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ABSTRACT
The OPC UA communication architecture is currently becoming
an integral part of industrial automation systems, which control
complex production processes, such as electric power generation or
paper production. With a recently released extension for pub/sub
communication, OPC UA can now also support fast cyclic control
applications, but the bottlenecks of OPC UA implementations and
their scalability on resource-constrained industrial devices are not
yet well understood. Former OPC UA performance evaluations
mainly concerned client/server round-trip times or focused on jit-
ter, but did not explore resource bottlenecks or create predictive
performance models. We have carried out extensive performance
measurements with OPC UA client/server and pub/sub communi-
cation and created a CPU utilization prediction model based on
linear regression that can be used to size hardware environments.
We found that the server CPU is the main bottleneck for OPC UA
pub/sub communication, but allows a throughput of up to 40,000
signals per second on a Raspberry Pi Zero. We also found that the
client/server session management overhead can severely impact
performance, if more than 20 clients access a single server.
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1 INTRODUCTION
Open Platform Communications Unified Architecture (OPC UA)
(IEC 62541) is a service-oriented communication architecture for
machine-to-machine (M2M) communication in industrial automa-
tion [8]. OPC UA servers typically run on x86-based CPUs and
receive data from sensors and transfer to actuators used in elec-
tric power plants, chemical plants, or steel mills. OPC UA clients
originally are workstations for human plant operators or other
server-side systems. They use the information exposed by OPC UA
servers to configure and operate a production process. OPC UA
servers expose static data (e.g., configuration parameters, identifi-
cation information), dynamic data (e.g., sensor readings, setpoints,
alarms, events), as well as services. OPC UA communication runs
on IP networks and supports a combination of different application-
level protocols, such as UA Binary, HTTPS, SOAP/XML, MQTT1,
and AMQP2. Due to its powerful information modeling capabilities,
OPC UA was hailed as a preferred communication standard for the
Industrie 4.0 [13].

While OPC UA was initially designed for server to worksta-
tion communication, the OPC Foundation has recently enhanced
it for field device communication [9], which requires short cy-
cle times on resource-constrained devices. This so-called OPC UA
publish/subscribe (pub/sub) communication relieves devices from
session management overhead and is potentially suitable for sub-
millisecond control loops using multicast UDP communication [2].
For example, if the pressure in a pipe of a chemical plant crosses a
pre-defined threshold, a sensor must inform an embedded controller
via OPC UAwith a very short delay to open a valve to avoid damage
to the equipment. Due to the novelty of the OPC UA pub/sub speci-
fication, experiences and guidelines on how to apply OPC pub/sub
for different industrial automation application contexts is missing.
Performance bottlenecks of pub/sub communication are unclear.
A comparison between client/server and pub/sub communication
is missing, and automation vendors have little guidance in sizing
hardware environments appropriately.

Former evaluations of OPC UA focused on client/server com-
munication and often investigated round-trip times for different
numbers of communicated signals [4, 5, 8]. They also analyzed
added latency for encrypted communication, but never constructed
1http://mqtt.org
2http://amqp.org
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predictive performance models. Recent studies [2, 10] analyzed the
jitter of communication delays for OPC UA pub/sub communication
and find that a 50 ns jitter is achievable by exploiting features for
time-sensitive networks (TSN). Our own former work specifically
quantifies the encoding overhead for OPC UA pub/sub communica-
tion [7] and provides initial results on server-side CPU utilizations.
None of these works systematically identified performance bottle-
necks or created a predictive performance model.

The contributions of this paper are 1) an identification of OPCUA
pub/sub bottlenecks via performance measurements on resource-
constrained devices and 2) a performance model that allows pre-
dicting the CPU utilization of OPC UA servers given a specific
application profile. We created a measurement testbed involving
multiple computing devices and network switches, which we con-
figured to carry out the required dynamic multicast filtering for
pub/sub communication correctly. We used a commercial OPC UA
SDK and created OPC UA servers and clients in C++ for our mea-
surement experiments. We defined test scenarios and quantified
the server-side session management overhead in client/server com-
munication. Using the results, we created a performance model
based on linear regression and predicted the CPU utilization for
two typical application scenarios.

We found that the server CPU was the bottleneck in all analyzed
scenarios. A Raspberry Pi Zero (as example for a cheap embed-
ded device) was able to send up to 40,000 signals per second via
OPC UA pub/sub and up to 20,000 signals per second for OPC UA
client/server. The session management overhead for up to 30 con-
nected clients incurred up to 45 percent CPU utilization. We also
found that the memory and network utilization was low, as well as
the overhead for encrypting the communication. The performance
model showed a good accuracy and led to the conclusion that the
Raspberry Pi Zero is powerful enough for the analyzed application
scenarios.

This paper is organized as follows. Section 2 explains the basics
of OPC UA and Section 3 reviews past work on OPC UA perfor-
mance analysis. Section 4 introduces our measurement testbed and
implementations. Section 5 reports the performance measurement
results in terms of CPU, memory, and network utilization. Section
6 describes the constructed performance model and its application
in the two application cases. Section 7 discusses limitations of our
approaches, before Section 8 concludes the paper.

2 BACKGROUND
OPC UA is a platform-independent, service-oriented architecture
that is typically used for machine-to-machine communication in
industrial automation. OPC UA servers provide an object-oriented
information model that allows a client to access live values and
properties of industrial devices, such as sensors and actuators.
OPC UA supports different transport protocols, such as HTTPS,
SOAP, MQTT, and a self-defined OPC UA Binary format for fast
communication. In the past, automation systems used OPC UA
mainly between operator stations (PCs) and devices (embedded
systems) and used industrial fieldbuses for latency critical commu-
nication between controllers and devices.

OPC UA’s original communication model is client/server-based
and was standardized in 2008. Fig. 1 depicts a high-level overview of
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Figure 1: OPCUA slient/server subscription communication
model (based on [9])

this model. An OPC UA server exposes an object-oriented address
space (i.e., instance of the information model), which for example
may contain periodically updating temperature values of a tem-
perature sensor in an industrial boiler. Each client may either read
individual data items in the address space or register subscriptions
for periodic updates with the server. The server then samples the
address space for updated values according to the client-configured
update interval (e.g., 500 ms) and sends the data to the client via a
TCP connection. The server manages a dedicated subscription for
each connected client, as clients may be interested in different data
items and have different required updated intervals. That causes
overhead in terms of CPU and memory usage, increasing with a
higher number of clients.
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Figure 2: OPC UA Broker-less pub/sub communication
model (based on [9])

In 2018, the OPC Foundation standardized an additional pub/sub
communication model for OPC UA as Part 14 of the specification,
which completely decouples the communication partners. Using
OPC UA UDP, which is one of the new broker-less pub/sub modes,
an OPC UA server now can group data items from the address space
into DataSets and publish them with a configured update interval
to UDP multicast groups (see Fig. 2). OPC UA clients interested
in the data may subscribe to these data items by registering for
updates of the respective UDP multicast groups. This is completely
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independent of the publishing OPC UA server, which has no in-
formation how many subscribers receive the information. In this
case, the OPC UA server does not need to manage a session for
each client and is relieved of respective CPU and memory usage.
However, due to the UDP transfer, there is no guaranteed delivery
of the messages.

For OPC UA UDP, the OPC UA pub/sub specification recom-
mends to use switches with Internet Group Management Protocol
(IGMP)3 support to limit the distribution of multicast traffic to the
interested participants as depicted in Fig. 3. Hosts use IGMP to re-
port their IP multicast group memberships in response to peridical
IGMP queries received, e.g., from a router on the local network.
Routers use IGMP messages to learn which multicast groups have
members on their attached networks. Switches use IGMP snooping
to listen to IGMP messages from hosts and then only send mul-
ticast network messages to ports that have joined the multicast
group. This dynamic filtering of multicast messages is essential, as
broadcast communication (without filtering) for the types of high-
frequency communication characteristics in industrial automation
systems would quickly overload the network. Using the network
infrastructure for this purpose instead of a dedicated broker on the
application level avoids an additional point of failure and larger
attack profile.

Figure 3: Dynamic Multicast Filtering using IGMP: switches
only forward packets to hosts that registered for a multicast
group of the publisher.

Due to the novelty of the pub/sub specification, no commer-
cially released OPC UA SDKs support it as of now and experiences
with its performance are missing. Engineers procuring network
and computing hardware and setting up communication channels
between hosts in industrial automation applications would benefit
from knowing the performance limits of the technology and getting
guidelines on when to use client/server or pub/sub communication.

3 RELATEDWORK
Because the OPC Foundation released OPC UA pub/sub in early
2018 and there is still a lack of implementations, there are currently
only a few performance studies available. This section first provides
an overview of performance evaluations of OPC UA client/server
communication and then describes three studies, which have dealt
with OPC UA pub/sub communication up to now.

Mahnke et al. [8] provided the first comprehensive overview of
the OPC UA technology in 2009. The book also contains a chapter
3https://tools.ietf.org/pdf/rfc3376.pdf

with a rudimentary performance analysis, mainly targeting a com-
parison between classic OPC and the UA Binary and SOAP/XML
communication protocols with a focus on round-trip latencies. They
found that OPC UA is able to maintain the performance of classic
OPC, while adding security and reliability. However, this analysis
does not analyze CPU or memory utilization or a higher number of
client sessions.

Cavalieri et al. [4] also analyzed OPC UA round-trip times in
2010, but took different message sizes into account. They also pro-
vided measurements about the induced delay for subscriptions in
case of short update intervals and measure network bandwidth
usage. Furthermore, they characterized the overhead on round-trip
times induced by encryption. However, this work does not ana-
lyze different numbers of client sessions or propose a performance
model.

In 2012, Fojcik et al. [5] discussed basic performance parame-
ters for OPC and conducted performance measurements using the
commercial Prosys OPC UA SDK on powerful PCs. The authors
investigated the CPU utilization for up to 100 connected OPC UA
clients as well as the update times for different sampling inter-
vals. Since they used powerful hardware, the results may be hard
to apply to resource-constrained devices. They also did not pro-
pose a performance model or compared client/server and pub/sub
communication.

In 2016, Gruener et al. [6] created a RESTful extension for OPCUA
communication and measured round-trip times for different num-
ber of read requests per session. They carried out these tests on
x86 PCs, Raspberry Pi Model B devices, and an industrial fieldbus
controller with 44 MHz and 16 MB RAM running µClinux. The au-
thors also measured server throughput and found that the RESTful
communication provides significantly higher throughput. However,
they could not compare these results to pub/sub communication,
yet.

Rocha et al. [11] did a performance comparison of quantity of
used data and time spent to send and receive messages in the field
of IoT and Industrial IoT (IIoT) with MQTT and OPC UA. The
measurements were conducted over different servers using the
Google Cloud Platform. The test implementation relied on Python3
for both protocols. The focus of the conducted measurements were
on cloud-to-client communication, not in an industrial environment
with OPC UA pub/sub or a comparison between client/server and
pub/sub communication.

In 2018, after the release of the OPCUA pub/sub specification, the
so-called “Shaper group” with industry representatives from B&R,
ABB, Schneider Electric, and others released a whitepaper [2] on
OPC UA communication for Time-sensitive Networks (TSN). They
created a testbed with 50 devices and conducted measurements
for the time synchronization between nodes. The time synchro-
nization delay was around 100 µs with a 50 ns jitter in laboratory
conditions. The whitepaper also presented a theoretical calcula-
tion on the minimum achievable cycle times with 100 MBit and
1 GBit switches. Up to 100 nodes and using a 1 GBit TSN switch
with 100 bytes of payload, they predicted cycle times of around
100 µs. This was accompanied by a comparison to other Ethernet-
based M2M fieldbuses (PROFINET IRT, EtherNet/IP, EtherCAT).
The focus in the paper was on TSN communication, not on OPC UA
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pub/sub specifics and did not compare client/server with pub/sub
communication.

In a similar manner, Pfrommer et al. [10] measured jitter of
OPC UA pub/sub using the open62541 SDK running on two PCs
and a 1 GBit switch. They provided a demo involving Intel Atom
processors and ARM Cortex M4 boards. These tests achieved a 100
µs cycle time and showed that with enabled time-based scheduling
from the TSN specifications, the jitter can be reduced down to 40 ns.

Our own former work also involved OPC UA performance mea-
surements. We introduced a reference architecture for plug-and-
produce applications based on OPC UA client/server and pub/sub
communication [7]. This study investigated specifically the encod-
ing overhead at the server side for OPC UA pub/sub communication.
It was found that a Raspberry Pi 3 could handle up to 800 signals
per milliseconds under special conditions. However, this work did
not analyze performance bottlenecks in detail, account for security
overhead, multithreading implications, nor constructed a predictive
performance model, which are the contributions of this paper.

4 EXPERIMENT METHOD
In this section, we describe how we carried out the experiments
for our performance evaluation. This includes the derivation of
research questions, the setup and configuration of a testbed, and
corresponding implementations.

4.1 Research Questions
Fig. 4 depicts the potential bottlenecks for client/server and pub/sub
communication. In the client/server communication model, the
server has to handle the session management per-client. Thus, the
server’s CPU and memory utilization could become a bottleneck
with an increasing number of clients, as explained in Section 2.
Furthermore, the network can be a bottleneck because the data
transmission increases with each client to send data to, as well as
with the number of signals and the publishing rate.

In the pub/sub communication model based on OPC UA UDP,
more potential bottlenecks exist. On the one hand, the network
could be a bottleneck if a multicast group is overloaded or the
filtering is ineffective or not working as expected. It could also
be wrongly configured, such that the multicast communication
becomes a physical layer broadcast. On the other hand, the CPU
utilization of the subscribers could become a bottleneck in case
of an overloaded multicast group as the DataSet filtering takes
place on the application layer. Subscribers’ CPU load is expected to
depend on the DataSets received in a multicast group. The resource
usage at the publisher is, however, expected to be dependent only
on the number of signals and the publishing rate and not on the
number of subscribers. Further factors that most likely influence
the performance of the communication models are encryption and
multithreading on the server side.

Motivated by the potential bottlenecks, the following research
questions guided the work presented in this paper:

RQ1: How high is the CPU utilization of the publisher/ server
in the pub/sub communication model compared to the client/
server model?

Server
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Client

Client

Client

Publisher

Subscriber

Subscriber

Subscriber

Subscriber

NW

CPU Mem

CPU Mem

CPU Mem

CPU Mem

CPU Mem

CPU Mem

NW
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Figure 4: Potential bottlenecks in the client/server and
pub/sub communication models

RQ2: How high is the memory usage of the publisher/ server
in the pub/sub communication model compared to the client/
server model?

RQ3: How high is the network load in the pub/sub communi-
cation model compared to the client/server model?

RQ4: Which one is the bottleneck: CPU utilization, memory
usage, or the network load?

RQ5: Howmuch overhead in terms of CPU utilization is caused
by security policies?

RQ6: What is the impact of multithreading on the server per-
formance?

4.2 Testbed Setup and Configuration
For the execution of the performance measurements, we use a
testbed consisting of three industrial-grade managed GBit network
switches, as shown in Fig. 5. The switches (type Hirschmann RSP35)
are connected to each other in a chain. In addition, we use Raspberry
Pi devices with ARM processors running Linux (Raspbian with RT
PREEMPT patch 4), which are representative for modern industrial
PCs. The server and publisher are deployed on a Raspberry Pi Zero,
while the clients and subscribers are deployed on Raspberry Pi 3
devices. This setup is comparable to modern production plants. All
Raspberry Pis are equipped with RTC DS3231 high precision real
time clock modules.

For the pub/sub measurements, IGMPv3 snooping is enabled at
the network switches together with the IGMP querier functionality
with a query interval of 10 seconds [3]. The querier functionality is
necessary as no router is connected to the testbed that could act as
IGMP querier. In addition, we configured the ports interconnecting
the switches as static query ports to ensure that IGMP membership
reports of IP multicast clients arrive at all switches.

We used the Linux tool “iperf” to test the unicast and multi-
cast switching performance and correct filtering. Without a correct
IGMP configuration, the switches either broadcasted the IP mul-
ticast packets to all clients in the network (IGMP snooping not
working) or did not forward the packets at all (no IGMP querier:
4https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
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Figure 5: Testbed Setup and Configuration with Industrial
Switches and different Raspberry Pis

forwarding paths could not be learned due to missing member-
ship queries and reports). These first tests helped us to optimize
the switch configuration for the following experiments. While the
testbed supports executing more complex measurements, most of
the results presented in this paper used just a subset of the config-
uration with clients being connected to only one of the switches
as the network showed not to be the relevant bottleneck for our
measurements.

4.3 Measurement Implementation
To answer the research questions, we developed test programs
that use OPC UA functionality to simulate clients and servers, or
publishers and subscribers, respectively. These programs monitor
the performance metrics to be evaluated during experiments, i.e.,
CPU utilization, memory usage, and network load, and write them
to log files. The programs support an easy variation of relevant
parameters, e.g., the server’s publishing rate and the number of
published signals. For the client/server case, also the number of
simulated clients could be configured. This way, multiple clients
can be deployed on a single machine to enable larger experiments.

All components were implemented using the OPC UA C++ SDK
by Unified Automation v1.5.2. As this version does not yet in-
clude any pub/sub functionality, we obtained an early prototypical
pub/sub extension from Unified Automation, which was used in
addition. Other SDKs can be evaluated as well using the concepts
presented in this paper as soon as they support the OPC UA pub/sub
specification.

4.3.1 Server Implementation. The OPC UA server representing the
server component of the client/server model stores data in the
server address space and communicates this data to one or more
OPC UA clients running on the client component. In more detail,
the address space is populated with a variable number of floating
point values (floats) representing sensor readings, as well as with
metrics used for the evaluation and validation of the experiments.
In different scenarios, we varied the number of floats to study the
influence on the performance. A loop in the server component
updated the floats to new, random values to simulate the updating

of signals in a typical control system scenario where signal values
change due to new sensor data, for instance. The rate at which
the loop is executed was made configurable to test the influence
of different update rates, which corresponds to variable sampling
rates of an industrial sensor. In addition to the signal updating, the
program periodically writes CPU and memory measurements to
the server address space.

4.3.2 Client Implementation. The client implementation consists
of an OPC UA client and connects to the OPC UA server described
above. It establishes an OPC UA session between client and server
and client/server subscriptions (not to be confused with the pub/sub
model, see Section 2) are used to communicate the data in the server
address space to the client. For the experiments, the sampling and
publishing rates are set to the update rate used for updating signals
in the server address space. There is a callback function in the
client program that is called upon the receipt of data notifications
from the server. The program uses the callback to take CPU and
memory measurements and to also create log entries that include
the measurement values as well as additional metrics used for the
validation of the experiments.

4.3.3 Pub/Sub Implementation. We developed similar programs
for the pub/sub measurements. A configuration file includes the
necessary publisher and subscriber settings and is read at the be-
ginning of the program. The publisher stores data in an address
space and publishes it to an IP multicast address. Again, the data in
the address space consists of floats and metrics for evaluating and
validating the communication model. Similar to the server program,
a loop updates the float values at a specified update rate and takes
CPU measurements at a defined interval. The memory measure-
ments are only taken at the beginning of an experiment, because
the memory usage was found to be stable over time for a given
configuration and this way the measurement overhead could be
reduced to a minimum. The subscriber program executes a callback
function each time the subscriber receives messages from the pub-
lisher. As a result, CPU measurements are taken and written to a
log file together with a number of other metrics. CPU and memory
measurements consider all child processes of the program and ad-
ditionally log the overall device CPU and memory usage. The CPU
usage is calculated based on the time the CPU spends executing
any of the program’s processes and the total elapsed time.

4.3.4 Network measurements. We calculate inter-IP-packet time for
the pub/sub measurements in the following manner: The Ethernet
packets recorded by tshark 5 are first filtered for the packets that
include complete IP and UDP headers. Second, the inter-arrival
time of consecutive packets is calculated based on the recorded
timestamps. These steps are necessary to account for the fact that
in configurations with a lot of published signals, the sent UDP
packets exceeded the IP packets’ maximum transmission unit (MTU)
size. As a result, IP fragmentation takes place, where a single UDP
packet is split across multiple IP packets. Thus, only one of these
packets includes a fully parsable IP and UDP header, which is used
to determine the time between UDP packets, instead of IP packets,
which would provide a wrong measure in this case. In the cases
where the publisher is able to maintain a configured publishing
5https://www.wireshark.org/docs/man-pages/tshark.html
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interval, the inter-arrival times of these UDP packets is expected to
be equal (or smaller) than the configured publishing interval.

Furthermore, we calculate the network bandwidth based on the
Ethernet frames recorded with tshark. They are filtered for the
OPC UA traffic and the measurement period, which excludes the
transient phases at the beginning and end of an experiment — simi-
lar to the other measures. We then sum up the size of the Ethernet
frames within the remaining stable phase and divide by the length
of the stable phase of the measurement to calculate the average
bandwidth consumed during that time. On a smaller time scale,
the actually used switching bandwidth shows spikes due to the
bursty sending of packets according to the configured publishing
interval. However, since the switching performance showed to be
not a relevant bottleneck in any of our measurements, we decided
to only report the average values. In resource-constraint scenar-
ios with multiple communication partners on the same network,
we propose to additionally study the bursts and derive worst-case
aggregate bandwidth estimates in addition.

4.3.5 General Remarks. Recorded measurements from the first
twenty seconds of each experiment are discarded to limit the analy-
sis to the stable phase and ignore transient effects. All experiments
were repeated at least five times to rule out random effects caused
by the testbed setup and, e.g., operating system processes. We
report results in the form of average values over the individual
measurement repetitions.

5 PERFORMANCE MEASUREMENTS
This section presents our performance measurements results for
CPU utilization, memory/network utilization, encryption overhead,
and multithreading. The experiments had an update interval for
each process of 100 ms.

5.1 CPU Utilization
Figure 6 shows the CPU utilization of the OPC UA server both for
client/server and pub/sub communication to answer research ques-
tion RQ1. The x-axis shows a growing number of signals (i.e., float
values) delivered per second. The diagram shows 95% confidence
intervals over the means of the individual measurements to pro-
vide a visual indication of the significance of differences between
two observations. The individual client/server curves end with the
most demanding setting for which the update intervals was still
maintained.

Overall, the variation in CPU utilization for repeated measure-
ment of any given data point (i.e. configured application profile)
was small. The server CPU utilization using pub/sub communica-
tion is lower than for all cases using client/server communication.
The publishing OPC UA server can transfer up to 40,000 signals per
second via multicast UDP on a Raspberry Pi Zero, before the CPU
is saturated. At that point, the server cannot achieve the configured
update interval of 100 ms anymore (see further discussion of Fig. 7).

The server CPU utilization for client/server communication is
shown for a growing signal rate (x-axis) and for a growing number
of concurrently connected clients (individual curves) in Fig. 6. It
was decided that, for an increasing number of clients, the signals
published by the server are evenly distributed among connected
clients, so that the total number of signals published by the server

Figure 6: Server CPU utilization for OPCUAmodes: pub/sub
requires fewer CPU cycles than client/server and scales up
to 40,000 signals per second before CPU saturation.

is kept constant. For example, for 5 clients and a total of 10,000
communicated signals, each client received 2,000 signals in each
update interval. This approach helps us to characterize the session
overhead induced by client/server connections.

In the client/server communication, the server CPU utilization
was always higher than for pub/sub communication with the same
signal rate. For a single client, the server could handle 25,000 signals
per second before saturation. For 30 clients, the server could handle
only a total of 10,000 signals due to the additional overhead to
manage the individual sessions. More than 30 client sessions led to
error messages issued by the server, therefore, these measurements
could not be finalized. We assume that certain data structures of
the used implementation cannot handle such a high number of
sessions, at least on the Raspberry Pi Zero.

The overhead for client/server sessionmanagement scales almost
linearly up for higher numbers of concurrently connected clients.
For 30 clients and 10,000 signals per second the CPU utilization
is at 80 percent, compared with approx. 35 percent for one client.
This means that the CPU spends 45 percent of its computing power
only for managing the different sessions, despite communicating
the same number of signals. The overhead can be attributed to
context switches that the server needs when preparing the different
communications with the clients.

To better understand the effect of a high server CPU utilization,
Fig. 7 shows cycle times as observed by the client/subscriber when
receiving signals. The time is measured as the duration between the
receiving of two subsequent signal updates, which should adhere to
the 100 ms update interval configured at the server/publisher. For
client/server communication, the figure shows that client cycle time
of 100 ms can be achieved in cases where the server CPU is not more
than approximately 75 percent loaded. Upon higher utilizations,
the cycle times are not met and are therefore considered invalid for
the application case.

For example, for 10 clients, the client-side observed mean cycle
time increases to 160 ms and the confidence interval indicates
fluctuations across experiments when the server communicates
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Figure 7: Cycle times observed at client/subscriber: 100 ms
update interval not met for high signal rates with server
CPU utilizations above 75 percent (cf. Fig. 6).

25,000 signals per second. In this case, the server is busy encoding
and transferring the messages to the different clients and can no
longer meet the configured updated interval. This indicates that
the server CPU is the main bottleneck in the analyzed experiments
and limits the number of concurrently sent signals per second.

For pub/sub communication, the experiments showed an unex-
pected increasing trend already starting at 5,000 communicated
signals per second. However, the CPU utilization at this point was
only around 20 percent. The cycle times observed at the subscriber
grow for an increasing signal rate, up to more than 150 ms, which
violates the application requirements. Conceptually, there is no
explanation why the server cannot meet the configured update in-
tervals since the CPU and also other resources are not saturated. To
rule out effects that could be caused by subscriber implementation
or the network, the same measurements were repeated, this time
analyzing the inter-arrival times of the UDP packets. For this, the
network traffic was captured using tshark at both the publisher
and subscriber side. Interestingly, the figures of the inter-arrival
times for both sides showed almost similar curves as shown in
Fig. 7, indicating that the publisher already sends out the packets
too slowly. Thus, the increasing subscriber cycle times for pub/sub
are caused by the publisher implementation and are not a result of
a bottleneck for any of the monitored resources.

Based on these observations, we assume that the beta version of
the pub/sub implementation of the OPC UA SDK is responsible for
this glitch, especially as it was announced to not yet be optimized
for performance. We expect that this aberration will not appear in
the final release version of the SDK as, conceptually, we do not see
any reason for such a steadily increasing overhead, especially as
cycle times are met for the more demanding client/server mode.

Summarizing, to answer RQ1, the maximum CPU utilization to
meet the desired update intervals for both client/server and pub/sub
communication was at approx. 75 percent. Pub/sub communica-
tion managed to transfer approx. 40,000 signals per second, while
client/server communication managed approx. 25,000 signals per
secondwith a single client session and accumulated up to 45 percent

of additional session management overhead for up to 30 concurrent
clients. In addition to the server/publisher CPU utilization results,
we also conducted first measurements on the client/subscriber-side
CPU utilization, which was identified as another potential bottle-
neck in Section 4. For brevity reasons, however, we decided to leave
a detailed study and discussion to future work.

5.2 Memory and Network Utilization
To answerRQ2, Fig. 8 shows the memory utilization of the OPC UA
server in the different experiments. The Raspberry Pi Zero has 512
MB of RAM and the same scenarios as for the CPU utilization (i.e.,
100 ms update interval, floats as signals) were executed. The server
memory utilization is between 11 and 15 MB in all scenarios, even
for a high number client sessions and communicated signals. This
implies a memory usage of less that 4 percent (RQ2) and shows that
the main memory is not the bottleneck resource in the analyzed
cases. Transfer of larger data items could cause higher memory
consumption, but this is rather rare for industrial automation ap-
plications as of today.

Figure 8: Memory utilization was below 4 percent of the
available main memory of the device (512,000 KB).

For the network utilization (RQ3), Fig. 9 plots the trends for a
growing number of communicated signals per second. The observed
network utilization was lower than 6 Mbps in all experiments. For
a 1 Gbit switch, this translates to a bandwidth usage of less than
1 percent. In case of pub/sub communication, the server outgoing
network date rate is lowest in all cases, as the publisher does not
deal with session overhead, but simply transfers the signals once
via UDP to the configured IP multicast addresses.

In case of client/server communication, the network usage is
higher but still smaller than 1 percent in all cases, considering a
1 Gbit network (RQ3). Thus, the network is not considered a bot-
tleneck in the analyzed scenarios. Higher network utilizations may
occur at the client side if multiple servers send as much data as they
can to single clients. For pub/sub communication dynamic multicast
filtering assures that packets are only sent to other nodes if they
have subscribed to the respective multicast addresses. Otherwise,
the packets are not forwarded by the network switch, therefore
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Figure 9: Network utilization at the server/publisher was al-
ways below 1 percent, for a 1 Gbit network.

reducing total network traffic. In summary, the CPU was the bot-
tleneck in the analyzed scenarios while the experiments used the
other resources only marginally (answering RQ4).

5.3 Security Overhead: CPU Utilization
Some scenarios in industrial automation may require encryption of
the network traffic. OPCUA provides four different security policies,
Basic256Sha256, Basic256, Basic128Rsa15, and None. Basic256 and
Basic128Rsa15 have been declared obsolete as they are no longer
considered secure. If the network is secured using other means (e.g.,
firewall) or even physically disconnected from any public network,
the security policy “None”may be adequate. However, to get a better
understanding on the overhead that encryption causes, we executed
a number of test cases with the security policy Basic256Sha256,
where all messages are signed and encrypted.

Figure 10: Server CPU utilization: only slight increase for
security policy with message encryption.

Fig. 10 visualizes the server CPU utilization in encrypted and
unencrypted client/server communication to answerRQ5. We were

not able to activate the security policy for pub/sub communication,
which was not yet implemented in the beta version of the SDK. A
small increase in CPU utilization is visible in Fig. 10 for the different
numbers of clients if encryption is enabled. The overhead increases
for higher numbers of clients. For example, for 10 clients the CPU
utilization at 10,000 signals per second is at approximately 50 per-
cent for unencrypted communication, while the CPU utilization
is at 60 percent for encrypted communication. For a low number
of clients, however, the encryption overhead was low. Thus, we
support that encryption should be always considered and evaluated
as its impact on performance seemed almost negligible even for the
used low-cost hardware platform here.

The figure for client-observed cycle times is not shown for
brevity reasons. It can be summarized that for scenarios with en-
abled encryption, the cycle times increase slightly earlier than for
unencrypted communication, although the difference is small. Mem-
ory and network overhead for encryption were negligible in the
analyzed scenarios and are therefore not detailed.

5.4 Multithreading
Finally, we performed a series of experiments to determine the
potential for performance increases using multithreading in the
analyzed scenarios (referring to RQ6) and based on the studied
hardware platforms. For this, we modified our server-side signal
update functionality to be executed by multiple POSIX 6 threads
to exploit possible parallelisms. In a real implementation, a similar
approach could be used to parallelize other application tasks. In
this case, the test scenarios communicated 100 signals with a 500
ms update interval and we repeated each experiment 15 times. The
POSIX scheduling policy was configured to SCHED_FIFO, and the
server POSIX thread priority was configured 98.

Figure 11: Impact of multithreaded server on Raspberry Pi
Zero: additional threads reduce the performance.

Fig. 11 shows a cumulative distribution function for the server
run span on the Raspberry Pi Zero. The server run span indicates
how long it took the server to finish its work. The smaller the
run span, the better as more CPU resources remain available to
6http://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
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support scenarios with even higher signal rate requirements. As
expected and because the Raspberry Pi Zero has only one CPU core,
Fig. 11 shows that using additional threads yielded no performance
improvement. On the contrary, more threads increased the server
run span by up to 50 percent, possibly due to context switches.
However, Fig. 12 shows that for a Raspberry Pi 3 with four CPU
cores, a major performance improvement for multiple threads is
possible. For two or three extra threads, the server run span was
decreased by approx. 35 percent. Therefore considering a multi-
threaded implementation has indeed a high potential to improve
the maximum load a server/publisher device can handle in case
multiple processor cores are available (RQ6).

Figure 12: Impact ofmultithreaded server on Raspberry Pi 3:
additional threads significantly increase the performance.

6 PERFORMANCE MODEL
In the following section, we describe a performance model which
we created based on the measurements and performance evalua-
tions in Section 5. Such a performance model can be integrated in
development processes in order to evaluate whether client/server
subscriptions or pub/sub are feasible for a given use case or a spe-
cific device.

6.1 Model Construction
The experiments described in Section 5 investigated the influence
of several parameters on the performance. The performance model
will now integrate these parameters. Parameters for the model are
the number of signals hosted on the device, the update rate at which
these signals are changed, the publishing rate at which those signals
must be communicated to other parties or the number of parties to
communicate.

The developed performance model enables predicting perfor-
mance metrics such as CPU utilization from specified parameters
for a given, untested, application context. For this model, the CPU
utilization is considered a continuous output variable from one or
more input parameters, resulting in a regression problem. Thus,
well-studied regression models known from the field of machine

learning are promising candidates for modeling the kind of system
studied here.

In most cases, linear regression models [1] can be applied for
this kind of prediction models. Due to the fact, that the perfor-
mance measurements unveiled linear trends and that applying a
linear regression with Maximum Likelihood estimation seemed
straightforward, we decided to apply this model as a first approach
for the performance prediction and summarize the taken steps for
client/server communication in the following.

In order to formulate the performance model based on linear
regression, the choice of the features are crucial. In our case, the
feature vector ®x is calculated by using the number of signals in
the server address space (ns), the publishing rate (spr ), and, for
client/server subscriptions, the number of subscribing clients (nc).
Following the rules for linear regression, this feature vector is
passed into a nonlinear feature vector ®ϕ to include an offset and
contributions of the respective parameters on the output y. In our
case, y denotes the CPU utilization of the OPC UA server or the
OPC UA publisher process. See (1) for the construction of ®ϕ based
on xi , the feature vector of experiment i .

®ϕ(xi ) =

[
1
xi

]
(1)

The design of a suitable feature transformation ®ϕ(xi ) is crucial and
requires domain knowledge as well as the evaluations and compar-
isons of different possible transformations. In our case, the feature
transformation finally selected and showing the most promising
results for client/server measurements is given in (2). It was derived
based on the observations of linear dependencies in the measure-
ments and by iteratively tuning the contributions of the individual
features, which is a typical approach in feature engineering.

xi = ns[i] ∗ spr [i] ∗ nc[i]
0.3 (2)

The influence of the number of subscribing clients was stepwise
subdued using an exponent which greatly improved the prediction
accuracy. A model for pub/sub communication could be derived in
a similar manner but is not presented here.

Once the feature transformation was in place, the weight vec-
tor ®w was inferred from the training data from our experiments
in Section 5. This way, the generic model is calibrated to fit the
measurement data. For this, the weight vector is calculated by using
maximum likelihood linear regression which corresponds to the
method of least squares applied to the feature transformations of
the input and is given in (3). Here [Φ]T denotes the Gram matrix
of all transformed feature vectors as columns (describing the sce-
nario parameters for individual experiments) and ®t a vector of the
measured CPU load values for the individual experiments.

®w = ([Φ]T [Φ])−1[Φ]T ®t (3)

This method maximizes the likelihood of the measurement data
given the weights and features and is basically used to calibrate
the weights. It assumes the data set is sampled from a process and
contains Gaussian noise.

Once ®w was learned based on the measurements, the CPU utiliza-
tion y for a given setting of scenario parameters can be predicted



ICPE’19, April 2019, Mumbai, India Burger et al.

using (4), which summarizes the model.

y = ®wT ®ϕ(x) (4)

In the following section, we present selected results of the appli-
cation of the model and how these results support a development
process for specific devices, like edge gateways or server aggregat-
ing several data sources into one.

6.2 Model Application
The model can be used to estimate the resource requirements of
application scenarios which were not tested before using actual
measurements. This greatly helps in resource planning and, e.g.,
evaluating implementation alternatives in scenarios relevant for
process industries. In order to validate the accuracy of our model,
we first apply it to scenarios discussed in Section 5 which were not
used in the model training. In the following, we compare the actual
measurement results for these scenarios to the model predictions.

The first validation scenario is a prediction for a server node
handling 5 client/server connections and up to 2500 signals with
a publishing rate of 100 ms. Fig. 13 shows the performance of the
model compared to measured data for this particular setup. The
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Figure 13: Model evaluation for client/server scenario with
5 clients.

prediction results show a good match to the measured data. For
this prediction, we trained the model with a training data setup of
10 client/server connections and a publishing rate of 100 ms.

We used the same trained model to predict a scenario with 20
client/server connections and a publishing rate of 100 ms. Fig. 14
shows the results of this validation. For this specific scenario, the
validation data includes a step at about 1,500–1,700 signals. This
particular step was not predicted by the model. However, the pre-
dicted curve is close to the measured values. Thus, both validation
scenarios show that the model is already fairly accurate in the pre-
diction of the CPU usage for specific scenarios. For the sake of
completeness, we jointly show the training data and the prediction
in Fig. 15 to visually verify the correct model calibration.
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Figure 14: Model evaluation for client/server scenario with
20 clients.
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Figure 15: Training data vs. prediction (10 clients).

To show the power of such a model, we used it to predict two
major use cases which are relevant for industrial automation sys-
tems. The first use case serves a large number of IO points per node
and has the following properties:

• 6,000 IO points, 2 large process controllers
• 10 applications in each controller
• 2 controllers share 8 field comm. interfaces (FCIs)
• A controller handles up to 3,000 IO points and 4 FCIs

In particular, that means for the controller node, the CPU utiliza-
tion for up to 3,000 IO points and 4 client/server connections needs
to be predicted. Using the model, for each FCI a configuration of
up to 750 IO points and 2 client/server connections is predicted.
Fig. 16 shows the results for the prediction of the CPU utilization
of the controller node.

The prediction results show that handling such a high number
of IO points is challenging for the CPU. A controller with such a
hardware setup would be very busy and likely unreliable. How-
ever, the model was trained on a Raspberry Pi Zero with a 1 GHz
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Figure 16: Prediction of controller and FCI loads for two in-
dustrial automation system use cases.

single-core CPU and 512 MB memory. We assume that a future
controller system architecture has at least dual core CPUs and the
same frequency per core or even higher, so that the setup is consid-
ered feasible. The prediction model presented here provides a first
guidance on how powerful such a hardware architecture should
be for the given setup. A model trained on the target hardware
platform would help to further improve the predictions.

The prediction for the FCI node shows a different picture. In
Fig. 16 it can be seen that a hardware architecture similar to a
Raspberry Pi Zero would be sufficient for an FCI. Especially, if we
assume that one FCI needs to handle up to 750 IO points with a
publishing interval of 100 ms. In that case, the CPU utilization
would be at about 40 percent which gives enough space to scale up
the number of IO points if necessary as well as to do different tasks,
e.g., analog-to-digital signal converting or evaluation of signals.

The second use case focuses on a low number of IO points per
node and has the following properties:

• 6,000 IO points, 10 small controllers
• 2 applications in each controller
• 10 controller share 40 FCIs
• Each FCI is connected to 5 controllers

In particular, one controller handles 600 IO points and 4 Client/Server
connections with a publishing interval of 100 ms. An FCI is con-
nected to 5 controllers, that means 5 client/server connections, and
handles 150 IO points with a publishing interval of 50 ms. The
prediction for the controller is similar to the previous use case.
Here, the controller needs to handle fewer IO points at the same
publishing rate of about 100 ms. In Fig. 16, the CPU usage for 600
IO points is about 0.4 GHz. Hence, a hardware platform similar to
the Raspberry Pi Zero is appropriate in that use case.

Fig. 16 also shows prediction results for the FCI in the second use
case. Due to the shorter publishing interval of about 50 ms, the CPU
utilization is higher than in the previous predictions. Nevertheless,
in this case the FCI has to handle 150 IO points which results in a
CPU utilization of about 35 percent even for the higher publishing

rate. Hence, the hardware setup for an FCI can be realized based
on a CPU with 1 GHz or less.

Predicting these two use cases demonstrates the benefit of the
proposed performance model. It provides a first estimation of hard-
ware requirements for a specific node or to determine that the
number of IO points is too high to be handled. After selecting the
actual hardware and application use cases, clearly a more thorough
evaluation of the overall system architecture is needed. Neverthe-
less, possible bottlenecks can be easily and early identified in the
development process using the proposed modeling approach.

7 THREATS TO VALIDITY
This section discusses the threats to validity both to our measure-
ment and modeling results. We review construct validity, internal
validity, and external validity [12].

7.1 Construct Validity
Construct validity reflects whether the measures used in the ex-
perimentation represent what the research had in mind with the
research questions. Our experiments employed Raspberry Pi de-
vices as substitutes for industrial embedded systems. We argue
that Raspberry Pis have a similar computing performance as mod-
ern industrial devices. We also equipped the Raspberry Pis with
high precision real-time clock modules. However, some cheaper
or power-constrained industrial field devices may use even less
powerful hardware. For this kind of devices, our experiments and
models provide limited guidance.

With Debian Linux with the RT PREEMPT patch we used a soft
real-time operating system (RTOS) that may not offer the same
deterministic behavior with guaranteed deadlines, such as com-
mercial RTOS (e.g., VxWorks or QNX). However, we followed the
guidelines specified by the Open Source Automation Development
Lab 7, which have tested Linux RT PREEMPT on multiple platforms
and deemed it usable for many typical industrial automation appli-
cations. More and more commercial industrial devices are based on
Linux, therefore we deem this choice representative for the target
application domain.

The chosenOPCUA SDK fromUnifiedAutomation can be consid-
ered representative for thewhole class of other commercial (e.g., Ma-
trikon, Softing, Prosys) and OSS (e.g., FreeOpcUa, open62541) OPC
UA SDKs. Unified Automation provides a comprehensive list of ref-
erence customers 8, which includes Siemens, Robert Bosch GmbH,
Trumpf and other companies, showing that it is used throughout
the industry.

We used update intervals down to 50 ms in our experiments and
performance models. This does not cover scenarios with shorter
cycle times, which are however only used in specific situations in
industrial automation (e.g., power electronics, machine control).
We argue that the chosen application profiles cover a range of
scenarios and similar profiles have been used in other OPC UA
measurements [4, 5]. We focused on server-side publishing, but did
not investigate subscriber-side filtering in more detail, which could
become a problem if the published DataSets are not well chosen.

7https://www.osadl.org/
8https://www.unified-automation.com/references.html
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We only used IGMP for dynamic multicast filtering, whereas
other protocols (e.g., MMRP 9, TSN-based) or also application-level
brokers could fulfill similar purposes. Here we followed guidelines
from the OPCUA pub/sub specification. Finally, wemainly analyzed
resource utilizations, but not latencies. However, we claim that
OPC UA latency has been extensively covered in other studies
(e.g., [2, 10]) and was therefore out of scope in this paper, which
was more interested in scalability.

7.2 Internal Validity
Internal validity reflects whether the effects shown in the exper-
iments can correctly be attributed to the causes (e.g., the chosen
application profiles and testbed), and whether there are interfering
variables that may distort the cause-and-effect relationship.

One interfering variable in our experiments was the beta-status
of the chosen OPC UA SDK. The software measured had not yet
been performance-optimized, therefore the results for CPU and
memory utilization need to be considered with care. Fig. 7 showed
an unexpected increase in cycle times for higher signal rates, which
we attributed to the unstable OPC UA SDK. Future measurements
need to validate our findings with commercially released SDKs, but
we expect rather an improvement in performance, therefore our
results can be considered lower bounds.

Additional bottlenecks could hide in the network, if larger sets
of individual publishers would be analyzed, and multiple clients
would have overlapping information needs. This could lead to a
highly utilized network in specific situations.

For the performance model, we used a simple maximum likeli-
hood linear regression model. More sophisticated models, such as
neuronal networks, Gaussian processes, or ridge regression could
be used alternatively, as they would provide a probability distribu-
tion and not only a single scalar prediction value. If more features
would be added to the model (e.g., the hardware platform), an alter-
native model choice would be required, as linear regression tends
to overfitting for a complex feature vector.

7.3 External Validity
External validity is concerned with question to what extent the
findings can be generalize. As our testbed hardware and application
profiles are considered representative for many control applications
in process automation, the results should be valid in many similar
scenarios. For applications with 50-500 ms cycle times and 1-20,000
signals per second, our results should be applicable. This may, for
example, cover many chemical processes, electric power generation,
or paper production. Scenarios involving cloud communicationmay
add network latency and, thus, need an additional analysis.

Users with more powerful hardware could achieve even higher
server throughputs, while users with much less powerful hardware
could run into different bottlenecks. We did not conduct a compar-
ison of different OPC UA SDKs for pub/sub performance, so our
results may not be easily generalized to applications using different
SDKs. We also did not investigate other M2M middlewares, e.g.,

9http://www.ieee802.org/1/pages/802.1ak.html

based on OMG DDS 10, AMQP, or JMS 11, which are used in other
domains.

8 CONCLUSION
This paper showed that CPU utilization is the performance bottle-
neck for OPC UA pub/sub communication using typical application
profiles from industrial automation. We found that the memory
and network overhead was negligible, that encryption added a low
overhead, and that OPC UA communication could benefit from mul-
tithreading. The constructed performance model helped answering
hardware sizing questions in two different scenarios.

The measurements and models may be used by practitioners
and researchers designing industrial automation architectures and
systems. Given the number of signals to communicate and their re-
quired update intervals, developers can size hardware environments
to minimize costs while providing an appropriate performance. This
is considered especially useful in designing industrial Internet-of-
Things applications with many OPC UA communication partners.

To improve our understanding of OPC UA performance further,
we plan to conduct additional experiments on different hardware
platforms and even more application profiles. We want to investi-
gate the impact of sizing DataSets of OPC UA publishers on the sub-
scriber performance. We plan to improve our performance model
to make it applicable in even more situations.
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