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ABSTRACT
Software fault tolerance mechanisms aim at improving the
reliability of software systems. Their effectiveness (i.e., re-
liability impact) is highly application-specific and depends
on the overall system architecture and usage profile. When
examining multiple architecture configurations, such as in
software product lines, it is a complex and error-prone task
to include fault tolerance mechanisms effectively. Existing
approaches for reliability analysis of software architectures
either do not support modelling fault tolerance mechanisms
or are not designed for an efficient evaluation of multiple ar-
chitecture variants. We present a novel approach to analyse
the effect of software fault tolerance mechanisms in varying
architecture configurations. We have validated the approach
in multiple case studies, including a large-scale industrial
system, demonstrating its ability to support architecture de-
sign, and its robustness against imprecise input data.

Categories and Subject Descriptors
D.2.11 [Software]: SOFTWARE ENGINEERING—Soft-
ware Architectures; D.2.4.g [Software]: SOFTWARE EN-
GINEERING—Software/Program Verification—Reliability

General Terms
Software Engineering, Reliability, Design

Keywords
Component-Based Software Architectures, Reliability Pre-
diction, Fault Tolerance, Software Product Lines

1. INTRODUCTION
Software fault tolerance (FT) mechanisms mask faults in

software systems and prohibit them to result in a failure. FT
mechanisms are established on different abstraction levels,
such as exception handling on the source code level, watch-
dog and heart-beat as design patterns, and replication on the
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architecture level [20, 18]. FT mechanisms are commonly
used to improve the reliability of software systems (i.e., the
probability of failure-free operation in a given time span).
The effect of a FT mechanism (i.e., the extent of such an
improvement) is however non-trivial to quantify because it
highly depends on the application context.

The challenge of assessing FT mechanisms in different
contexts becomes particularly apparent on the architec-
ture level, when evaluating different architectural configu-
rations, and even more in the design of software product
lines (SPL) [7]. An SPL has a core assembly of software
components and variation points where application-specific
software can be filled in. Thus, it can result in many different
products all sharing the same core with different configura-
tion at the variation points.

Existing approaches for reliability prediction [11, 13, 15]
either do not support modelling FT mechanisms (e.g., [5,
8, 12, 21]) or do not allow for explicit definition and reuse
of core modelling artefacts, and hence are difficult to apply
in varying contexts, as with architecture design and SPLs
(e.g., [24, 26]).

The contribution of this paper is an approach to analyse
the effect of a software fault tolerance mechanism in depen-
dence of the overall system architecture and usage profile.
The approach is novel as it (i) takes software fault tolerance
mechanisms explicitly into account, and (ii) reuses model
parts for effective evaluation of architectural alternatives or
system configurations. The approach is ideally suited for
software product lines, which are used to formulate and illus-
trate the approach. It builds upon the Palladio Component
Model and an associated reliability prediction approach [4],
which includes both software reliability and hardware avail-
ability as influencing factors. Our tool support allows the
architects to design the architecture with UML-like mod-
els, which are automatically transformed to Markov-based
prediction models, and evaluated to determine the expected
system reliability.

The remainder of this paper is structured as follows. Sec-
tion 2 outlines our approach and explains the steps involved.
Section 3 details the models used in our approach and then
Section 4 explains how these models are formalised and anal-
ysed to predict the system reliability. Section 5 evaluates the
approach on two case studies. Section 6 delimits our work
from related approaches. Finally, Section 7 draws conclu-
sions and sketches future directions.



2. PREDICTION PROCESS
This section outlines our reliability prediction approach

for fault-tolerant software architectures, software families,
and software product lines (SPL) in particular. Accord-
ing to Clements et al. [7], an SPL is defined as “a set of
software-intensive systems that share a common, managed
set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a
common set of core assets in a prescribed way”. Our mod-
elling approach provides support only for the technical part
of an SPL or software family as we assume that domain
engineering and asset scoping have been performed before
modelling the architecture and reusable components.

Our approach iteratively follows eight steps depicted in
Fig. 1. First, the software architect creates a CoreAsset-

Base, which models interfaces, reusable software compo-
nents, and their (abstract) behaviour (step 1). The Core-

AssetBase is enriched with software failure probabilities of
actions forming component (service) behaviour (step 2). Af-
terwards, the software architect can include different FT
mechanisms, such as recovery blocks (explained in Sec-
tion 3.2) or redundancy (step 3), either as additional com-
ponents or directly into already modelled component be-
haviours. The FT mechanisms allow for different configu-
rations, e.g., the number of retries or replicated instances.
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interfaces, and 
behaviour

Core Asset Base
(Section 4.1)

2. Model 
failure 

probabilities in  
behaviours

3. Model fault 
tolerance, 

adjust 
configurations

5. Model 
products, 
allocation, 

usage

Resource 
environments
(Section 4.2)

Products
(Section 4.3)

6. Model 
transformation
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Results 
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Figure 1: Process activities and artifacts

The software architect then creates a Resource-

Environment to model hardware resources (step 4) and spe-
cific Products (step 5), including component allocation and
system usage information. Combined with the CoreAsset-

Base, these models are transformed into multiple discrete-
time Markov chains (step 6), from which system reliability
predictions and sensitivity analyses can be deduced (step
7). If the prediction results do not satisfy the reliability re-
quirements, the FT mechanisms can be reconfigured and/or
the resource environment and products adjusted iteratively.
Otherwise, the modelled products are deemed sufficient for
the requirements, and the product can safely be instantiated
from the core asset base (step 8). The following two sections
describe the models and the predictions in detail.

3. RELIABILITY MODELLING
This section introduces our meta model for describing the

reliability characteristics of software product lines, which
are used to formulate our approach. The model and its
reliability solver are implemented using the Eclipse Modeling
Framework (EMF) and build upon the Palladio Component
Model (PCM) [2]. An excerpt of our meta model is depicted
in Fig. 2; for a full documentation, refer to our website 1.

1http://sdqweb.ipd.kit.edu/wiki/ReliabilityPrediction

The model allows to express variation points on different
levels:
• architectural level: using composite components to en-

capsulate subsystems and enable their replacement
• component level: selecting different component imple-

mentations for a given specification
• component implementation level: using component pa-

rameters with values for specific product configura-
tions
• resource level: using allocation references expressing

different deployment schemes for product line configu-
rations

Our model is better suited for our purposes than UML ex-
tended with the MARTE-DAM profile [3] because it allows
model reuse through the core asset base and is reduced to
concepts needed for the prediction. The following sections
explain the core asset base (Section 3.1), the fault-tolerance
mechanisms (Section 3.2), the resource environment (Sec-
tion 3.3) and the product (Section 3.4) in detail.

3.1 Core Asset Base
The modelling element CoreAssetBase of our meta model

(cf. Fig. 2) represents a repository for elements assem-
bled into products and contains ComponentTypes, Inter-

faces, and FailureTypes. ComponentTypes can either be
atomic PrimitiveComponents or hierarchically structured
CompositeComponents with nested inner components.

Composite components allow the core asset base to con-
tain whole architecture fragments (e.g., SPL core assem-
blies) that can be reused in different products. Such a core
assembly can have optionally required interfaces as varia-
tion points. Component types are associated with interfaces
through ProvidedRoles or RequiredRoles, and can export
ComponentParameters that allow for implementation-level
variation points. Fig. 3 shows an excerpt of an instance of
a core asset base including a composite component (4 ) and
a component parameter (value).

For reliability analyses, the model requires constructs
to express the behaviour of component services in terms
of using hardware resources and calling other compo-
nents. Therefore, a component type can contain a num-
ber of ServiceBehaviours that specify the actions executed
upon calling a specific Signature of one of the compo-
nent’s provided interfaces. The behaviour may consist of
InternalActions, ExternalCallActions, and control flow
constructs, such as probabilistic branches and loops.

An internal action represents a component-internal com-
putation and can contain multiple FailureOccurrences and
ResourceDemands. FailureOccurrences model software
failures during the execution of a service using a probability.
These failure probabilities can be determined with different
techniques [11, 5, 17], such as reliability growth modelling,
defect prediction based on code metrics, statistical testing,
or fault injection.

An external call action represents a call to other com-
ponents and thus references a Signature contained in one
of the required interfaces of the current component. Fig. 4
shows a small example of a service behaviour containing in-
ternal actions and external call actions. Notice that the
transitions of the BranchAction are labelled with input pa-
rameter dependencies (e.g., P (X ≤ 1)), because the concrete
values for the input parameters (e.g., X) are not known to
the component developer providing the specification. The
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Figure 2: Excerpt of our meta model for specifying reliability characteristics in a software product line

component developer should keep the component as reusable
as possible, i.e. make no assumptions about the usage pro-
file. The developer specifies parameter dependencies as an
influencing factor on the component reliability. The depen-
dencies are automatically resolved during system analysis,
when the usage profile is known. Hence, the influence of
the given system-level usage profile on the system reliability
is explicitly considered by our approach by propagating the
system-level input parameters through the component-based
architecture [4].
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Figure 3: Example instance of a core asset base
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Figure 4: Service behaviour example (partial view)

3.2 Fault-tolerance Meta-Model
To model fault tolerance within component services, we

use the concept of recovery blocks, which is analogical to
the exception handling in object oriented programming. It

is represented with a RecoveryBlockAction that contains an
acyclic sequence of at least two RecBlockBehaviours. The
first behaviour models the normal execution within a ser-
vice, while the following behaviours handle failures of cer-
tain types and initiate alternative actions (analogically to
try and catch blocks in exception handling). Each behaviour
contains an inner sequence of AbstractActions that again
can contain any type of action and even nested recovery
blocks.

Handled Failures:

None

Possible Failures:

Failure A, B, C, D

RecBlockBehaviour1

Handled Failures:

B, C

Possible Failures:

Failure B, C
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Failure B Failure D
Failure B

Figure 5: Recovery-block example and its semantics

Consider the example in Fig. 5 of a recovery block ac-
tion with three RecBlockBehaviours and four different fail-
ure types A, B, C, D. During the first behaviour all failure
types can occur. Failures of type A cannot be recovered and
lead to a failure of the whole block. The second behaviour
handles failures of type B and C and the third behaviour
handles failures of type C and D. In the second behaviour,
failures B and C are again possible, whereas failures of type



B lead to a failure of the block, while failures of type C and
D are handled by the third behaviour. Notice that failures
of type C cannot occur from this recovery block as they are
handled by behaviour 3 and cannot again occur during the
execution of behaviour 3.

As a RecBlockBehaviour can contain arbitrary be-
havioural constructs, such as internal actions, calls,
branches, loops, and nested recovery block actions, they are
a flexible means to model FT mechanisms. They allow mod-
elling exception handling, checkpoint and restarting, process
pairs, recovery blocks, or consensus recovery blocks and are
therefore capable of making reliability predictions for a large
class of existing FT mechanisms. If an external call action is
embedded into a RecBlockBehaviour, errors from the called
component (and any other component down the caller stack)
can be handled. The case studies in Section 5 show different
possible usages of recovery block actions.

3.3 Resource Environment
A ResourceEnvironment contains ResourceContainers

modelling server nodes and LinkResources modelling net-
work connections. Each resource container can contain a
number of ProcessingResources like CPUs or hard disks.
To include hardware availability into the calculation of the
system reliability, each processing resource contains a mean
time to failure (MTTF) and a mean time to repair (MTTR)
attribute. These values can be determined from vendor spec-
ification and/or former experience [23]. Link resources con-
tain failure probabilities for network problems, which can be
determined using simple test series.

A resource environment model can be reused across dif-
ferent Products using allocation references (i.e. mapping
of components to resources). Furthermore, it is possible to
have multiple resource environments (e.g., different server
sizes or high availability servers), which then constitute an
additional variation point or feature of the product line.
Components in the core asset base are decoupled from con-
crete resource environments, because they only refer to ab-
stract ProcResourceTypes, but not to concrete Processing-
Resources. Thus, it is possible to connect a product to a
specific resource environment through an allocation refer-
ence without the need to alter the core asset base.

3.4 Product
A Product contains a number of ComponentInstances

wired through AssemblyConnectors and accessed through
a UserInterface. Only components with matching inter-
faces may be composed in a product. It is possible to con-
nect different component instances complying to the same
interfaces at different points in the architecture, thus im-
plementing architecture-level variation points. Through the
compositions, the overall system behaviour is defined as a
connection of all service behaviours (i.e., after composition,
external call actions in service behaviours can be replaced
by the service behaviours of the called services).

Component instances can contain Component-

Configurations that realize implementation-level variation
points. We introduced these parameters in our former
work [4]. They are data values that can model different
configurations or features of a component implementation
and change component behaviour.

Component instances within a Product must be allocated
to ResourceContainers through an allocation reference that

models a deployment on a certain server. Thus, the com-
ponent reliability depends on the availability of the server’s
hardware resources, employed by the component instance.
The ProductUsage contains a number of UserCalls with
different probabilities, which model the system usage profile
of a product.

4. RELIABILITY PREDICTION
This section first describes how the system reliability (un-

der a specified usage profile) is calculated on the software
layer (Section 4.1) and then integrated with calculations on
the hardware and network layers (Sections 4.2, 4.3).

4.1 Software Layer
For the software layer, the approach derives the reliabil-

ity from a Markov model that reflects all possible execution
paths through a Product architecture, and their correspond-
ing probabilities.

The Approach: POFOD Calculation
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…

…

F1 F2 Fm
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Figure 6: Markov model for service behaviours

Fig. 6 shows how a ServiceBehaviour represented
through a sequence of n AbstractActions is transformed
into an absorbing discrete-time Markov chain. The chain
contains an initial state I, an absorbing success state S, one
state Ai for each action, and one absorbing failure state Fj

for each of the m user-defined software FailureTypes. A
transition from Ai to Fj denotes that action i might exhibit
a failure of type j upon execution, with a probability of
fpj(Ai). The probability of failure of the whole behaviour
fp(Beh) is the probability to reach any of the failure states
Fj (and not the success state S) from the initial state I:

fp(Beh) = 1−
n∏

i=1

(1−
m∑

j=1

fpj(Ai))

For the success probability of the behaviour sp(Beh), we
have:

sp(Beh) = 1− fp(Beh)

The calculation of fpj(Ai) depends on the type of the ac-
tion Ai. For InternalActions, the failure probabilities
fpj(Ainternal) are given as a direct input to the model
(cf. Fig 2). LoopActions, BranchActions, ExternalCall-
Actions, and RecoveryBlockActions have nested Service-

Behaviours Beh (again sequences of AbstractActions),
which need to be evaluated in a recursive step first. For
loops, we have:

fpj(Aloop) =

k∑
i=1

(P (ci) ·
ci−1∑
l=0

(sp(Beh)l · fpj(Beh)))



with a finite set of loop iteration counts {c1, . . . , ck} ⊆ N,
each with its probability of occurrence P (ci). For branches,
we have:

fpj(Abranch) =

k∑
i=1

(P (Behi) · fpj(Behi))

with a finite set of nested behaviours
{
Beh1, . . . , Behk

}
and

their probabilities of occurrence P (Behi). An External-

CallAction fails if the called behaviour fails:

fpj(Acall) = fpj(Beh)

Recovery blocks are characterized through a sequence of
nested behaviours [Beh1, . . . , Behk]. Having fpj(Behi) for
every behaviour and failure type, each Behi can be repre-
sented with a trivial Markov model T (Behi), as illustrated
in Fig. 7, and the recovery-block model constructed as their
combination (following the semantics illustrated in Fig. 5).

Forest of Behaviour Trees for a Recovery Block

I1

1-∑fpj(B1) fpm(B1)fp1(B1) …

S1 F11 F1m
…

T(B1): I2

1-∑fpj(B2) fpm(B2)fp1(B2) …

S2 F21 F2m
…

Ik

1-∑fpj(Bk) fpm(Bk)fp1(Bk) …

Sk Fk1 Fkm
…

Handles:  none T(B2): Handles: j21, j22,… T(Bk): Handles: jk1, jk2,…

Figure 7: Markov models for recovery behaviours

Let for each model T (Behi) be Ii its initial state, Si its
success state and Fij its failure state for each failure type
j. To connect the isolated trees into a single Markov chain,
we add j + 2 states, namely I, S and Fj for each j, and the
following transitions:

• I
1.0−−→I1,

• Si
1.0−−→S for each i ∈ {1, . . . , k},

• Fij
1.0−−→ Ix where x ∈ {i + 1, . . . , k} is the index of the

closest tree handling failure type j if such a tree exists,

• and if not, Fij
1.0−−→ Fj for each Fij with no outgoing

transitions.
Finally, the failure probabilities fpj(Arecovery) are com-
puted as the probability of reaching Fj from I (via sum-
mation of the multiplied probabilities over available paths).

Based on the described calculations, the success probabil-
ity of the topmost behaviour sp(BehT ) (sequence of system
services invoked by the user) can be calculated in a recursive
way, yielding the system-level reliability with respect to the
software layer.

4.2 Hardware Layer
For ProcessingResources, the approach employs a hard-

ware availability model, and integrates this model with the
software layer for a combined consideration of software and
hardware failures. Having the MTTFi and MTTRi values
for all resources {r1, . . . , rp}, we first calculate the steady-
state availability Ai of ri:

Ai = MTTFi/(MTTFi + MTTRi)

and interpret it as the probability of ri being available when
requested at an arbitrary point in time. Furthermore, we de-
fine the set of physical system states as the set {s1, . . . , sq}
where each sj is a combination of the individual resource
states. We distinguish two possible states for each resource,

being either available (OK) or unavailable (FAIL). Assum-
ing independent hardware failures, the probability P (sj) for
the system to be in state sj is the product of the individ-
ual state probabilities. For example, for a system with 2
resources, the probability for r1 being OK and r2 being
FAIL is:

P ((r1 = OK) ∧ (r2 = FAIL)) = A1 · (1−A2)

Combined SW/HW Layers
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Figure 8: Combined HW/SW consideration

Fig. 8 illustrates the combined consideration of the soft-
ware and the hardware layer. Upon a user call, the system
might be in any of the physical system states sj . This is
reflected by a transition from the initial state I to sj with
the corresponding state probability P (sj). Being in sj , the
execution might either fail due to an unavailable hardware
resource accessed by system control flow (sj to Ri), or with
a software failure (represented through transitions from sj

to Fk), or it might succeed (sj to S).
To calculate the failure probabilities fpk(BehT |sj), k ∈
{1, . . . , m + p}, we need to incorporate the failures due to
hardware unavailability into the software layer model (as
shown in Fig. 6). To this end, we set the hardware-caused
failure probability fpk(BehT |sj), k > m, of Internal-

Actions to 1.0 if they require a ProcessingResource that
is not available under the given physical system state sj .
If an internal action requires two or more unavailable re-
sources, the failure probability is distributed evenly among
these. In this manner, the software layer is evaluated in-
dependently for each physical system state, and the overall
success probability of service execution (represented by its
topmost behaviour BehT ) is computed as the weighted sum
over the success probabilities of all physical system states:

sp(BehT ) =

q∑
j=1

(P (sj) · sp(BehT |sj))

where for each physical system state we have:

sp(BehT |sj) = 1−
m+p∑
k=1

fpk(BehT |sj)

Thanks to the separation of service behaviour according to
the individual physical system states, the approach can bet-
ter reflect the correlation of subsequent resource demands
(i.e. a resource accessed twice within a single service exe-
cution is likely to be either OK in both cases or FAIL in
both cases), caused by significantly longer resource failure
and repair times compared to the execution time of a single
user-triggered service [22].

4.3 Network Layer
To incorporate the network layer into the model, we as-

sume that each call routed over a LinkResource involves
two message transports (request and return), and that each



transport might fail with the given failure probability of the
link fp(L). We adapt the software layer model (see Sec-
tion 4.1) by a differentiation of ExternalCallActions into
local calls and remote calls. We keep the failure probabilities
for local calls:

fpj(AlocalCall) = fpj(Beh)

but incorporate the link failure probability into the calcula-
tion for remote calls:

fpj(AremoteCall) = fpj(Beh) · fp(L)2

Thus, we enable coarse-grained consideration of network re-
liability, without going into the details of more sophisticated
network simulations, which are out of scope of this paper.

5. EVALUATION

5.1 Goals and Setting
This section serves to validate our reliability and fault

tolerance modelling approach. The goals of the validation
are (i) to demonstrate how the new FT modelling techniques
can support design decisions, (ii) to provide a rationale for
the validity of our models and their resilience to imprecise
input parameters, and (iii) to show the effectiveness of our
models for SPLs.

Regarding goal (ii), validating reliability prediction
against measured values is inherently difficult, as failures
are rare events, and the necessary time to observe a sta-
tistically relevant number of failures is infeasibly long for
high-reliability systems. Several existing approaches there-
fore limit their validation to demonstrating examples and
sensitivity analyses (e.g., [8, 10, 12, 22, 25]), showing how
the approaches can be used to learn about system failure
behaviour, and proving the robustness of prediction results
against imprecise input data at design time. A number
of authors involve real-world industrial software systems in
their validation (e.g., [5, 16, 26]). We follow the same path,
and additionally compare our numerically calculated predic-
tions against a more realistic, but also more time-consuming
queueing network simulation [4], in order to at least partially
validate prediction accuracy. The simulation has fewer as-
sumptions than the analytical solution. It takes system ex-
ecution times (encoded into ResourceDemands) into account
and lets resources fail and be repaired according to their
MTTF and MTTR, not based on the simplified steady-state
availability.

We have validated our approach on a number of different
systems: a distributed business reporting system, the com-
mon component modelling example (CoCoME), a web-based
media store product line [2], an industrial control system
product line [17], and the SLA@SOI Open Reference Case.
The models for these systems can be retrieved from our web-
site 1. In the following, we describe the predictions for the
web-based media store (Section 5.2) and the industrial con-
trol system (Section 5.3) in detail. The media store allows
us to present all reliability predictions, while the predictions
for the industrial control system have been obfuscated for
confidentiality reasons.

5.2 Case Study I: Web-based Media Store
The media store model is inspired by common web-

service-based data storage solutions and has similar func-
tionality to the ITunes Music Store [2]. The system provides

a centralized storage for media files, such as audio or video
files, and a corresponding up- and download functionality.
The media store product line contains three standard prod-
uct configurations: standard, comfort, and power. More con-
figurations are possible by instantiating the feature model in
Fig. 9.

Media Store

UserInteractionChoice FileLoaderChoice EncoderChoice DataAccessChoice

UserInteraction
Comfort

UserInteraction

UserInteraction
FT

FileLoader
Power

FileLoader

FileLoader
FT

Encoder

Encoder
Power

Encoder
FT

DataAccess

DataAccess
FT

Mandatory
Optional Or

Alternative
CacheHitRate

Figure 9: Feature model of the media store SPL

Fig. 10 summarizes the different products and design al-
ternatives of the media store product line. The core func-
tionality is provided through four component types: User-

Interaction, FileLoader, Encoding, and DataAccess. For
some of these components alternative comfort or power vari-
ants are present in the core asset base for the different prod-
uct variants (cf. Fig. 9). The database and the DataAccess

component are deployed on one (or optionally two) sepa-
rated database server(s).
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Figure 10: Media store products and design alter-
natives

During up- and download of media files, different types
of failures may occur in the involved component instances:
A BusinessLogicFailure may occur during the processing of
user requests in the UserInteraction[Comfort] component.
A CacheAccessFailure may occur in the FileLoader[Power]

component induced by malfunctioning cache memory. Bugs
in the compression algorithm of the Encoder[Power] compo-
nent may lead to an EncodingFailure. A DataAccessFailure
may occur in the DataAccess component due to internal
database errors or faults in the database server’s file system.
Additionally, as hardware failures, a CommunicationFailure,
CPUFailure, and/or HDDFailure can occur.

<<Recovery
BlockAction>>

<<ExternalCallAction>>
DataAccess[Main].retrieveFile()

<<RecBlockBehaviour>> 2
Handles CPUFailure

<<RecBlockBehaviour>> 1

<<ServiceBehaviour>> DataAccessFT.retrieveFile()

<<ExternalCallAction>>
DataAccess[Backup].retrieveFile()

Figure 11: Service behaviour of DataAccessFT

For illustrative purposes, we set the software-level failure
probabilities to 10−5 for each individual failure occurrence in
the model, with the following exceptions distinguishing the
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Figure 12: Media store prediction results

products: in the UserInteractionComfort component, the
probability of BusinessLogicFailures rises to 10−4 because of
the more complex business logic compared to the standard
variant. Compression algorithms are generally complex and
may fail with a probability of 10−4 in the Encoder compo-
nent, and with 2 × 10−4 in the EncoderPower component.
For all hardware resources, we assume the MTTF being one
year and the MTTR 50 minutes, implying an availability
of 99.99%. In other settings, these values could have been
extracted from log files of existing similar systems.

Fault tolerance mechanisms may be optionally introduced
into each media store product, in terms of additional com-
ponents which are shown in grey in Fig. 10. For example, a
UserInteractionFT component may be put in front of the
UserInteraction[Comfort] component. It has the ability
to buffer incoming requests, to re-initialise the business logic
in case of a BusinessLogicFailure, and to retry the failed re-
quest. As another example, the DataAccessFT component
may be used to handle CPUFailures on the main DB server
by redirecting calls to the backup server. Fig. 11 illustrates
the service behaviour of the file retrieval call, which con-
sists of a single RecoveryBlockAction with two RecBlock-

Behaviours.
Each described fault tolerance mechanism can be used for

each product, and more than one mechanism may be applied
in parallel. We focus on cases where at most one mechanism
is used.

The usage profile of the media store consists of 20% upload
calls and 80% download calls, an average of 10 requested
files per call, and a probability of 0.3 for files to be large,
i.e. requiring compression during upload. We calculated
the expected system reliability for each product and design
alternative. Each calculation took below one second on a
standard PC with a 2.2 GHz CPU and 2.00 GB RAM.

To provide evidence about the possible decision support
for different design alternatives (goal (i) in Section 5.1),
Fig. 12(a) shows the system reliability for each product and
fault tolerance alternative. The comfort product has the
lowest reliability, because of the included statistics function-

ality, which involves additional computing and requests to
the database for storage and retrieval. The power product
has the highest system reliability, as the high hit rate in the
FileLoaderPower cache decreases the number of necessary
database accesses. Employing the DataAccessFT component
has the highest effect compared to the design alternatives
without fault tolerance. Notice that the FT mechanisms
have different influences in the different variants. For exam-
ple, the UserInteractionFT is most effective for the comfort
variant.

Fig. 12(b) provides more detail and shows the probability
of a system failure due to a certain failure type. Summarized
over all products, CommunicationFailures, CPUFailures and
HDDFailures most probably cause a system failure. The risk
of a CommunicationFailure is especially high for the comfort
product, which requires many database accesses and corre-
sponding network traffic. Thus, a software architect may
recognize the need to introduce new fault tolerance mecha-
nisms for these failures.

To demonstrate the robustness of our model to imprecise
input data (goal (ii) in Section 5.1), we first examined the
robustness of the reliability prediction to alterations in the
input failure probabilities. We changed the failure probabil-
ities of the components of the comfort product one at a time
by multiplying them with 10−1. We also increased the hard-
ware resource availability 99.99% to 99.999% one at a time
for each resource. Fig. 12(c) shows new system reliabilities
for the different fault tolerance variants, indicating that the
ranking of the design alternatives is almost identical over the
different failure type alterations. The DataAccessFT is al-
ways top-ranked. However, rank changes do occur in case of
altered BusinessLogicFailure and CacheAccessFailure prob-
abilities, indicating that these probabilities should be esti-
mated as careful as possible.

As a second sensitivity analysis, Fig. 12(d) focuses on the
power product without fault tolerance. It shows the sen-
sitivity of the failure probabilities per failure type to the
number of requested files (i.e., a change to the usage pro-
file). For most failure types, the failure probabilities rise



with the number of files, as more database accesses and mes-
sage transports over network are required, as well as more
file compressions and cache accesses. The business logic,
however, is independent of the number of files, which keeps
the BusinessLogicFailure probability constant. CPUFailures
and HDDFailures do not influence the system reliability for
more than 8 files. For cases with 2 to 8 files there is a chance
that all files are found in the cache, and no database access
is necessary, thus lowering the failure probability.

To analyse prediction accuracy, we ran the reliability
simulation for each of the three products in the User-

InteractionFT variant for 107 simulated seconds, and got a
deviation from the analytical results between 0.0006% and
0.0067%. Fig. 13 shows the results. The ranking of the three
considered variants is confirmed by the simulation, which in-
dicates that the analytical results are sufficiently accurate.
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Figure 13: Media store simulation results

The effectiveness of the approach for SPLs (goal (iii)
in Section 5.1) is demonstrated by the fact that nearly
all model parts can be reused throughout the media store
products and design alternatives. Only some Component-

Instances are specific to certain alternatives and need to be
connected via additional AssemblyConnectors: the User-

InteractionComfort, EncodingPower, FileLoaderPower,
and all FT components.

5.3 Case Study II: Industrial Control System
As a second case study, we analysed the reliability of a

large-scale industrial control system from ABB, which is
used in many different domains, such as power generation,
pulp and paper handling, or oil and gas processing. The sys-
tem is implemented in several millions lines of C++ code.
On a high abstraction level, the core of the system consists of
eight software components that can be flexibly deployed on
multiple servers depending on the system capacity required
by customers. Fig. 14 depicts a possible configuration of the
system with four servers. The names of the components and
their failure probabilities have been obfuscated for confiden-
tiality reasons.

The upper part of Fig. 14 shows the ServiceBehaviours

for the components C7 and FT2. The components FT1 and
FT2 have been introduced into model inspired by existing
FT mechanisms. FT1 is able to restart component C1 upon
failed requests. FT2 is able to query two redundant instances
of component C4, which are deployed on different servers,
thereby implementing fault tolerance against hardware fail-
ures.

The reliability of the core system has been analysed in
a former study [17], where no fault tolerance mechanisms
or product variants were considered. For this case study, we
reused the failure probabilities from the former study, which
had been determined using software reliability growth mod-
els based on bug tracker data. We also reused the transi-
tion probabilities between the components, which had been
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Figure 14: Control system product line model with
two exemplary service behaviours

determined using source code instrumentation and system
execution. The hardware reliability parameters were based
on vendor specifications.

The industrial control system is realized as a product line
and sold to customers in different variants depending on
their requirements. Fig. 15 shows a small excerpt of variants
in terms of a feature model. There are many more possible
variants, as third party components can be integrated into
the system via standardized interfaces. The components C1-
C8 are mandatory. For component C4, there are two alterna-
tive implementations (C41 and C42), which address different
customer requirements. There are two external components
Ext1 and Ext2, which can be optionally included into the
core system. The feature model also includes the different
FT mechanisms as variants.

FT
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Figure 15: Feature model of the control system
product line variants (excerpt)

For the scope of this paper we restricted the reliability
analysis to the core system (standard) and three different
variants. Variant 1 uses component C42 instead of C41 but
is otherwise identical to the core system. Variant 2 incorpo-
rates the external component Ext1, which is only connected
to component C4 (cf. Fig. 14). Variant 3 incorporates com-
ponent Ext2, which is connected to component C1, C2, C4,
and C6. These variants correspond to realistic configura-
tions, which have formerly been sold to customers.

To demonstrate the decision support for different alter-
natives (goal (i) in Section 5.1) we analysed how the pre-
dicted system reliability varies for the different variants and
FT mechanisms (Fig. 16(a)). The actual values are obfus-
cated for confidentiality reasons. Variant 1 is the predicted
as being the most reliable. Introducing FT1 generally bears
a higher increase in reliability than introducing FT2, which
includes adding an additional server for the redundant in-
stance of component C4. The impact on system reliability
of FT2 is less pronounced for variant 1 than for the other
variants, because it already uses a higher reliable version
of component C4. Thus, the software architect can decide
whether the increased costs for adding an additional server
for realising FT2 in this variant are justified.

To show the robustness of the models against imprecise
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Figure 16: Exemplary prediction results for the industrial control system

input parameters (goal (ii) in Section 5.1), we conducted
a sensitivity analysis modifying the failure probabilities of
selected components (Fig. 16(b)). The system reliability is
most sensitive to the component reliability of C1 as the curve
has the steepest slope. The system reliability is robust to
the component reliability of C5. Overall, the model behaves
linearly and the deviations of the system reliability are com-
parably small to changes in individual component failure
probabilities. In this case, the ranking of the design al-
ternatives remained robust against uncharacteristically high
variations of the component failure probabilities.

For a comparison between numerically computed predic-
tions and simulation data, we ran a simulation for each vari-
ant for 106 simulated seconds. The mean error between
the numerically computed and simulated system reliability
across all variants was 0.0077 percent. The ranking of the
variants remained was the same for the simulation results as
for the numerical results. We conclude that the numerical
calculations were sufficiently precise in this case.

To show the effectiveness of the approach for SPLs (goal
(iii) in Section 5.1), we quantified the amount of changes nec-
essary to model the product variants in our case. For Variant
1, a single ComponentInstance and AssemblyConnector had
to be added to the standard Product and deployed to the
respective ResourceContainer. This did not require the ad-
justment of transition probabilities. For Variants 2 and 3,
also only single ComponentInstances had to be added to the
standard Product.

6. RELATED WORK
Our method for architectural fault tolerance modelling

is related to approaches on software architecture reliabil-
ity modelling [13, 21], fault tolerance modelling on the level
of software architecture [18], and reliability engineering for
software product lines [7].

Multiple surveys on software architecture reliability mod-
elling are available [11, 13, 15]. R.C. Cheung [6] was among
the first to propose architectural reliability modelling using
Markov chains. Some recent approaches refine such mod-
els to support compositionality [21], and different failure
modes [10], but do not regard fault tolerance mechanisms.
L. Cheung et al. [5] use hidden Markov models to deter-
mine component failure probabilities for Markov chain ar-
chitecture models. Further approaches in this area apply the
UML modelling language [8, 12] or are specifically tailored
to service-oriented systems [27], but also do not include fault
tolerance mechanisms or support for reusing model artefacts
in different contexts, such as product configurations.

Some approaches do tackle the problem of incorporat-
ing fault tolerance mechanisms into the architectural pre-
diction models [18]. Sharma and Trivedi [25] includes addi-
tional states and recovery transitions into architecture level
Markov model to model component restarts or system re-
boots. Wang et al. [26] provides constructs for Markov
chains to model replicated components. Kanoun et al. [16]
model fault tolerance of hardware/software systems using
generalized stochastic Petri nets. These approaches do not
consider component-internal control and data flow, and how
it is influenced by error handling constructs. Thus, they
may yield inaccurate predictions when fault tolerant soft-
ware behaviour deviates from the specific cases considered
by the authors. Furthermore, none of these approaches sup-
ports reusing model artefacts.

Considering reliability during the design of a software
product line is a major challenge, because different prod-
uct variants may have different influences on the expected
reliability. Immonen [14] proposes the ’reliability and avail-
ability prediction’ (RAP) method for SPLs. RAP, however,
does not support compositional models, hardware reliability,
or explicit fault tolerance mechanisms. Olumofin et al. [19]
tailor the architecture trade-off analysis method to evaluate
SPLs for different quality attributes. They focus on the iden-
tification of scenarios but provide no architectural model or
predictions. Dehlinger et al. [9] introduce the PLFaultCAT
tool to analyse SPL safety using fault tree analysis. Their
models do not reflect the software architecture and therefore
complicate evaluating different design alternatives. Auer-
swald et al. [1] model product families of embedded systems
using block diagrams, but provide no usage profile model or
quantitative reliability prediction.

7. CONCLUSIONS
We presented an approach to support the design of reliable

and fault-tolerant software architectures and software fam-
ilies. Our approach allows modelling different architectural
alternatives and product line configurations from a shared
core asset base and offers a flexible way to include many
different fault tolerance mechanisms. A tool transforms the
models into Markov chains and calculates the system relia-
bility involving both software and hardware reliabilities. We
evaluated our approach in multiple case studies and demon-
strated its value to support architectural design decisions,
its robustness against imprecise input data, and its effec-
tiveness for SPLs.

Our approach provides a new perspective for designing
software architectures and families. It allows software ar-



chitects to validate their designs during early development
stages and supports their design decisions quantitatively. As
the effectiveness of different fault tolerance mechanisms is
highly context dependent, our approach enables software ar-
chitects to quickly analyse many different alternatives and
rule out poor design choices. This can potentially lead to
more reliable systems, which are built more cost-effectively
because late life-cycle changes for better reliability can be
avoided.

In future work, we aim to include more sophisticated hard-
ware reliability modelling techniques into our approach to of-
fer more refined predictions. We will extend our tool for au-
tomated sensitivity analyses and design optimisation. Our
prediction approach can potentially be extended for other
quality attributes, such as performance or security.
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