follows: Section 2
discusses existing approaches for architecture-based soft-
ware system reliability prediction. Section 3 explains
the most important concepts of the PCM and introduces
the PCM meta-model extension for reliability. Section 4
describes the transformation of PCM models to Markov
chains, and the evaluation of the Markov model. After-
wards, Section 5 discusses architectural improvements
for reliability, and their representation in the PCM. The
case studies in Section 6 serve as a validation of our
approach, where the results of the analysis are compared
with values obtained from a reliability simulation, and
the capabilities of the approach are demonstrated with
sensitivity analyses. Finally, we consider assumptions
and limitations of our work in Section 7, and summarize
our work in Section 8.

2 RELATED WORK

Seminal work in the area of software reliability engi-
neering [1], [15] focuses on system tests and reliability
growth models treating systems as black boxes. Recently,
several architecture-based reliability analysis approaches
have been proposed [2], [3], [4], [5], [16] treating systems

as a composition of software components. In the fol-
lowing, we examine the most related architecture-based
approaches with respect to our goals (i.e., the three gaps
identified above). After the summary of the findings,
we discuss our preliminary work and its relation to this
paper.

2.1 Usage Profile Modelling

System usage can be described in terms of the expected
sequences of system calls (including their likelihood) and
the values of input parameters used for the calls, which
may influence the control flow throughout the system.

In many existing approaches, the system usage profile
is not modelled explicitly, but encoded implicitly into
transition probabilities between the states or scenarios
of the system model [17], [18]. Goseva et al. [2] state
that most approaches rely on estimations of transition
probabilities. Cheung [6] mentions that the transition
probabilities could be obtained by assembling and de-
ploying the components and executing the expected us-
age profile against them. However, this requires software
engineers to set up the whole system during architecture
design, which is often neither desired nor possible.

Recent approaches by Wang et al. [9] and Sharma
et al. [8] extend Cheung’s work to support different
architectural styles and combined performance and re-
liability analysis. They still rely on testing data or the
software architect’s intuition to determine the transition
probabilities. The work of Reussner et al. [16] can be
seen as a precursor of the here presented approach as
it models explicitly the influence of external compo-
nents. However, the approach assumes fixed transition
probabilities between components, therefore its mod-
els cannot be reused if the system-level usage profile
changes. Cheung et al. [19] focus on the reliability of
individual components and do not include calls to other
components.

Several approaches suggest that accurate transition
probabilities may be hard to get, and they design meth-
ods to include uncertainties in the models [5], [20], [21],
[22]. Roshandel et al. [5] suggest to treat uncertainties by
designing appropriate constraints in the system, imple-
mented as pre/post conditions, guards, and other types
of assertions. Fiondella et al. [20] use confidence intervals
to incorporate uncertainties about the architectural and
component parameters (including uncertain operational
profile) into the analysis.

Scenario-based approaches, employing message se-
quence charts (MSC) or sequence diagrams (SD) as
their modelling notation, provide an implicit capacity to
model the details of system usage profiles (since their
notation is well suited for describing usage scenarios).
However, the existing architecture-based reliability ap-
proaches (e.g., [17], [18], [23]) focus purely on the call
sequences, not the input value propagation, which is an
important factor of system usage. Similarly, Hamlet’s
approach [24] allows component developers to specify
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the call propagation of individual components. How-
ever, the dependency of the call propagations to input
parameter values is not made explicit.

2.2 Execution Environment Modelling
Many approaches do not consider the influence of the
execution environment on the reliability of a software
system (e.g., [6], [16]). However, some approaches have
proposed to include the properties of the execution
environment (such as failures of application containers,
virtual machines, hardware devices, and communication
links) into software reliability models.

Sharma et al. [11] provide a software performability
model incorporating hardware availability and different
states of hardware resources. The approach calculates
the throughput of successful requests in presence of
hardware failures, but not the system reliability. Other
approaches provide complex availability models of the
execution environment (e.g., [25], [26]), but do not link
it to the software level to quantify the overall system
reliability.

Popic et al. [27], Yacoub et al. [18], and Lipton et al. [28]
take failure probabilities of network connections into
account, but neglect the availability of other hardware
devices, such as processors. Sato and Trivedi [10]
combine a system model (of interacting system services)
with a resource availability model. However, they do
not consider application-level software failures. Malek
et al. [29] focus on mobile systems and consider aspects
of the execution environment that are especially relevant
for these systems (such as network fluctuations, available
battery charge, and changes in location).

Some authors use fault injection techniques to simu-
late hardware defects when determining system reliabil-
ity [30]. Huang et al. [31] proposed a simulation-based
approach to assess the reliability of a system modeled
in a hardware description language and included two
software segments. Das et al. [32] extended the layered
queuing network model (LQN) to include failure and
repair rates for hardware nodes. Based on this combined
software and hardware model, they conducted avail-
ability predictions. However, none of these approaches
targets component-based software architectures.

2.3 Modeling Notations and Tool Support
Most of the existing approaches use some kind of
Markov model (DTMC or CTMC) to conduct reliability
predictions. Often, the models are created directly in the
Markov-model notation [8], [9], [10], [12], which may
discourage software architects not familiar with formal
notations.

Some approaches (e.g., [17], [18], [23], [27], [33]) use
a high-level notation based on UML sequence and de-
ployment diagrams annotated with reliability properties,
such as failure probabilities. Tools can transform such
models into Markov models, which then can be evalu-
ated by existing Markov chain solvers. The aim of these

approaches is that software developers can quickly en-
hance existing design specifications in UML to conduct
reliability predictions. Furthermore, the complexity of
the underlying analysis techniques stays hidden from
developers.

However, many of these approaches focus only on
selected architectural aspects (such as the component-
internal behaviour or component interaction in case of
scenario-based approaches [17], [18]). The additional ar-
chitectural constructs (e.g., composite-component struc-
ture or deployment for the mentioned) are included only
implicitly, if at all, which hinders the evaluation of their
effect on system reliability during the architecture design
process.

Moreover, the tool support for existing approaches
is still sparse. Cortellessa et al. [23] sketch a possible
transformation from UML diagrams into Markov mod-
els, but provide no tool support. Goseva et al. [33]
use UML sequence diagrams and Markov models in
their approach and mention that the implementation
of a tool would be straightforward. We argue that an
implementation based on UML is not straightforward
due to semantic gaps and ambiguities in the language,
and means non-trivial effort for the development team.

Yacoub et al. [18] construct component dependency
graphs (CDG) from sequence diagrams (SD) manually.
Rodrigues et al. [17] discuss a possible transformation
from message sequence charts (MSC) to Markov mod-
els, and outline its implementation in [34], but do not
make the implementation publicly available . Popic et
al. [27] extend the ECRA tool for reliability analysis,
so that it accepts UML use case, sequence, and de-
ployment diagrams. However, the tool is not aligned
with a component-based development process, and does
not allow component developers to create reliability
specifications of their components independently from
each other.
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Cheung et al. [6] 1980 � � � MM �
Cortellessa et al. [23] 2002 � (�) � UML �

Gokhale et al. [12] 2002 � � � MM �
Reussner et al. [16] 2003 � � � MM �

Goseva et al. [33] 2003 � � � UML (�)
Grassi [35] 2004 � � � MM �

Yacoub et al. [18] 2004 � (�) � SBM �
Rodrigues et al. [17] 2005 � � � SBM (�)

Popic et al. [27] 2005 � (�) � UML (�)
Wang et al. [9] 2006 � � � MM �

Sharma et al. [11] 2006 � � � MM �
Sato et al. [10] 2007 (�) (�) � MM �

Sharma et al. [8] 2007 � � � MM �
Cheung et al. [19] 2008 � � � MM �

Lipton et al. [28] 2008 � (�) � MM �
Hamlet [24] 2009 � � (�) (MM) (�)

TABLE 1
Modeling Reliability in Architecture-based Approaches
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2.4 Summary of Findings

Table 1 summarizes our findings regarding existing ap-
proaches for architecture-based software reliability anal-
ysis. A check mark in parenthesis means that an ap-
proach partially supports the feature. Software failures
(mostly specified through failure probabilities) are sup-
ported by almost all approaches, while hardware failures
(e.g., due to unavailability of hardware devices) are
supported only by a few approaches. Parameter depen-
dencies reflecting the influence of a system usage profile
on the control and data flow throughout the architecture
via input propagation are hardly recognized by other
approaches. Most approaches rely on Markov models
(MM) as a primary modelling notation. Some approaches
employ scenario-based models (SBM), such as message
sequence charts or sequence diagrams, and some take
advantage of a combination of more UML diagrams.
Tool support for automated transformation from a high-
level notation (if existent) to Markov chains, as well as
the evaluation of the Markov chains, is very limited.

2.5 Preliminary Work

The PCM as a meta-model and tool suite for performance
prediction has been published in [14]. The published
version of PCM is not related to reliability. It neither
includes meta-model constructs for reliability, nor a
transformation to a Markov model and evaluation of
the latter. However, we reuse the existing meta-model
for component-based software architectures, including
parameter dependencies for usage profile propagation
(see Section 3).

In [16], we presented an approach to calculate the reli-
ability of a component-based software architecture based
on the Rich Architecture Definition Language (RADL). The
approach neither considers parameter dependencies nor
failures of the execution environment (hardware and
network). Tool support for automated transformation
from RADL to Markov chains is not given.

In [13], we focused on parameter dependencies for
usage profile propagation throughout a component-
based software architecture. We used Stochastic Regular
Expressions (SRE) as a modelling notation, which have
substantial limitations compared to the PCM. We did
not consider failures of the execution environment. Our
validation was limited to sensitivity analysis, while in
this paper, we also perform a reliability simulation.

Furthermore, this paper goes beyond our work pub-
lished in [36] through extended support for concurrent
and stateful systems, a more extensive validation, a
definition of a process of its application, and a far
more elaborate detailed description and discussion of the
approach.

3 MODELLING RELIABILITY WITH THE PCM
To make the reader familiar with the foundations of our
modelling approach, this section introduces the PCM

modelling capabilities, and the extensions we provide
for reliability. Our PCM overview starts with a simple
example in Section 3.1, followed with a more detailed
description of the modelling capabilities in Section 3.2.
Finally, Section 3.3 introduces our extensions to the PCM
regarding reliability modelling.

3.1 Example
Fig. 1 shows an example of a PCM instance, modeling a
simple library system. It allows for a book search that
browses either the library repository (in case of new
books), or a number of archives sorted by their relevance
(in case of older books).

The PCM model is divided into four individual parts,
each corresponding to a certain developer role. The roles
may contribute their parts independently from other
roles, supporting a distributed component-based devel-
opment process through equally distributed modelling
contributions. The roles envisioned by PCM are the
component developer, software architect, system deployer, and
domain expert.

In the example, component developers specify service
behaviours of two components (resulting in three component
service behaviour models). Each model specifies a single
service provided by the modelled component, to capture
the high-level control and data flow of the service imple-
mentation. Software architects compose the components
into an architectural model by specification of component
wiring (connectors). System deployers define a resource
environment (e.g., CPUs, network links) and allocate the
components in the architectural model to the resources,
building the deployment model of the system. Finally,
domain experts specify the system-level usage model in
terms of stochastic call sequences and input parameter
values.

3.2 PCM Architectural Modelling Capabilities
This section gives a more detailed description of the
individual PCM models (without reliability extensions).
For a complete description, including the meta-model,
refer to [14].

3.2.1 Component Service Behaviour Models
This part of the PCM model includes behavioural spec-
ifications of component provided services, together with
their input parameters and associated component parame-
ters.

Service behaviour is given in terms of a service ef-
fect specification (SEFF), which abstractly models the
usage of required services by the provided service
(i.e., external calls), and the consumption of resources
during component-internal processing (i.e., internal ac-
tions). SEFFs may include probabilistic or value-guarded
branches, loops, and forks, to model the control and data
flow within the component service. To guard the control-
flow constructs, input and component parameters can be
used to form the guard expressions.
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«resource container»
Server1

MTTF: 100h
MTTR: 6h

fp:
0.00002

SEFF Behaviour
findBook

Deployment Model

Architectural Model

Input:
Year, Depth

«implements»«implements»

«component»
SearchEngine

librarySearch
archiveSearch

«component»
SearchGuide

findBook librarySearch
archiveSearch

Usage scenario
Library Visitor
P = 1.0

Usage Model

«call»
findBook

Year: 1990 (0.7) /
2000 (0.2) / 2010 (0.1)
Depth: 3 (0.6) / 5 (0.4)

«uses»

«allocated» «allocated»

«resource container»
Server2

«resource»
CPU1

«resource»
CPU2

«resource»
HD1

MTTF: 200h
MTTR: 8h

MTTF: 150h
MTTR: 8h

loopCount = 5

«call»
librarySearch
X: 2*Depth+3

«internal»
CPU

fp: 0.001

«call»
archiveSearch
X: Depth+1

Year ≤ 2000Year > 2000

Component Service Behaviour Models

«internal»
CPU, HD
fp: 0.0002

Input:
X

SEFF Behaviour
archiveSearch

loopCount = X+2

«internal»
HD

fp: 0.0001

Input:
X

SEFF Behaviour
librarySearch

«implements»

Fig. 1. PCM Example (Overview)

Input parameters are an important means to propagate
user-input information and customize system behaviour
accordingly. Component parameters are used to set com-
ponent’s internal state, and to use its value to configure
component’s behaviour. In the current PCM version,
the values of component parameters cannot be changed
at run time. Although component parameters can be
defined as random variables to reflect possible state
values, this limitation makes PCM support for stateful
modelling only partial. The full stateful modelling capac-
ity is however going to be part of the next PCM version,
as already designed in [37].

The example in Fig. 1 consists of three SEFF models
(delimited with rounded rectangles), each modelling a
single provided service of a component used in the ar-
chitectural model. The leftmost service behaviour model
(SEFF) in Fig. 1 specifies the only provided service
of the SearchGuide component, i.e. the findBook
service. The findBook SEFF specifies the high-level
control and data flow as follows. After execution start,
the internal action (stereotype �internal�) represents
preprocessing of the search query, using a CPU resource
type. Subsequently, a branch either leads to a syn-

chronous call (stereotype �call�) to librarySearch,
if the book has been published after the year 2000,
or to archiveSearch otherwise. The publication year
is given in the Year parameter of the findBook
service (propagated from the usage model). Besides
Year, findBook has a parameter Depth, which is
used to compute parameter X propagated further to the
called services. After returning from the external call,
findBook finishes with the stop action. The remaining
two SEFFs in Fig. 1 specify the two provided services of
the SearchEngine component. The librarySearch
service consists of only one internal action representing
a simple search algorithm (using a HD resource type).
The archiveSearch service executes a more complex
search (using CPU and HD resource types) iteratively
over a list of archives, with the number of iterations
influenced by the propagated X (resp. Depth) parameter.

Notice that in all cases of our example, an internal
action represents a substantial block of functionality. The
only rule is that a computation cannot be abstracted
into a single internal action if it contains service calls
reaching outside the current component. Moreover, some
computations can be completely abstracted away from
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the model, if they are not interesting from the reliabil-
ity point of view. Similarly, component developers are
free to decide on the abstraction level of the interface
description (input parameters, data types). However, the
more information is provided, the higher accuracy of the
analysis can be expected.

At design time, developers model SEFFs manually.
After implementation, developers may apply static code
analysis [38] or execute the component against different
test cases [39] to derive SEFFs. For this paper, we
assume that the composition of SEFFs always results in
valid component communication as constraints on valid
call sequences (i.e., interface protocols) can be checked
before our reliability analysis with our former work on
interoperability checking [40].

3.2.2 Architectural Model
The components—as specified through their respective
component service behaviour models—are connected by
a software architect into an architectural model of the sys-
tem. Furthermore, software architects define the system
boundaries and determine the provided interfaces that
shall be exposed to system users or other systems.

In Fig. 1, the architectural model connects the
SearchGuide and SearchEngine components
through their required and provided librarySearch
and archiveSearch services, with the findBook
service being exposed to external system users.

3.2.3 Deployment Model
The deployment model defines the system’s resource en-
vironment, consisting of a set of resource containers
(i.e., physical computing nodes) connected via network
links. Each resource container may include a number of
hardware resources (e.g., CPU, hard disk, memory, etc.).
System deployers specify concrete resources, while com-
ponent SEFFs only refer to abstract resource types. When
specifying the allocation of components to resource con-
tainers, the resource demands can be directed to concrete
resources. This method allows to easily exchange the
resource environment in the model without the need to
adapt component specifications.

The resource environment of Fig. 1 consists of two
resource containers Server1 and Server2 that are
connected through a network link. The resource con-
tainers provide CPU and HD (hard disk) resources that
may be used by the SearchGuide and SearchEngine
components, corresponding to the specified component
allocation.

3.2.4 Usage Model
The usage model, provided by domain experts, captures
the system’s usage profile and consists of a set of usage
scenarios representing different user classes or use cases
of the system. Each scenario specifies sequences of calls
to system services, including probabilistic control flow
constructs (e.g., branches or loops) to express existing

variabilities within each user class or use case. If a
service signature contains input parameters, the do-
main experts may characterize their values and other
properties (for example, the number of elements in a
collection). They can use the stochastic expression language
to model parameter properties with arbitrary probability
distributions [41].

Fig. 1 contains a simple usage model, consisting of
a single usage scenario. Each system user (human or
other system) arrives at the system, enters a series of 5
invocations of the findBook service, and leaves the
system. Each call to findBook has the same probability
distribution for input parameters Year (1990, 2000, or
2010) and Depth (3 or 5).

Our approach supports both analysing single usage
scenarios in isolation as well as multiple parallel usage
scenarios. In the latter case, a probability for the invo-
cation of each usage scenario must be specified. The
reliability analysis then determines the overall system
reliability weighted by the usage scenario probabilities.
A formal definition of the PCM usage model is available
in [41, pp.116].

3.3 Model Extensions for Reliability

In this section, we provide rationale for using the PCM
as a basis for our approach, describe the new concepts
introduced in the PCM, and summarize the usage of this
information for reliability prediction.

3.3.1 The PCM for Reliability Prediction

In this paper, we reuse the PCM meta-model originally
designed for performance modelling and prediction, and
incorporate the notion of software failures, communication
link failures, and unavailable hardware.

It would have been possible to build our approach
upon the widely accepted UML2 meta-model instead
of the PCM. However, by choosing the PCM, we avoid
the complexity and the semantic ambiguities of UML2,
which make it hard to provide automated transforma-
tions from UML2 to analysis models. Still, the PCM
tooling (see Section 4.4) allows for graphical, UML-like
modelling. For a more detailed discussion of PCM versus
UML2, see [14].

3.3.2 Software Failures

Software failures occur during service execution due to
faults in the implementation. In a PCM behavioural
specification (i.e., SEFF), all component-internal process-
ing is abstracted into internal actions. Hence, each internal
action can be annotated with a failure probability, de-
scribing the probability that the action fails while being
executed. Techniques for determining these values have
been discussed extensively in the literature (see Section 7
for more details) and are beyond the scope of this paper.

Notice that software components do not behave ran-
domly and, in contrast to hardware, fail systematically.
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However, because non-trivial software components usu-
ally cannot be tested exhaustively, the failure proba-
bilities express the uncertainty about the component
correctness due to the practically limited number of
test cases. Furthermore, they model the uncertainty of
correct component operation in the context of complex
activation patterns (so-called Mandelbugs [42]) during
run time, which can hardly be accounted for during
testing.

Fig. 1 shows the specification of an internal action
of the findBook service with a failure probability of
0.001, as well as internal actions of librarySearch
and archiveSearch with failure probabilities 0.0001
and 0.0002. Section 7.1 lists some methods from
literature on how to determine these failure probabilities.
Furthermore, one of our former papers [43] showed how
these values were defined for a large industrial software
system.

3.3.3 Communication Link Failures
Communication link failures, specified by system de-
ployers, include loss or damage of messages during
transport, which results in a service failure. Though
transport protocols like TCP include mechanisms for
fault tolerance (e.g., acknowledgement of message trans-
port and repeated message sending), failures can still
occur due to overload, physical damage of the trans-
mission link, or other reasons. As such failures are
generally unpredictable from the point of view of the
system deployer, we treat them like software failures and
annotate communication links with a failure probability
in the PCM model. System deployers can define these
failure probabilities either from experience with similar
systems or by running tests on the target network.

Fig. 1 contains one network link as part of the deploy-
ment model. It is annotated with a failure probability of
0.00002.

3.3.4 Unavailable Hardware
Unavailable hardware causes a service execution to
fail. Hardware resource breakdowns mainly result from
wear-out effects. Typically, a broken resource (e.g., a
CPU, memory, or storage device) is eventually repaired
or replaced with a functionally equivalent new resource.
In the PCM, system deployers annotate hardware re-
sources with their Mean Time To Failure (MTTF) and Mean
Time To Repair (MTTR) values. The MTTF values can
often be found in specification documents of hardware
vendors, and can be refined by system deployers on
experience [44]. This way, the MTTF values can be
used to implicitly reflect the expected hardware usage
intensity (faster hardware aging), its resistance to failure
(hardware fault tolerance mechanisms, like replication)
or other factors.

The resource environment in Fig. 1 contains three
resources situated within Server1 and Server2,
annotated with the MTTF and MTTR values. The
CPU1 of Server1 is used by the internal action of

findBook (because the SearchGuide component is
allocated to this resource container). Likewise, CPU2
and HD1 of Server2 are used by internal actions of
librarySearch and archiveSearch services (imple-
mented by the SearchEngine component). Notice that
internal actions can fail due to multiple reasons: either
because of a software failure, or because of a required
hardware resource being unavailable.

3.3.5 System Reliability
Taking into account the three types of failures described
above, we assume that the execution of a system usage
scenario fails if (i) a software failure happens dur-
ing component-internal processing, (ii) a communication
link fails in propagating a call between two components,
or (iii) a hardware resource is unavailable when required
by service execution. Our goal is to predict the probability
of successful execution (PSE) of the usage scenarios given
by the PCM instance. The aimed probability of successful
execution (PSE) under a given usage scenario is the
direct counterpart of the Probability of Failure on Demand
(POFOD): PSE = 1− POFOD.

The combined consideration of the software, hardware
and network dimensions enables the reflection of their
interplay in the context of the overall architecture and
system usage profile:

• Unavailable hardware resources and failing commu-
nication links only impact the system’s reliability if
they are actually required by the service execution.

• Software faults only lead to failures if the respective
parts of the implementation are actually executed
under a given usage profile.

• The failure potential of all three dimensions de-
pends on the control and data flow through the
architecture, which is captured by the component
behaviour specifications (Section 3.2.1) and the ar-
chitectural model (Section 3.2.2).

Only an integrated analysis can provide an accurate view
on the relations between all dimensions (also see the
sensitivity analyses conducted in Section 6.4).

4 PREDICTING RELIABILITY WITH THE PCM
Once a full PCM instance is specified by combining the
models contributed by all developer roles (as described
in Section 3), we can predict its reliability in terms of
the probability of successful execution PSE = 1−POFOD
of the given usage scenarios. The prediction process is
depicted in Fig. 2, together with the preceding modelling
and subsequent design assessment steps. The prediction
part starts with the e. PCM instance input and finishes
with the h. System reliability output. In between, the pro-
cess requires solving parameter dependencies, i.e. turn-
ing all parameters in the model into their system-usage
implied probability distributions (step 5, Section 4.1),
and interconnecting possible sources of failure into an
analytical approach quantifying system-level reliability
(steps 6–9).
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Fig. 2. Reliability Engineering Process

When modelling the propagation of different failure
sources, the approach stresses the condition that an
unavailable hardware resource causes a (system-level)
failure only if it is accessed during its unavailability
state. To integrate this condition without building a
timed model, we characterize each resource with the
probability of being available, based on its MTTF and
MTTR, and employ the probability in determining re-
source state during execution. To make the computation
more realistic while keeping the model untimed, the
resource state is assumed to be fixed along the execu-
tion of a single usage scenario (see the discussion of
this assumption in Section 4.3.3 and its validation in
Section 6.6). This is reflected with separate consideration
of system behaviour under each possible state of all re-
sources (i.e. physical system state). Hence the technique
first determines possible physical system states together
with their probabilities (step 6, Section 4.2) and later
generates (step 7) and evaluates (step 8) Markov chains
individually for each physical system state, with results
aggregation (step 9) at the end (Section 4.3).

4.1 Solving Parameter Dependencies
As described in Section 3.2, component developers spec-
ify the high-level behaviour of their components through
service effect specifications (SEFFs). These SEFFs may
contain parameter dependencies to express the influence
of input parameter values on the control and data
flow. For example, consider the branch within the
findBook service in Fig. 1 – either the librarySearch
or archiveSearch service is called, depending on the
value of the input parameter Year. The concrete branch
probabilities can only be derived through the probability
distribution of Year, which is given as part of the
usage scenario. The influence of input parameter values
on the control and data flow propagates across SEFF
boundaries. In the example, the input values X of the
librarySearch and archiveSearch services depend
on the input value Depth of findBook service.

As the example shows, the probabilities to invoke
librarySearch and archiveSearch services from
the findBook service depend (i) on the input parameter
values of the findBook service, and (ii) on the control
and data flow within findBook. However, these two
aspects belong to different developer roles (domain ex-
pert and component developer), where each role knows
only about one aspect. Manual estimation of transition
probabilities between services and components, as done
in related work (see Section 2.1), mixes both aspects
and thus violates the independence of developer roles,
leading to weak support for a distributed component-
based development process.

To resolve all parameter dependencies throughout a
PCM instance (step 5 in Fig. 2), we reuse the existing
PCM Dependency Solver. We only sketch the solution, for
a detailed description of the algorithm see [41]. Starting
from the given usage scenario, the Dependency Solver
traverses the specified SEFFs recursively and resolves all
parameter dependencies on its way. Each resolving step
includes parsing and resolving a stochastic expression
with arbitrary probability distributions, references to
input parameters with different data types, and different
kinds of operators (compare, boolean, and arithmetic
operators).

In Fig. 1, the algorithm starts with the usage scenario
containing the probability distributions for Year and
Depth parameters (which are the same for each of the
five calls to the findBook service). The results, namely
all resolved expressions, are shown in Table 2.

4.2 Determining Probabilities of Physical System
States

After solving the parameter dependencies, the next step
involves determining all possible physical system states
and their probability of occurrence (step 6 in Fig. 2).
Thereby, a physical system state is composed of all
individual states of the system’s hardware resources,
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Expression Original Resolved

usage scenario:
loop iteration count

count = 5 —

findBook:
input parameter Year

P (Y ear=1990)=0.7
P (Y ear=2000)=0.2
P (Y ear=2010)=0.1

—

findBook:
input parameter Depth

P (Depth=3) = 0.6
P (Depth=5) = 0.4

—

findBook:
left branch probability

prob = P (Y ear >
2000)

prob = 0.1

findBook:
right branch probability

prob = P (Y ear ≤
2000)

prob = 0.9

librarySearch:
input parameter X

X = 2 ∗ Depth + 3 P (X=9) = 0.6
P (X=13) = 0.4

archiveSearch:
input parameter X

X = Depth + 1 P (X=4) = 0.6
P (X=6) = 0.4

archiveSearch:
loop iteration count

count = X + 2 P (count=6) = 0.6
P (count=8) = 0.4

TABLE 2
Solved Dependencies

which are defined in the PCM resource environment and
allocated to resource containers.

Let R = {r1, r2, .., rn} be the set of resources in the
system. Each resource ri is characterized by its MTTFi

and MTTRi and has two possible states OK and NA
(not available). Within our approach, we do not use
the specified MTTFi and MTTRi values directly for
reliability prediction. Instead, we calculate the steady-
state availability Av of resource ri:

Av(ri) = MTTFi/(MTTFi +MTTRi)

We interpret Av(ri) as the probability that the resource
is available when required by an internal action during
service execution. The value of Av(ri) only depends on
the ratio between MTTFi and MTTRi. Multiplying both
values with the same factor x ·MTTFi and x ·MTTRi

yields the same value for Av(ri).
Let t be an arbitrary point in time (during system run

time ), and let s(ri, t) be the state of resource ri at time
t. Then, we have:

P (s(ri, t) = OK) = Av(ri)

P (s(ri, t) = NA) = 1−Av(ri)

This calculation effectively ignores the concrete point
in time t and just assumes the system to be in its
steady state. As a future work, the calculation may be
refined using continuous-time Markov chains (CTMCs)
and transient analysis (see [11]).

Let S be the set of possible physical system states,
that is, S = {s1, s2, .., sm}, where each sj ∈ S is a unique
combination of possible states of all n resources at time
t:

sj = (sj(r1, t), sj(r2, t), .., sj(rn, t)) ∈ {OK,NA}n

As each resource has two possible states, there are 2n

physical system states, that is, m = 2n. Let P (sj , t) be
the probability that the system is in state sj at time t.

Assuming independent resource failures, the probability
of each physical system state is the product of the
individual resource-state probabilities:

∀j ∈ {1, ..,m} : P (sj , t) =

n∏
i=1

P (s(ri, t) = sj(ri, t))

Considering the example in Fig. 1, there are n = 3
resources included in the model (two CPUs and one
HD). We can calculate the steady-state availability of
each resource, for example:

Av(CPU1) = 100/(100 + 6) ≈ 0.943396

There are m = 23 = 8 physical system states, whose
probability of occurrence is the product of the individual
resource state probabilities. For example, let s be the
physical system state with CPU1 and CPU2 being OK
and HD1 being NA at time t:

s := (OK,OK,NA)

Then, we have:

P (s, t) = Av(CPU1) ·Av(CPU2) · (1−Av(HD1))

Our evaluation method involves determining all phys-
ical system states and their probabilities of occurrence
(step 6 in Fig. 2), which are used for reliability evaluation
(steps 7–9 in Fig. 2, Section 4.3).

4.3 Generating and Evaluating the Markov Model
Based upon a PCM instance with solved parameter de-
pendencies and known physical system states with prob-
abilities of occurrence, our approach generates and eval-
uates absorbing discrete-time Markov Chains (DTMCs)
in a recursive manner, in order to predict system re-
liability. The algorithm has two main parts: First, an
individual DTMS generation (step 7 in Fig. 2) and eval-
uation (step 8 in Fig. 2) takes places per physical system
state (Section 4.3.1). Second, all individual results are
aggregated to gain the final result (step 9 in Fig. 2,
Section 4.3.2). In the following, we describe both parts
and conclude with a discussion of the complexity of the
algorithm.

4.3.1 Per-State DTMC Generation and Evaluation
The probability of successful execution of the given
usage scenario is calculated under the assumption of a
given physical system state sj . To this end, behavioural
specifications of the PCM instance (usage scenario be-
haviour and SEFFs) are transformed into Markov chains
according to the scheme illustrated in Fig. 3.

First, each behavioural specification B (usage scenario
or SEFF) is represented as a linear sequence of actions
{A1, A2, . . . , An}, including internal actions, call actions,
branches, loops, and forks, with a nested semantics. In
this semantics, the whole block of behaviour belonging
to a branch, loop or fork is represented with a single
action, having nested behaviours. In the example in



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2011 10

START Action 1 Action n STOP

START SUCCESS

FAILURE

A1 An

Usage Scenario Behaviour / SEFF

Discrete-time Markov chain

1.0

fp(A1)

1 – fp(An)1 – fp(A1)

fp(An)

Fig. 3. Markov Chain Generation

Fig. 1, the findBook behaviour would be represented as
a sequence of two actions – the internal and the branch
action – where the branch action would have two nested
behaviours, each again modelled with a sequence of
actions.

After adding a START and a STOP action to the
sequence, this specification is transformed into a DTMC
such that each action of the behaviour becomes a state of
the DTMC. The START action becomes the initial DTMC
state; the STOP action a SUCCESS state. Additionally, a
FAILURE state is introduced to express that any action
Ai can fail with probability fp(Ai). The resulting DTMC
is absorbing and acyclic. The failure probability fp(B)
of the overall behaviour is the probability to reach the
FAILURE state from the initial state:

fp(B) = 1−
n∏

i=1

(1− fp(Ai))

To determine fp(B), each fp(Ai) must be calculated,
which in turn depends on type of the action Ai. In
the following, we describe the calculation of fp(Ai) for
the different kinds of actions that may occur in the
behaviour.

A loop action Aloop has exactly one nested behaviour
N with failure probability fp(N), which has to be calcu-
lated in a recursive step first. The loop contains a specifi-
cation of loop iteration counts as a random variable over
a finite domain of iteration counts {c1, c2, . . . , ck} ⊆ N0,
each assigned a probability P (ci) of its occurrence. For
the loop failure probability fp(Aloop), we have:

fp(Aloop) = 1−
k∑

i=1

(P (ci) · (1− fp(N))ci)

A branch action Abranch has a finite set of nested
behaviours {N1, N2, . . . , Nk} with failure probabilities
fp(Ni), which have to be calculated first. Each nested
behaviour has a given execution probability P (Ni). For
the branch failure probability, we have:

fp(Abranch) = 1−
k∑

i=1

(P (Ni) · (1− fp(Ni)))

A fork action Afork has a finite set of nested forked
behaviours {N1, N2, . . . , Nk} with failure probabilities
fp(Ni). Assuming the reliability independence of the
individual forked behaviours (i.e. that the order and
timing of thread execution does not affect the reliabilities
of Ni)1, the failure probabilities fp(Ni) can be calculated
independently, and fp(Afork) expressed as:

fp(Afork) = 1−
k∏

i=1

(1− fp(Ni))

A call action Acall may occur within a usage scenario,
as well as a SEFF. It always references another behaviour
N , whose failure probability fp(N) has to be calculated
first. If the referenced behaviour is executed within the
same resource container as the original one, the failure
probability of the call is equal to fp(N). Otherwise, the
call procedure includes two message transports over a
network link (request and return), and the failure prob-
ability of the link fp(L) has to be considered, resulting
in:

fp(Acall) = 1− (1− fp(N)) · (1− fp(L))2

Finally, internal actions Aint are the base case of the
generation algorithm. They have a given set of required
resources R(Aint) and a software failure probability
fps(Aint). If the internal action requires a resource that is
unavailable under the assumed physical system state sj ,
the internal action fails with probability 1.0. Otherwise,
the internal action may still fail with the given software
failure probability. Thus, we have:

fp(Aint) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fps(Aint) if ∀ri ∈ R(Aint) :
sj(ri, t) = OK

1.0 if ∃ri ∈ R(Aint) :
sj(ri, t) = NA

Concluding, the failure probabilities of all actions fp(Ai)
can be calculated to determine the failure probability of
the behaviour fp(B) as a whole. The Markov generation
algorithm starts by constructing the DTMC for the given
usage scenario, evaluates all nested and referenced be-
haviours recursively, and calculates the usage scenario
failure probability fp(Busage), which leads to the prob-
ability of successful execution under the assumption of
the physical system state sj :

PSE(sj) = 1− fp(Busage)

This calculation is done repeatedly for the whole set S
of physical system states (see Fig. 2), so that for all states
sj we know their success probabilities PSE(sj).

1. Note that this method does not explicitly consider concurrency
errors resulting from thread interaction or shared resource access,
which can be removed with existing techniques before the analysis [40],
or implicitly included into the individual failure probabilities fp(Ni).
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4.3.2 Results Aggregation
The results of system reliability under each physical
system state sj are aggregated as follows. Having the
success probability of scenario execution under each sj ,
i.e. PSE(sj), and for an arbitrary time t the probability
of system being in the state, i.e. P (sj , t), the overall prob-
ability of successful execution PSE can be determined
as a weighted sum over all physical system states (step 9
in Fig. 2):

PSE =

m∑
j=1

(PSE(sj) · P (sj , t))

4.3.3 Complexity
Thanks to the recursive nature of our algorithm, the
reliability evaluation is space-effective. The number of
Markov chains present at any moment is limited by the
maximal depth of the stack of called and nested be-
haviours throughout the PCM instance. The size of each
Markov chain is equal to the size of the corresponding
behaviour plus 1 (for the additionally added FAILURE
state, see Fig. 3). The aggregation of results over all
physical system states can be calculated successively,
without the need to store each result separately.

Regarding time-effectiveness, the calculations in-
volved in determining the success probability of a single
physical system state PSE(sj) are generally very fast,
apart from the fact that loops involve calculating powers
with exponents being equal to the loop iteration count
(see above), which may be high depending on the given
loop specification. The fact that each physical system
state has to be evaluated to determine the overall result
leads to a complexity of O(2n) of our algorithm relating
to the number n of resources modelled as a part of
the resource environment. This exponential complexity
presents an issue regarding the scalability of our ap-
proach. We therefore include scalability considerations
into our case study (see Section 6.7).

The exponential complexity could be avoided if the
approach refrained from the individual evaluation of all
physical system states. Then, the back step in Fig. 2 (from
activity 8 to 7) could be omitted. The calculation of inter-
nal action failure probabilities fp(Aint) (see Section 4.3.1)
would take into account resource availabilities instead of
fixed states for the required resources ri ∈ R(Aint):

fp(Aint) = 1− (
∏
i

Av(ri)) · (1− fps(Aint))

A single evaluation as described in Section 4.3.1 would
already yield the result, no aggregation (Section 4.3.2)
would be required.

We decided against this strategy because it introduces
high inaccuracies if the same resource is accessed many
times during a single service execution. The reason
is that it allows each resource in the model to give
a different answer about its actual state during each

access. This is very unlikely to reflect the reality, since
resource failure and repair times are very long, orders
of magnitude longer than the duration of a single usage
scenario execution [10]. Hence it is much more likely that
the resource state does not change along the whole usage
scenario execution, which is reflected by our approach.
Section 6.6 validates this argument by comparing the
results of both strategies when applied to our case study
system.

4.4 Implementation
We have implemented the algorithms described above
as Eclipse plug-ins integrated into the PCM Bench [45].
The PCM itself is implemented in Ecore using the
Eclipse Modelling Framework (EMF). Users can edit
PCM instances in a UML-like fashion with graphical
editors generated by GMF (Fig. 4). The PCM Bench can
check predefined semantic constraints on the models and
generate different kinds of analysis models (e.g., Markov
chains, queuing networks, and simulation models) via
model transformations.

For the reliability analysis, a reliability solver takes a
fully specified PCM instance as an input, and calculates
system reliability as an output. Optionally, a more de-
tailed output differentiates the determined failure poten-
tial according to user-defined failure types. Furthermore,
stop conditions can be defined for fast evaluation of
systems with many hardware resources, on the cost
of prediction accuracy. Such stop conditions define a
maximal number of evaluated physical system states, a
maximal solving time, or a minimal reached numerical
accuracy. Moreover, the analysis tools allow for sensitiv-
ity analyses over varying user-defined parameters of the
models.

All tools are freely available and open source [45].

Service Effect
Component

Service�Effect
Specification

Allocation

Simulation�
MonitorMonitor

Reliability
Prediction

Fig. 4. Graphical Modelling and Prediction Tool

5 IMPROVING RELIABILITY WITH THE PCM
In the preceding sections, we have discussed how to
model a component-based software architecture with the
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PCM (see Section 3), and how to trigger the transfor-
mation into the corresponding analysis model and its
evaluation (see Section 4). This section gives an overview
over possible architectural changes for improved reliabil-
ity, and explains how these changes are reflected in the
PCM model (see Fig. 2).

If the predicted reliability of a system is too low,
it can be improved by applying certain architectural
changes or architecture tactics [46]. Generally, these tactics
improve reliability, but come with additional costs, and
potentially degrade the architecture with respect to other
quality attributes. It is the task of the software architect to
evaluate various solutions and determine a good trade-
off between all existing quality and cost goals.

The PCM supports two categories of architecture tac-
tics for improved reliability: scalar and topological im-
provements. Scalar improvements change one or more
values of reliability annotations, leaving the rest of the
model unchanged. They can be further classified into im-
provements of software reliability, hardware availability,
and network reliability. Topological improvements cover
all changes to the structure of the architecture, namely
component deployment and component assembly, that
lead to improved reliability. Each change falls exactly
into one category and may be applied independently
from other changes. Table 3 lists examples of architec-
ture tactics for each category, including their potential
impacts on costs and other quality attributes.

Each tactic implies a certain type of change in the PCM
model. However, the exact model change depends on
the concrete architectural improvement. As an example,
consider the replacement of a hardware resource ri by
an array of n redundant resources. Assuming that the
resources in the array fail independently from each other,
and that the array as a whole only fails when none of
its resources is available, we can state for the availability
Av(ri, n) of the array:

Av(ri, n) = 1− (1−Av(ri, 1))
n

where Av(ri, 1) is the given availability of the single
resource ri:

Av(ri, 1) = MTTFi/(MTTFi +MTTRi)

In the PCM model, we can reflect the change by adjust-
ing the MTTFi and MTTRi values of the resource ri to
MTTFn and MTTRn such that:

Av(r, n) = MTTFn/(MTTFn +MTTRn)

A solution to this problem is given by:

MTTRn = (MTTRi)
n/(MTTFi +MTTRi)

n−1

MTTFn = MTTFi +MTTRi −MTTRn

As Table 3 shows, scalar improvements comprise de-
creases of software failure probabilities, increases of
MTTF values, and decreases of MTTR values. Topolog-
ical improvements change the assembly or allocation
of software components. However, not each change of

topology is an improvement. For example, a re-allocation
of a software component to another resource container
can have both a positive and negative influence on
system reliability, depending on the architecture.

Our approach enables systematic evaluation of the in-
fluence of changes on system reliability without the need
for re-configuration or re-implementation and execution
of the real system. Starting from an initial architecture
model Ainit, the software architect evaluates several
options for change and chooses the most beneficial one.
This process may be repeated to stepwise improve the
architecture, until a sequence of changes has converted
Ainit into another architecture Afinal that satisfies exist-
ing quality and cost goals. Thereby, the order in which
changes are applied may influence the reliability impact
of a single change (e.g., it is more beneficial to reallocate
component C to server S after increasing its MTTF then
before doing so). If the number of available options for
change is too big to evaluate all of them, the architect
may apply meta-heuristics to guide the selection of
changes [50], [51].

6 CASE STUDY EVALUATION

The goal of the case study evaluation described in this
section is to demonstrate the capabilities of our relia-
bility prediction approach (Sections 6.3, 6.4), to provide
evidence for the correctness of the involved calculations
(Section 6.5), to validate specific assumptions of the
Markov transformation (Sections 6.6), and to assess the
scalability of our approach (Section 6.7). To this end,
we introduce the PCM instances of two distributed,
component-based systems (Sections 6.2, 6.8) and use
these instances as our case studies. We also discuss
general challenges of software reliability validation and
provide a reasoning for our validation approach (Sec-
tion 6.1).

6.1 Validation of Software Reliability Models
For a software reliability model, there are several aspects
to validate. First of all, it should model plausible ”be-
haviour”. This means, a variation of the input param-
eters should result in plausible changes of the predic-
tion result. Beyond this, the accuracy of the predictions
should be validated, ideally against measured values.
From a software engineering perspective, also the appli-
cability should be validated: what is the training effort
and modelling effort to yield reasonable predictions?
How large is the influence of personal estimations and
experience? And ultimately, one would like to validate
the benefits: does the application of reliability predic-
tions really result in better software designs?

However, the challenges in the empirical validation
of software reliability models are so strong, that in
practice validations are much weaker and mostly are
only done on the plausibility level. The main reason lies
in the difficulty of measuring high reliability values for
software. Ideally, one would like to have a benchmark
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Tactics Name Description Non-Reliability Impacts PCM Modelling
S

ca
la

r

So
ft

w
ar

e
R

el
ia

bi
lit

y
High-reliability
software components

Apply a high-quality development process to
software components for high reliability

Increased implementation
and testing efforts

Decrease internal action
failure probabilities

Design diversity
(n-version
programming) [47],
[48]

Let each request be handled simultaneously by n
(different) versions of the same algorithm, with
voting or other selection strategy at the end to
choose the result

Additional costs for the
design of n algorithms,
performance impact due to
redundant computation

Decrease internal action
failure probabilities

Rejuvenation
techniques

Automatically restart components, application
servers, or op. systems after failures or periodically

Performance impact due to
frequent restart actions

Decrease internal action
failure probabilities

H
ar

dw
ar

e
A

va
ila

bi
lit

y High-availability
hardware

Operate the system on hardware with low failure
rates and low service times in case of failure

Increased hardware and
servicing costs

Increase MTTF/decrease
MTTR of the resource

Redundant hardware
(fault-tolerant HW, fail
over) [49]

Use redundant hardware resources (e.g., RAID
arrays, redundant CPUs, redundant servers)

Increased hardware costs,
performance overhead due
to fail-over

Increase MTTF/decrease
MTTR of the resource

Heartbeat
(ping/echo) [46], [47]

Use a monitoring system that periodically tests the
availability of hardware resources, and react with a
repair action

Additional monitoring
costs, performance
overhead

Decrease the MTTR of
the monitored resource

N
et

w
.

R
el

. High-reliability
network Use network links with high capacity and reliability Increased network costs Decrease communication

link failure probabilities

T
o

p
o

lo
g

ic
a
l Change component

deployment
Relocate ”reliability-sensitive” components to servers
with high-availability resources

Impacts on other quality
attributes, e.g., performance

Change the deployment
model

Change component
assembly

Change assembly of components such that services
are provided by the least ”reliability-sensitive”
components

Impacts on other quality
attributes, e.g., performance

Change the architectural
model

TABLE 3
Architecture Tactics for Reliability Improvement

for reliability, like we have benchmarks for performance.
However, the only approach to measure reliability values
before execution is the approach of statistical testing. In
statistical testing one tries to simulate the later usage
of the system through test cases. It is well known that
the number of test cases to be executed to measure
high reliability values (e.g., 1 − 10−6 and higher) is
prohibitively large. Research in increasing the expres-
siveness of statistical testing would be highly relevant
but is beyond the scope of this paper.

Hence, we are left with the only possibility to use the
data measured during the execution of the software sys-
tem. While some failure databases exist that record the
reliability of specific software systems, these databases
have one common problem. They do not record the
input values of the measured system execution. The
input values are however a crucial reliability-influencing
factor, significantly influencing system execution and its
consequent reliability. One can hardly assume that the in-
out data used implicitly in the often very old databases
correspond to the data used in new reliability models.

As a result, if one surveys existing reliability models,
validation is done by plausibility (i.e., parameters are
varied and its sensitivity on the result is investigated)
and predictions are, at the best, compared to simulations,
i.e., to other prediction models (see Table 4 for details of
the validations of related work). Goseva-Popstojanova
et al. state: ”Although numerous papers were devoted
to architecture-based software reliability modelling, most
of them either do not include numerical illustrations, or
illustrate the models on simple made-up examples. A
few papers that so far applied the theoretical results on
real case studies did not include building the software

architecture or identification of faults” (taken from [52],
p1).

In this paper we validate our new model with plau-
sibility (i.e., sensitivity analysis) and by comparing pre-
dictions against simulated data.
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Cheung et al. [6] 1980 � � � �
Cortellessa et al. [23] 2002 � � � �

Gokhale et al. [12] 2002 � � � �
Reussner et al. [16] 2003 � � � �

Goseva et al. [33] 2003 � � � �
Grassi [35] 2004 � � � �

Yacoub et al. [18] 2004 � � � �
Rodrigues et al. [17] 2005 � � � �

Popic et al. [27] 2005 � � (�) �
Wang et al. [9] 2006 � � � (�)

Sharma et al. [11] 2006 � � � �
Sato et al. [10] 2007 � � � �

Sharma et al. [8] 2007 � � � (�)
Cheung et al. [19] 2008 � � � (�)

Lipton et al. [28] 2008 � � � �
Hamlet [24] 2009 � � � �

TABLE 4
Validation of Software Reliability Models

6.2 Business Reporting System
Fig. 5 illustrates a high-level view on the Business
Reporting System (BRS), which generates management
reports from business data collected in a database. The
model is based on an industrial system [53]. Users can
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Fig. 5. PCM Instance of the Business Reporting System (Overview)

query the system via web browsers. They can view the
currently collected data or generate different kinds of
reports (coarse or detailed) for a configurable number of
database entries. Furthermore, users can either request
to see the current live data (online mode) or aggregated
statistics of historical data (graphical mode). The details
of the model are described at our website [54]. The model
can also be downloaded there.

The BRS system consists of 23 software components
deployed on 6 servers. The web server propagates user
requests to a scheduler server, which hosts, amongst
others, a scheduler and a user management component.
From there, requests reach the main application server
and are possibly dispatched to 2 further application
servers by 2 load balancer components. Request process-
ing and logging of user actions takes place concurrently
(modelled through fork actions). A database server hosts
the database and a corresponding data access compo-
nent. The system includes caches to reduce the need
of database accesses. The current cache hit rate at the
time of a request is a function of the cache size and fill
degree. Thus, it depends on the component state and is
modelled as a probabilistic component parameter of the
cache access components.

The usage model provided by the domain expert
(as sketched in Fig. 5) contains 3 usage scenarios that
present different use cases of the system: sales managers
use the system mainly for online viewing of live data,
accounting managers request the production of graphical
reports, and administrators perform system maintenance
activities.

As concrete failure data was not available for the sys-
tem, we used generic failure probability and hardware
availability estimations as an input to the model. In a
real setting, such estimations could be based on a variety
of factors, including historical data, statistical testing,
expert knowledge, and (in particular for hardware MTTF
values) vendor specifications. For internal actions, we set

software failure probabilities to 10−5. This is roughly in
line with existing empirical case studies (consider, as an
example, the point estimates of component reliabilities
in [55]). For hardware MTTF values, we took the work
of Schroeder et al. [44] as a basis, who analysed the
actual failure rates of hardware components of several
large systems over the course of several years. For MTTR
values, we assumed that a repair takes place within 10
to 20 hours.

6.3 BRS Prediction Results

To illustrate the capabilities of our prediction approach,
we executed our analytical Markov chain solver de-
scribed in Section 4 for different BRS usage scenarios and
design alternatives. As the model involves 7 resources,
Markov chains for 128 (= 27) different physical system
states were generated and evaluated in each prediction
run. Solving the parameter dependencies, generating
the different chains, and computing their absorption
probabilities took about 20 seconds on an Intel Core 2
Duo with 2.6 GHz and 2 GB of RAM.

In addition to the base version of the BRS, we con-
sidered 3 design alternatives that result from the appli-
cation of architecture tactics for reliability improvement
as described in Section 5. Alternative 1 employs the
“high-reliability software components” tactic by ensur-
ing rigorous quality-assuring measures during the de-
velopment process, setting software failure probabilities
in the BRS model to 0. Alternative 2 employs the “high-
availability hardware” tactic using additional backup
servers, implicitly captured through decreased MTTR
values in the BRS model. Finally, alternative 3 decreases
the network failure probability to 0 through application
of the “high-reliability network” tactic. As each of the
alternatives improves reliability with respect to either
the software, hardware or network dimension, the cor-
responding prediction results also indicate the influence
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of each dimension on the overall failure potential (see
Section 3.3.5).
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Fig. 6. BRS Reliability Prediction Results

Fig. 6 shows the BRS prediction results. In general,
accounting managers experience more failures than sales
managers, because the detailed report generation is more
computing intensive than the online data view. However,
eliminating the software failure potential (alternative 1)
leads to very similar success probabilities for both user
types, with a particular high improvement for account-
ing managers (namely, 53% less failure occurrences).
The administrator profile is generally very reliable, but
cannot be significantly improved by the alternatives,
except for improving hardware availability (alternative
2). Improved network reliability (alternative 3) does
not create a significant benefit regarding BRS system
reliability. Fig. 6 also presents an aggregated prediction
result of the overall system usage profile, under the
assumption that 70% of all system calls come from
sales managers, 20% from accounting managers, and
10% from administrators. Overall, design alternative 2
has the highest positive impact on system reliability.
However, the results in Fig. 6 are subject to uncertainty.
The following section discusses this issue in detail.

6.4 Sensitivity Analyses
Sensitivity analyses, which vary certain parameters of
the architectural model and observe the effects on the
prediction results, are an important means to gain more
insights about the reliability characteristics of the sys-
tem under study [12], [20]. This section investigates the
uncertainty of the decision between the BRS design alter-
natives, as well as the criticality of individual software
components and hardware servers with respect to the
system reliability (details in [54]).

Fig. 7 illustrates the uncertainty regarding the ranking
of the BRS design alternatives. Assuming an aggregated
usage profile as introduced in Section 6.3, the figure
varies individual aspects of the architectural model
such as the values of all software failure probabilities
(Fig. 7(a)), hardware MTTF values (Fig. 7(b)) and net-
work failure probabilities (Fig. 7(c)). Crossing lines indi-
cate changes in the ranking of the alternatives. For ex-
ample, Fig. 7(a) shows that alternative 2 is the preferred

choice for software failure probabilities between 10−7

and 10−5, while alternative 1 is preferable above 10−5.
Software architects can take into account the existing
level of confidence of the estimated failure probabilities
and MTTF values, and use the results of Fig. 7 to make a
more well-informed decision between the design alterna-
tives. For example, assuming that software and network
failure probabilities are generally not above 10−5, and
hardware MTTF values are not above 8 years, a decision
for alternative 2 (high-availability servers) can be made
with a high confidence that this is actually the most
beneficial choice with respect to the system’s reliability.
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Having decided for a certain alternative, sensitivity
analyses can be used to identify the most critical parts
of the system, which should receive special attention
during the development. To this end, Fig. 8 illustrates
the impact of varying individual software failure proba-
bilities to system reliability (assuming the base version).
In each sensitivity run, the failure probabilities of a
certain software component were varied between 0 and
0.1, while all other components remained unchanged.
We executed all runs under the sales manager usage
scenario. As the figure shows, increasing failure proba-
bilities generally lowers system reliability, except for the
graphical processing component, which is not required
by sales managers (as they request online views rather
than graphical reports). System reliability is particularly
sensitive to the inner core reporting engine, which pro-
vides the central computations for user requests. The
cache access and database access components have a
non-linear impact on system reliability because of the
multiple accesses of those components within a single
system service execution (one access per requested data
item). Hence, it is most beneficial to focus on the im-
provement of the cache and database access components,
as well as the inner core reporting engine.

Another analysis deals with varying MTTF values
of hardware resources under the sales manager usage
scenario. Fig. 9 shows the results. Each sensitivity run
varies the MTTF values of the hardware resources of
one server in the BRS model, while leaving the other
servers unchanged. The differences between the indi-
vidual servers are generally very subtle and only be-
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come more apparent when MTTF values are strongly
decreased to 0.1 years. The results show that system
reliability is most sensitive to the scheduler server and
web server, which are accessed by each user request.
The database server is only accessed if the requested
data does not already reside in the system caches, and
thus has less impact on the success probability of service
execution. Furthermore, we included one of the repli-
cated application servers into the analysis. Because of the
replication, the system is particularly robust against the
unavailability of this server. Thus, the highest priority
for further replication should be on the web server and
the scheduler server.

6.5 Reliability Simulation

As a further indication for the validity of our pre-
diction results, we compared the analytically predicted
system reliability to the results of a reliability simu-
lation performed over the PCM instance of the BRS.
The goal of this validation was to provide evidence for
the correctness of our analysis, i.e. if all inputs (PCM
models including reliability annotations) are accurately
provided, our method produces an accurate result (sys-
tem reliability prediction).

For simulation purposes, we extended the existing
PCM performance simulation, which is based on the SSJ
framework [56]. The tool uses model transformations
implemented with Xpand from the Eclipse Modeling
Project [57] to generate Java code from the PCM instance
under study. During a simulation run, a generated SSJ
load driver creates requests to the code according to the
usage model specified as a part of the PCM model. For
a detailed description of the performance simulation,
see [58]. To evaluate system reliability, we included
software failures, communication link failures, and the
effects of unavailable hardware into the simulation.

To simulate a software failure, an exception may be
raised during execution of an internal action. A ran-
dom number is generated according to the given failure
probability, which decides about success or failure of the
internal action. Communication link failures are handled
in the same way. Furthermore, the simulation includes
the notion of hardware resources and their failure be-
haviour. It uses the given MTTF/MTTR values as mean
values of an exponential distribution and draws samples
from the distribution to determine actual resource failure
and repair times. Whenever an internal action requires
a currently unavailable hardware resource, it fails with
an exception. Taking all possible sources of failure into
account, the simulation determines system reliability as
the ratio of successful service executions to the overall
execution count.

In contrast to our analytical reliability evaluation, the
simulation takes system execution times into account,
making it more realistic in this respect. Values of vari-
ables in the control flow are preserved within their scope,
as opposed to analysis, where each access to a variable
requires drawing a sample from its probability distribu-
tion (see [41]). Resources may fail and be repaired at any
time, not only between usage scenario executions. Re-
source states are observed over (simulated) time, leading
to more realistic failure behaviour of subsequent service
executions. The simulation is substantially slower than
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the analysis and cannot serve as our main prediction
method, but we can apply it for validation purposes.
Notice that although the simulated time span may cover
several years of system operation, the simulation treats
the system as being in a steady state (i.e. the system
architecture including reliability annotations, as well as
the system usage profile, are constant throughout the
simulation). Therefore, the simulation results are compa-
rable to the results obtained by our Markov analysis.

Usage Scenario Reliability Prediction

Analysis Simulation

Sales Manager 0.99673711 0.99691003
Accounting Manager 0.99457976 0.99443006
Administrator 0.99877648 0.99878001

TABLE 5
Analytical vs. Simulated Reliability Prediction

To validate prediction results, we applied the simula-
tion tool to each usage scenario of the BRS PCM instance
and simulated its execution for 10 years (i.e. 315 360 000
seconds of simulation time). Each simulation run took
roughly 30 minutes of real time. Depending on the
usage scenario, we recorded between 5 and 298 software
failures, between 117 and 254 failures due to hardware
unavailability, and between 0 and 43 communication link
failures during the simulation run. Table 5 compares the
predicted and simulated system reliability values. All
performed simulation runs deviate from the predicted
values by less than 0.0002. Furthermore, if the design
alternatives are to be sorted according to their reliability,
simulation leads to the same order as prediction. These
results give evidence that our approach accurately pre-
dicts system reliability and helps software architects to
select the best out of multiple design alternatives.

6.6 Markov Transformation Assumptions

This section evaluates two underlying assumptions of
the Markov transformation algorithm as introduced in
Section 4, namely (i) the benefit of the explicit consider-
ation of all physical system states, and (ii) the benefit of
separate usage modelling in terms of modelling effort.

In Section 4.3.3, we discuss that the explicit considera-
tion of all physical system states poses an issue with re-
spect to the scalability of the approach. This issue could
be avoided if the resource availability was evaluated in-
dependently for each access of a resource during service
execution, according to the steady-state availability of
the resource. We implemented this alternative strategy
and evaluated the system reliability for the BRS usage
scenarios to 0.979 (sales manager), 0.886 (accounting
manager), and 0.997 (administrator). Compared to the
original strategy, which was confirmed by simulation
results (see Table 5), the alternative strategy potentially
leads to high prediction inaccuracy. This is particularly
true in the computing-intensive case of the accounting
manager, because physical resources are accessed many

times during service execution. The higher accuracy of
our hardware unavailability consideration justifies the
better scalability of the alternative strategy.

The second assumption refers to the separate usage
modelling, which is a necessary pre-requisite to the
separation of modelling concerns between component
developers and domain experts, but also reduces the
modelling effort by automatic adaptation of the underly-
ing Markov model to usage profile changes. To measure
this effect, we implemented a comparison algorithm that
shows the changes between multiple Markov models
resulting from the BRS with different usage model vari-
ants. We focused on a single system call for the creation
of an online report, with different input parameter val-
ues, and evaluated the resulting Markov models that
represent the corresponding system behaviour. Table 6
shows the results. In the first case, a coarse report for
1 database entry is requested. The resulting Markov
model has 367 states and 408 transitions. The size of the
chain is due to the recursive nature of the transformation
algorithm, which captures all possible execution paths
throughout the architecture. In the second case, the
number of entries is increased from 1 to 2, leading to
111 new states and 132 new transitions in the resulting
Markov model. The model is extended because the BRS
repeats a part of its computation for each requested
entry. In the third case, the requested report type changes
from coarse to detailed, leading to substantially different
computations compared to the first case. Existing states
and transitions are deleted, and new ones are added.
Hence, already a single usage parameter change can
have significant impact on the resulting Markov model.

To take the discussion one step further, we compared
usage modelling with and without explicit consideration
of input parameters. While the former is provided by
our approach (as one of its distinguishing characteristics,
see Section 2.1), the latter is realized by a number of
related works, such as the scenario-based approaches
(e.g., [17], [18], [23]). As these approaches do not offer
explicit constructs for input value propagation from the
usage model to the rest of the system, this information
either needs to be abstracted away or encoded into
the model. The first alternative is to use probabilistic
abstractions replacing each input-dependent control flow
decision (e.g. branch or loop) with fixed transition prob-
abilities. However, such an abstraction requires changes
of all initially input-dependent transition probabilities
whenever the usage profile changes. The second alter-
native is to specify each system operation or message
multiple times, with the parameter values encoded into
the name of the message. While investigations on process
algebra have shown that such an encoding does not
increase the expressive power of the modelling language,
it may increase the model size significantly, even expo-
nentially [59]. Hence for each parameter change in the
usage model, an exponential number of modifications
may be needed in the rest of the model. For a more
detailed discussion and illustration of this issue on a
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Case System Call Markov States Markov Transitions
Total Changes wrt. Case #1 Total Changes wrt. Case #1

#1 getOnlineReport(entries = 1, type = coarse) 367 – 408 –
#2 getOnlineReport(entries = 2, type = coarse) 478 added: 111 540 added: 132
#3 getOnlineReport(entries = 1, type = detailed) 616 deleted: 177, added: 426 698 deleted: 207, added: 497

TABLE 6
Markov Model Changes through Changing Usage Parameters

simple model, see [54].
In conclusion, the separation of usage modelling with

explicit consideration of input parameter values is in-
deed beneficial compared to other modelling methods.

6.7 Scalability
The scalability of our approach requires special attention.
The method for reliability evaluation described in Sec-
tion 4.3 increases the number of physical system states
(and thus Markov chains) to be evaluated exponentially
in relation to the number of hardware resources in the
model. To examine the impact of this relation to the
practicability of our approach, we analysed a number
of simple PCM instances with a growing number of
resources and recorded the execution time for our pre-
diction tool. The results in Fig. 10 indicate that we can
analyse models with up to approximately 20 resources
within one hour. This involves generating and solving
Markov chains for more than 1 000 000 physical system
states.
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Fig. 10. Execution Time vs. Number of Resources

We deem these capabilities sufficient for typical
business information systems (e.g., enterprise resource
management or customer relationship management), e-
business applications (e.g., online shops), industrial con-
trol systems (e.g., the ABB system introduced in Sec-
tion 6.8), and other types of software-intensive systems.
Even for large-scale installations, multiple resources and
servers can often be grouped together and aggregated
into a single modelled server (also see the example
of redundant resources discussed in Section 5). More
effective strategies for very large systems with more than
20 non-summable resources remain as a goal for future
research.

Apart from the number of hardware resources, other
dimensions of complexity (like the number of com-
ponents or the number of behavioural specifications)
are not a limiting factor. Due to the space- and time-
effectiveness of the approach (see Section 4.3.3), even
very complex models can be handled efficiently.

6.8 Industrial Control System
To increase the external validity of our approach, we
analysed the reliability of a large-scale industrial control
system from ABB. It is used in many different domains,
such as power generation, pulp and paper handling,
or oil and gas processing. The system implementation
consists of several millions lines of C++ code. On a
high abstraction level, the core of the system consists
of eight subsystems, which we treat as software compo-
nents in the following. These components can be flexibly
deployed on multiple servers depending on the system
capacity required by customers.

Fig. 11 depicts a possible configuration of the system
with three servers. The names of the components and
their failure probabilities have been obfuscated for con-
fidentiality reasons. We modelled five of the most im-
portant usage scenarios, which are executed in parallel
during system execution. Each usage scenario triggers a
different control and data flow through the system. We
built the PCM instance for the system based on archi-
tectural documentation. The model can be downloaded
from our website [54].
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Fig. 11. PCM Instance of the Industrial Control System
(Overview)

We collected reliability-related input parameters for
the system (e.g., internal action failure probabilities) in a
former study [43]. The system had been in customer use
for several years, and a bug tracking system with failure
reports collected during live operation was available.
To determine internal action failure probabilities, we
decided to construct a software reliability growth model
(SRGM) for each component, as the bug tracking system
related each failure report to a specific component.
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We selected the Littlewood/Verrall SRGM from
IEEE1633-2008 based on initial significance tests and
industry affinity. Using the tool CASRE, we performed
curve fitting with the failure report dates and the Little-
wood/Verrall model to determine a failure probability
for each component. We used this data to annotate the
internal actions of the PCM instance of the industrial
control system.

To determine the branch transition probabilities of
PCM SEFFs, we used internal logging facilities of the
system, which can be configured to record traces of com-
ponent transitions. We executed the system in a testbed
for two days based on the modelled usage scenarios and
recorded trace logs. Using a script, we calculated branch
transition probabilities from the number of component
transitions in the trace logs. For the hardware reliability
parameters, we reused the values from the BRS case
study. Details of the data collection for the system are
provided in [43].
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With the fully parameterized PCM instance of the
industrial control system we performed a sensitivity
analysis, investigated the influence of different usage
profiles, and also checked the analytical output against
results of our reliability simulation.

Fig. 12 shows the sensitivity of the system reliability to
varying internal action failure probabilities. We omitted
the concrete specification of the system reliability (y
axis) for confidentiality reasons. The system reliability
is most sensitive to InternalAction1 (from component
C1), because the respective component is used with a
high probability in usage scenarios 3 and 4. The system
reliability is least sensitive to InternalAction4 (from com-
ponent C3), because this component is used only in rare
cases.
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Fig. 13. System Reliabilities for different Usage Profiles

Fig. 13 shows the system reliability for five different
variations of the system-level usage profile (i.e., proba-
bility distributions for the system-level usage scenarios).
These profiles result from adjusting the usage scenario
probabilities in the range of typical customer behaviours
for applications of the system in different industry
branches. The system reliability is again obfuscated.
Notice that the origin of the y-axis is not 0.0, as the graph
is zoomed in to highlight the differences. The maximum
difference in the system reliability is 0.2 percent, which
is significant because it results in a number of customer
perceived errors.

Due to the inherent difficulties of software reliability
validation as discussed in Section 6.1, we could not
directly compare our prediction results with system re-
liability measurements during live operations. However,
we executed the simulation tool described in Section 6.5
and emulated system operation for approx. 1.5 years
(i.e., 50 000 000 seconds of simulation time), which took
approx. 11 hours real time. The error between simulated
and analytical result was approx. 0.015 percent. We
conclude that the analytical solver produces plausible
and sufficiently accurate results. We also discussed the
model with developers of the system, who confirmed
that the critically ranking gained by the model matched
their experiences with the system.

The current model of the system resides on a high
abstraction level (8 subsystems for several million lines
of code). While this enables determining the most critical
subsystem for the system reliability, we would need a
lower abstraction level to make detailed recommenda-
tions on how to improve the system. A lower abstraction
level however requires other data collection methods for
internal action failure probabilities. We will investigate
this issue in future work.

Nevertheless there are several benefits of the model
for the current system. The system is used in different
industrial application domains (e.g., power generation,
metal production, oil and gas processing etc.) which can
be reflected to a certain extent by adjusting the usage
scenario probabilities as in Fig. 13. Thus refined relia-
bility predictions can be made for different customers.
Furthermore, the model allows for an efficient test effort
allocation to the most critical subsystems, which were
formerly unknown. This can save significant future test-
ing costs. Additionally, the model allows for discussing
the system reliability on the architectural level, involving
tradeoffs with other quality attributes, and assessing the
impact of different fault tolerance mechanisms. These
discussions however have to remain confidential.

In future work, we plan to develop new data collection
methods, which will enable more fine-granular system
modelling and thus more detailed recommendations for
system design.

7 ASSUMPTIONS AND LIMITATIONS
In this section, we discuss assumptions and limitations
of our approach. We focus on three central issues: (i)
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the knowledge required to create a PCM model with
reliability annotations, (ii) the estimation of proper usage
profiles , and (iii) limitations regarding the expressive-
ness of the model.

7.1 Reliability Annotations

In order to predict the reliability of a component-based
software architecture with our method, a complete PCM
model has to be provided. While it is reasonable to
assume that the individual developer roles can con-
tribute their model parts as discussed in Section 3.2, the
question arises how to estimate the required reliability
annotations, namely

• internal action failure probabilities,
• MTTF/MTTR values of hardware resources, and
• communication link failure probabilities.

Failure frequencies are hard to measure, because failures
are rare events. Failure probabilities are hard to estimate,
because the exact circumstances of failure occurrences
are unknown. Nevertheless, there are approaches that
specifically target the problem of determining failure
probabilities and related information. Methods using sta-
tistical testing [2], software reliability growth models [1],
[15] and code coverage metrics [60] have been originally
proposed for system-wide analysis, but can in principle
also be applied to individual software components. His-
torical data from functionally similar systems and expert
knowledge can serve as further sources of information.
For hardware MTTF/MTTR values and network failure
probabilities, in many cases vendor specifications are
available, which can be refined by own testing and
experience.

In a former work [43], we demonstrate how to derive
reliability-relevant input information for an industrial
control system, which also serves as a case study in
the current paper (see Section 6.8). The same techniques
could also be applied to other kinds of systems targeted
by our approach.

7.2 Usage Profile Estimation

Our approach assumes that domain experts are able to
create a usage model reflecting typical user behaviour
and potentially including several user classes and proba-
bility distributions (Section 3.2.4). Such information may
not always be available, which potentially limits the
benefit of our fine-grained usage modelling capabili-
ties. However, several proposals for fine-grained usage
profile estimation exist. John Musa [61] suggests to
iteratively refine the assumed operational profile from
a customer, user, system mode, and functional profile.
Multiple PCM usage model instances can reflect these
refinement stages. Whittaker and Poore [62] propose
three strategies to determine models of user behaviour
and suggest to use prototypes, prior versions, or sim-
ilar systems to estimate call probabilities. Goseva and

Kamavaram [63] discuss further how to deal with un-
certainty when defining these values. Remaining uncer-
tainty about usage profile parameters can be tackled
using sensitivity analysis.

7.3 Model Expressiveness
Regarding the expressiveness of our reliability modelling
approach, we face a general trade-off between the model
appropriateness for real-world software systems on the
one hand, and its complexity on the other hand. A more
complex model requires a higher modelling effort, needs
more fine-grained reliability annotations as an input,
and increases the danger of state-space explosion of the
underlying analytical model. Therefore, in analogy to
related approaches (see [2], [3], [4]), we have restricted
the approach to the most important concepts from our
point of view (see Section 3.3). More concretely, we
assume that

• software and communication link failures are al-
ways transient and have no side-effects on subse-
quent service calls,

• each failure propagates to the system border and is
perceived as a system failure by the user,

• hardware resources have two states OK and NA (no
intermediate states are allowed), and

• failure and repair times of hardware resources are
exponentially distributed.

Furthermore, we refrain from explicit modelling of
• stochastic dependencies between individual points

of failure,
• stochastic dependencies between break-downs of

hardware resources and their usage time within a
single service call, as well as

• constraints on valid call sequences for component
provided interfaces (i.e., interface protocols). These
can be expressed and corresponding interoperability
checks can be performed with our former work on
component protocol checking [40].

The approach generally reflects concurrent system de-
sign. However, concurrent threads of control and data
flow are assumed to be independent (i.e. not influenc-
ing each other’s failure probabilities). Regarding system
state, the approach allows for probabilistic modelling of
component-internal state variables, but abstracts from
the concrete modification of state within the control and
data flow. We realized a more explicit state considera-
tion for performance prediction based on the PCM (see
[37]), and we plan to also enhance reliability prediction
accordingly in the future.

8 CONCLUSIONS

In this paper, we present an approach for reliability
modelling and prediction of component-based software
architectures. The approach integrates even the rarely
included architectural aspects (the usage profile and
execution environment) to increase the accuracy of its
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predictions, and it describes various reliability-relevant
aspects of the architecture through well-known concepts
from the software engineering domain. The approach
has been realized as an extension of the Palladio Com-
ponent Model (PCM), including tool support for model
transformation into Markov chains, and implementation
of a novel space-effective method of reliability evalua-
tion.

By using the PCM as our basis, we take advantage
of its features and apply its methodology to the field of
software reliability. This includes the support of a dis-
tributed development process with multiple developer
roles who can independently specify their respective
parts of the architecture. Our approach enables software
engineers to systematically consider reliability through-
out the development process, to assess different archi-
tectural alternatives of a system to build, and to identify
critical points of failure that require special attention.
This kind of analysis helps to meet given reliability goals,
and to build software systems that satisfy customer
expectations regarding failure-free execution.

We plan to further extend our approach in multiple
directions, including modelling, analysis, and validation.
Regarding modelling, we aim to integrate more explicit
consideration of state and concurrency, as well as new
constructs for fault-tolerance mechanisms, to calculate
the influence of failure recovery on system reliability.
Regarding analysis, we aim to further improve the scala-
bility of the approach for large-scale system installations
with a complex execution environment. To this end, we
will investigate possible optimization strategies for the
involved calculations. Regarding validation, we aim at
improved methods to derive reliability-relevant input in-
formation for real-world systems. These extensions shall
further increase the benefits of our approach and its ap-
plicability to industrial software development projects.
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