
Agreements for software reuse in corporations

Thijmen de Gooijer
Industrial Software Systems
ABB Corporate Research

Västerås, Sweden
thijmen.de-gooijer@se.abb.com

Heiko Koziolek
Industrial Software Systems
ABB Corporate Research

Ladenburg, Germany
heiko.koziolek@de.abb.com

ABSTRACT
Agreements for sharing of software between entities in a cor-
poration have to be tailored to fit the situation. Such agree-
ments are not legal documents and must address different
issues than traditional software licenses. We have identified
the topics such agreements should cover and in a case study
found that the final content is heavily dependent on the
structure and processes of the software organization. The
presented work enables others to create guidelines for soft-
ware sharing agreements tailored to their organization and
shares lessons about the differences between software prod-
uct lines and corporate software sharing and reuse.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; K.5.1
[Legal Aspects of Computing]: Hardware/Software Pro-
tection—Licensing

Keywords
software reuse, software licensing, corporate agreements

1. INTRODUCTION
Code reuse and software product lines promise increased

software quality and reduced development costs and time-to-
market. Some companies achieved this holy grail of software
engineering efficiency. For example, Hewlett Packard set
up a software product line for the development of printer
firmware and cut staff 75%, reduced the number of recorded
bugs by 94% and reduced time-to-market by 50% [13].

Cost for software maintenance and development continue
to increase, therefore we have looked at how to enable reuse
of subsystems across business units. Subsystems cannot be
copy-pasted like code snippets or binaries, but require inte-
gration effort. Reuse of subsystems across business units re-
quires a different organization than a software product line
(SPL). The SPL methodology is designed to create varia-
tions of the same product within one organization unit and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

requires thorough domain engineering and management of
the variation points. We want to enable reuse across ABB
business units that are responsible for different products and
markets. Products can be software, contain software or be
controlled by software, and often software is not the main
component of the product. As a result there is a wild variety
in size of development teams and their organization. Some
software assets are developed by large teams, others by a
handful of developers.

Business units that find opportunities for collaboration
may need to setup license agreements when they reside in
different legal entities. Hardware devices can be sold in-
ternally in a normal transaction, but for software there are
concerns of access to source code, responsibility for main-
tenance, compatibility of future versions, and many more.
Business units are not used to deal with such issues, because
software development is not their core business. Since the
agreements are not governed by law but by the corporation,
using traditional licenses can undermine a sense of trust.
Furthermore, the legalese in licenses is rarely appreciated.

We want to support reuse initiatives by making it as easy
as possible to set up corporate agreements for software reuse.
The agreements have fit any subsystem reuse case and have
to be generic enough for ABB’s diverse organization with
around 145.000 employees in five divisions and dozens of
business units. Business units often are geographically dis-
tributed organizations, which complicates sharing initiatives.
Large, distributed organizations often face challenges with
communication, collaboration, and trust that we also want
to address [5]. To provide the needed support, we have cre-
ated a guideline listing important agreement topics, e.g., in-
tegration fees, license grant, and maintenance support. For
each topic the guideline lists several proven solutions which
can be combined to draft a reuse agreement.

The first step we took to create our guideline was to re-
view existing agreements and to collect success and failure
stories from within and outside the company (Section 2). In
the second step, we identified the important components of a
sharing agreement and drafted alternative options for them
as guidelines (Section 3). We refined our draft guidelines by
mapping them to existing successful cases. This mapping is
part of the guideline document and provides example solu-
tions that are already successfully used and form a source of
inspiration. The final step was to validate the guidelines by
drafting a new agreement for an upcoming software sharing
initiative (Section 4). At the end of this paper we share our
lessons learned (Section 5), discuss related work (Section 6),
and conclusions (Section 7).

2. SUCCESS AND FAILURE FACTORS
We identify topics and suggested solutions for our guide-

lines based on experience from within ABB and that of the
software engineering and software product line (SPL) com-
munity. In this section we describe the success and failure
factors that we identified in existing ABB software sharing
cases, but we first list success factors that we took from SPL
literature (e.g., [4] [14]) and from software reuse literature
(e.g., [8] [9] [12]).

• Plan reuse systematically instead of performing it op-
portunistically.

• Have management commitment and long term focus.

• Align SPL with business needs: an SPL must provide
features that the market demands and can be sold.

• Select the appropriate domain for reuse: domains with
high complexity and existing legacy promise the high-
est benefits.

• Tailor development processes and roles to SPLs.

• Agree upon a proper funding scheme agreed with all
participating business units.

• Incorporate human factors and establish a proper or-
ganizational structure with clear responsibilities.

• Establish a proper infrastructure (e.g., good documen-
tation, repositories, promotion) for SPL engineering.

• Ensure that the architecture is stable, well-documented
and considers the common and the variable parts of all
products in the SPL.

One example of a software sharing case inside ABB con-
cerns a communication component and tool set, which are
integrated by over a dozen business units. The software is
provided as-is with source code and the agreement covers
maintenance and support up to a certain maximum for a
fixed yearly fee. Another example of software sharing is a
structured sharing initiative in which business units jointly
develop a component library. The participating business
units share development and maintenance costs. One busi-
ness unit acts as the lead and is in charge of administra-
tion. A potential issue is that the leading unit can exercise
a stronger ownership and control over the software than the
other participating business units.

From our survey of existing cases within ABB, we identi-
fied several success and failure factors. An important success
factor is the implementation of standards. In several reuse
cases, the reused software implements an industry standard
or uses standards as guidance. The standard serves as a
domain definition as used in SPL engineering.

Another success factor is ‘as-is’ delivery without shared
development. For example, one unit ships documented source
code to another without extensive support. This requires a
close fit or a tight domain, but the provider does not have
to make the software artifacts reusable and the impact of
reorganizations on the consumer is minimized.

A third success factor is buying software components from
external suppliers. Some business units outsourced develop-
ment of software components that are not part of their core
business and could not be bought of the shelf.

One re-occurring failure factor is the effect of internal re-
organizations. Large corporations are always in flux through
mergers and acquisitions, hiving off businesses, and frequent
structural changes. It is challenging to sustain the required
management support, processes, and knowledge throughout

such changes. Ironically, reorganization can also create reuse
across business units as development teams are split-up.

Another failure factor is lost sponsorship. This factor is
strongly related to the first and can be a result of reorgani-
zation, but lost interest or turn-over among staff and man-
agement can have the same effect. The problem in these
cases is that the software is integrated in several products
and suddenly the common development stops, which leaves
the software poorly maintained or implementations diverg-
ing and parts of the organization without sufficient knowl-
edge of the source code.

The third and final failure factor is having an implicit
product line. This happens for example when a reuse ini-
tiative or integration of products is started to generate a
quick-win, but left unfinished without the organization in
place. Because the organization is not anchored in the cul-
ture, the development unit is not made responsible for or
empowered to build reusable components. As a result the
consuming business unit has to spend considerable time and
resources on integrating new releases of the software with
its own product variant.

The identified success factors reinforce the importance of
good business practice (e.g., make-buy decisions). All fail-
ure factors can be traced to failure to adhere to SPL best
practices, providing informal evidence that SPL practices
apply to more generic reuse situations as well.

3. SOFTWARE SHARING GUIDELINES
Based on the existing reuse cases and related work (e.g.,

[2]), we have identified five important topics for reuse agree-
ments. An overview of these topics and examples of the
sharing options that we have formulated is shown in Table
1. Before we discuss the topics and options, we define two
terms. A (software) producer is the development unit shar-
ing the software with a consumer. The producer is respon-
sible for the development and/or maintenance of reusable
software components. A (software) consumer is a unit that
integrates a software component into their own software,
i.e. reusing components created by a producer.

The first topic is license grant, which stipulates the rights
the software producer grants to the consumer. Different
levels of access can be granted to various artifacts such as
binaries, source code, test cases, and documentation. Fur-
thermore, conditions can be agreed upon for access to up-
dates and for software asset escrow. One of the options we
defined here grants the software consumer the right to bi-
naries of the reused components and gives read-only access
to the source code. The producer remains in control by re-
serving the right to change the source code and compile the
software. Yet, the consumer has the possibility to debug its
system by tracing errors through the code.

Payment is the second topic and concerns the remuner-
ation the consumer pays to the producer in return for the
granted reuse. While businesses take payments for goods or
services delivered, it may be surprising to exchange money
for software reuse within one corporation. However, busi-
ness units may have their own budget. In this case, building
reusable software does not deliver credit or value unless it
is paid for by the consuming units. Payments between busi-
ness units are regulated by internal and external guidelines,
for example international tax codes. One possible model is
to collect royalties on each sale of the consumer’s product
containing the producer’s software and to have a fixed price

Topic Example options

license grant
binary delivery with read-only source code
source code delivery

payment
royalty payment / fixed maintenance fee
share all development costs

support and maintenance
limited maintenance support
no maintenance and support

ownership, administration, and confidentiality
company internal open source
shared ownership

liability
full liability with the software integrator
only indemnification for intellectual property violations

Table 1: Sharing agreement topics and example sharing options from our guideline

for basic maintenance of the software and to receive updates.
For the third topic the parties have to agree what level

of support and maintenance is provided by the producer
and what responsibilities the consumer has. This will, for
example, enable the producer to plan resources to provide
support. Furthermore, the producer’s development organi-
zation is typically not used to deal with developer support
requests from outside its own business unit. Therefore, com-
munication channels and processes have to be agreed upon.

Consumer responsibilities may include the obligation to
report any found bugs or a compulsory training given to
developers that work on the reused software to reduce the
demand for support by the producer’s development team.
The producer in turn commits to a certain rate of updates
to the software and awards a certain priority to the con-
sumer’s change requests. An example option for this topic
is to provide only limited support and maintenance meaning
that the consumer receives major updates and can get sup-
port in case of bugs, but that no specific functionality will
be implemented for the consumer.

The fourth topic is an aggregation, because the possible
variation is limited. Legal ownership is always with the busi-
ness unit’s corporation, but there is the need to regulate the
software development roadmap by clearly articulating who
can influence strategic decisions. Processes for administra-
tion of agreements are stipulated, but how the agreement is
enforced may be varied upon to some extent. Confidentiality
levels are standardized within ABB, but have to be chosen
for the various assets. In the example option of shared own-
ership, business units agree to share the responsibility for
developing the software assets and the decision power over
the roadmap for development. The share may be equal, but
could very well be weighted by agreeing on a certain level of
investment and associated voting power in decisions.

Finally, there is the topic of liability, which is defined as
the extent to which the licensor has legally binding obliga-
tions, especially in the context of claims for intellectual prop-
erty violations, damages, and injury. In a contract or agree-
ment covering a product or service, the licensor typically
attempts to limit its liability. It is common for commercial
software license agreements to reject any liability. However,
in case of software reuse within a corporation, the licensee
(consumer) cannot drag the licensor (producer) to court.
The question will have to be solved within the company and
the structure, inter-dependencies, and culture of the busi-
ness play an important role. Therefore, liability must be
addressed in a software reuse agreement. One example op-
tion is to put all liability for claims about malfunctioning

end-customer products with the reusing customer that sold
the product containing the producer’s software.

4. CASE STUDY
We have tested our software sharing guidelines by devel-

oping a new agreement and organization model for a grow-
ing software sharing initiative in ABB. Management of the
initiative reviewed the proposal. The Software Sharing Ini-
tiative (SSI) is already successful on a small scale in develop-
ing components that conform to several industry standards.
The SSI is currently gaining traction and more business units
are joining. The growing organization thus needs a revised
and clearer structure with an agreement to enforce it. Fur-
thermore, several existing problems have to be tackled. For
example, influence over the development is skewed towards
the business unit that started the development, thus limiting
the usefulness of the component to other units.

The new agreement for the SSI should extend the roles and
responsibilities for the development to all participants. It
should allow all business units to participate in the develop-
ment and support a governance model that fits the increas-
ing number of SSI participants. The agreement should also
seek to include a funding model that is fair to existing par-
ticipants and new entrants. Overall the agreement should
take away any distrust between business units that normally
do not collaborate. Finally, we were asked to explore the
possibility of a company-internal open source model.

Based upon these requirements we drafted an agreement
in which all participants in the SSI get full access to the
software including its documentation, source code, and test
cases. In return they commit developers to the SSI for a
fixed duration and agree to share any addition, modification,
or improvement to the software with the other participants.
The payment is thus non-monetary. Participants also have
the freedom to increase their development effort to speed-up
development of features of particular interest to them.

A core development team reviews the quality of contri-
butions by participants and ensures basic functionality is
developed and maintained. The core development team also
provides basic support for free and more extensive techni-
cal support for a fee. The proposed owner of the software
assets is a corporate technology fund; while an SSI tech-
nology board decides on the development plans and takes
care of administrative issues. All assets in the SSI have to
be treated as confidential material and must not be shared
with third parties outside ABB. Finally, liability is with the
participant that sells the software components as part of its
product.

5. LESSONS LEARNED
During the case study we learned that the guidelines had

to be refined to match ABB’s organization and that we
should expand the proposal with processes and an organiza-
tional structure to achieve the desired properties and over-
come current limitations. In the final SSI agreement pro-
posal, we added flow charts to illustrate the processes, charts
for the organization structure, and a RACI-matrix to doc-
ument who is responsible, accountable, consulted, and/or
simply informed for the different tasks in the reuse case. We
supported all diagrams by explanatory text and rationale.
The final proposal thus contains much more than an agree-
ment, but this supports our view that an agreement has to
be tailored for the culture and structure of an organization.

Some factors that we found to be important for internal
sharing agreements, but do not show up or are interpreted
differently in the SPL community. First of all, one should re-
view the readiness of involved partners. Is their software de-
velopment organization mature? Does their maturity match
that of the partners? Are all willing to enter a software shar-
ing initiative? Do the management structures connect?

The second factor is the role of software in the business
units that share software. While many ABB products are
increasingly software intensive, the role of software varies
from being a supporting feature to being the core asset. De-
pending on the role that software plays in the organization,
it is treated differently and with a different priority. It is
important that the differences between sharing partners are
made explicit to identify risks.

Third are differing requirements and especially quality re-
quirements. For example, ABB develops products conform-
ing to different safety integrity levels as defined in the in-
dustry standard IEC EN 61508. Thus, requirements on safe,
fast, reliable, etc. must be clearly defined and agreed upon.

Finally, it is important to show willingness to align the
development and release schedules and actually do so. This
ensures that consumers use the latest version of the shared
software, which reduces the number of versions that have to
be maintained and supported concurrently.

6. RELATED WORK
Software license agreements are a well documented topic.

Classen [3] and Chávez [2] both give an overview of the fun-
damental concepts, upon which we built our agreements. In
the agreements we avoid legalese to make them easier to use.

D’Andrea and Gangadharan propose key topics for licens-
ing web services and identify how web service licensing dif-
fers from software licensing [1]. Later they formalize the
description of web service license options to describe them
in machine interpretable form [7]. Our work does not fo-
cus on web services licensed to 3rd parties, but on systems
software reused within a corporation.

Various work aims to help software license selection. Kamin-
ski and Perry provide license patterns [10]. Their work dif-
fers from ours in that it aims to support the implementation
of a license model in code. Ferrante gives an overview of
licence models and trade-offs, but focusses on helping to be
compliant [6]. Lindman et al. created a model to support
decisions for an open source license taking into account fac-
tors such as business model and company size [11]. While
our work does not account for all factors that they consider,
we do not restrict our agreement options to open source.

7. CONCLUSIONS
Our experiences suggest that it is infeasible to define an

agreement for internal software sharing that is as universal
as open source licenses such as GNU’s GPL. The type of
agreement and the formality of the agreement that is re-
quired strongly depend on the level of trust between the
business units and how much they already share. For exam-
ple, some business units may share a division manager that
can facilitate the process. In a more complicated example,
business units may never have done business together be-
fore, come from different parts of the world, and hold strong
prejudices against each other. The guidelines that we have
created may empower software sharing that in turn should
increase the productivity of our software development teams.

8. REFERENCES
[1] V. D. Andrea and G. R. Gangadharan. Licensing Web

Services : The Rising. In Telecommunications, 2006.
AICT-ICIW ’06. International Conference on Internet
and Web Applications and Services/Advanced
International Conference on, page 142, 2006.

[2] A. Chávez, C. Tornabene, and G. Wiederhold.
Software Component Licensing: A Primer. IEEE
Software, (October 1998):47–53, 1998.

[3] H. Classen. Fundamentals of software licensing. Idea:
The Journal of Law and Technology, 37(1), 1996.

[4] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison Wesley, Boston, MA,
USA, 2002.

[5] J. Espinosa, S. A. Slaughter, R. Kraut, and J. D.
Herbsleb. Team Knowledge and Coordination in
Geographically Distributed Software Development.
Journal of Management Information Systems,
24(1):135–169, 2007.

[6] D. Ferrante. Software Licensing Models: What’s Out
There? IT Professional, 8(December):24–29, 2006.

[7] G. R. Gangadharan and V. D. Andrea. Service
Orientation : Licensing Perspectives. Journal of
International Commercial Law and Technology,
4(1):1–11, 2009.

[8] R. Grinter. From local to global coordination: lessons
from software reuse. In Proceedings of the 2001
International ACM SIGGROUP Conference on
Supporting Group Work, pages 144–153, 2001.

[9] M. Griss. Software reuse: From library to factory.
IBM systems journal, pages 548–566, 1993.

[10] H. Kaminski and M. Perry. The Pattern Language of
Software Licensing. SSRN Electronic Journal, pages
1–41, 2005.

[11] J. Lindman, M. Rossi, and A. Puustell. Matching
Open Source Software Licenses with Corresponding
Business Models. IEEE Software, 28(4):31–35, July
2011.

[12] M. Morisio, M. Ezran, and C. Tully. Success and
Failure Factors in Software Reuse. IEEE Transactions
on Software Engineering, 28(4):340–357, 2002.

[13] L. M. Northrop, P. Clements, and E. al. SEI
Framework for Software Product Line Practice.
http://www.sei.cmu.edu/productlines/frame report/

[14] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering. Foundations, Principles
and Techniques. Springer, Berlin / Heidelberg, 2005.

