Customizing Domain Analysis For Assessing The Reuse
Potential Of Industrial Software Systems

Experience Report

Dominik Domis, Stephan Sehestedt, Thomas Gamer, Markus Aleksy, Heiko Koziolek

ABB Corporate Research Germany
Wallstadter Str.59
68526 Ladenburg, Germany

{firsthname}.{lastname}@de.abb.com

ABSTRACT

In companies with a large portfolio of software or software-
intensive products, functional overlaps are often perceived
between independent products. In such situations it is ad-
visable to systematically analyze the potential of systematic
reuse and Software Product Lines. To this end, several do-
main analysis approaches, e.g., SEI Technical Probe, have
been proposed to decide whether a set of products with a
perceived functional overlap should be integrated into a sin-
gle product line. Based on the principles of those approaches
we devised our own approach. One important property is
the inherent flexibility of the method to be able to apply
it to four different application cases in industrial software
products at ABB. In this paper we present our refined ap-
proach for domain analysis. The results and lessons learned
are meant to support industrial researchers and practition-
ers alike. Moreover, the lessons learned highlight real-world
findings concerning software reuse.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering; D.2.11 [Software Engineering]: Soft-
ware Architectures—Domain-specific architectures; 1D.2.9
[Software Engineering]: Management— Life cycle

Keywords

Software Product Lines, Domain Analysis, Software Reuse

1. INTRODUCTION

Large companies often have perceived opportunities to in-
troduce software product lines or systematic reuse where
several products have functional overlap. ABB is a large
corporate company with divisions and business units all over
the world. The extensive portfolio of power and automation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPLC ’14, September 15 - 19 2014, Florence, Italy

Copyright 2014 ACM 978-1-4503-2740-4/14/09 ...$15.00
http://dx.doi.org/10.1145/2648511.2648547.

products has historically grown inside business units, e.g.,
to serve different markets and domains or due to mergers
and acquisitions. This results in a large landscape of soft-
ware intensive products such as automation controllers, or
software tools for the engineering, configuration, monitor-
ing, and control of devices. Some of these products have
a perceived functional overlap, even within the same busi-
ness unit or industrial domain. Naturally, this has attracted
the attention of managers who want to assess the potential
of systematic reuse between the different products in order
to harvest the advantages, such as lower development and
maintenance cost, or possibly higher product quality.

It is important to note that a perceived functional over-
lap is merely an indicator for reuse potential. Thus, the
real opportunities need to be identified systematically before
decisions are made. The potential benefits and drawbacks
need to be assessed; arguments and rationale need to be
provided before building reusable software components for
many products or merging different products into a software
product line.

For this purpose, we adopted the principles of domain
analysis approaches such as the SEI technical probe [1] to
devise our own approach and applied this in two industrial
application cases on several ABB power and automation
products. These two cases were previously described in [2].
Based on the findings, we adapted and extended the ap-
proach and used it in the analysis of two further domains
of industrial power and automation. Particularly for prac-
titioners, who want to identify and assess reuse potentials
in a set of products, we present in this paper the improved
and more time-efficient domain analysis approach as well as
our experiences from both new application cases. Beyond
this, we provide new lessons learned with respect to cus-
tomization of the method, required efforts, and conducting
the interviews. Furthermore, we present a summary of gen-
eral and domain specific reuse success factors collected in the
interviews of more than 20 products. At the same time, we
give pointers for scientists where more research is required.

In [3], we collected empirical evidence with respect to five
research questions and corresponding hypotheses from all
four application cases. The hypotheses address the results
of domain analyses, the correlation of a positive return on
investment (ROI) and decisions for SPLs among business
units, the correlation of required granularity with size and
complexity of products, the projected return on investment,

and the reusability of domain analysis steps. However, in [3],
we put less emphasize on the more practical contributions
presented in this work.

The remainder of this paper is structured as follows: Re-
lated work is summarized in Section 2. Section 3 presents
the adaptations to our domain analysis approach. Section 4
and 5 present the new application cases and the achieved re-
sults. Lessons learned and reuse success factors are provide
in Section 6. Lastly, Section 7 concludes the paper.

2. RELATED WORK

A general overview of software product line engineering
can be found in several publications [1, 4]. Linden et al. [5]
provide an industrial perspective and the Software Engineer-
ing Institute (SEI) has cataloged numerous reports of indus-
trial case studies in the Product Line Hall of Fame [6]. Khu-
rum and Gorschek offer a comprehensive overview of domain
analyses for software product lines [7]. The SEI Product
Line Technical Probe [8] examines the readiness of a com-
pany to succeed with a software product line approach. The
probe consists of a series of structured interviews followed
by data analysis. The Family Evaluation Framework [5] fol-
lows the CMMI philosophy and assesses an organization’s
maturity for software product line engineering along differ-
ent dimensions, e.g., business, architecture, or process. In
each dimension, an organization is ranked within five levels,
so that improvement potential can be identified. The Reuse
Capability Model (RCM) [9] includes a model for assessing
an organization’s strength and improvement opportunities
for reuse. Critical factors, such as management, application
development, and process factors, are evaluated to imple-
ment reuse initiatives. Our approach follows similar steps
as these approaches, but focuses more on technical aspects
and high-level architecture.

PulSE Eco from Schmid [10] intends to analyze functional
overlaps between different products and consists of three
steps: 1) Mapping relevant products and their correspond-
ing features, which are grouped into feature domains and
subdomains, in a product or feature map. 2) Assessing the
benefits and risks of including a feature domain in a soft-
ware product line. 3) Performing a quantitative evaluation
of the features with respect to required effort and business
goals. We applied step 1 and partially step 2 of PulSE, as
described by John et al. [11] as a light-weight variant.

There are automated and semi-automated approaches for
identifying reusable components and features. For exam-
ple, MAP [12] semi-automatically extracts architecture in-
formation from code, identifies patterns and styles, and eval-
uates the potential for software product lines. Frenzel et
al. [13] use reflexion and clone detection for identifying ad-
hoc copied code between different products. However, due to
the heterogeneous landscape of ABB’s legacy systems being
based on diverse technologies and programming languages,
we decided to use a manual, interview-based approach for
architecture reconstruction.

3. DOMAIN ANALYSIS

The aim of the domain analysis is to compare a set of prod-
ucts with regard to their relevant criteria in order to identify,
assess, and recommend viable scenarios for systematic reuse,
ranging from single components to a full Software Product
Line. The analysis consists in general of eight steps grouped

Table 1: Domain Analysis Approach

Phase Nr. Step
List products and information sources
Establish criteria for reuse potential
Collect and analyze documentation
Prepare intitial interview documents
Conduct interviews
Evaluate results and identify opportunities
Create business case
Handover results and discuss actions

Preparation

Evaluation

1
2
3
4
Interview | 5
6
7
8

Table 2: Generic List of Reuse Potential Criteria

Category Example reuse potential criteria

Business purpose, scope, market, business model, business case
Technical features, architecture, technology, standards
Processes [process maturity, release and change management

Organization [units, roles, funding
Reuse culture |knowledge, motivation, lessons learned
Outlook reuse potentials and future trends

into three phases, as listed in Table 1. The order, concrete
implementation, and execution of the steps is not fixed. In
[2], we found out that preparing larger parts of the interview
documents in advance based on the available documentation
lets us collect better and more detailed information in the
interviews. The more detailed preparation facilitated the
understanding of the products and allowed for starting their
comparison directly in the interviews. This improved the
results of the evaluation and saved efforts in the interview
phase. Beyond this, we put more emphasis on adapting and
extending the approach according to given requirements and
the prioritization of reuse potential criteria for each domain.
The resulting process looks in brief as follows. More details
are provided in Sections 4 and 5, describing the two new
application cases.

The PREPARATION PHASE starts with identifying and list-
ing the products to be analyzed as well as corresponding
information sources (Step 1). Usually an initial list is pro-
vided by the management team of a business unit, who need
to agree on the final scope of the analysis and who need to
nominate responsible persons for supporting the analysis.
Another part of the scope discussion is to agree on and pri-
oritize the relevant reuse potential criteria to be considered
in the analysis (Step 2). Based on literature [5, 1] and our
experiences from the previous case studies [2], we created the
generic list of reuse potential criteria, as shown in Table 2.
These are used as input for the discussion. However, new
reuse potential criteria can be added in Step 2, if required,
for a particular domain analysis. In Step 3, documentation
such as user manuals, requirements, or architecture docu-
ments are collected for analysis from the product stakehold-
ers or intranet.

Based on the reuse potential criteria and their priorities
defined in Step 2, we derive a specific questionnaire from
a generic questionnaire in Step 4. Questions may be priori-
tized or removed altogether and preliminary answers may be
entered. If we receive enough documentation about the ar-
chitecture, we prepare a preliminary architecture sketch (see
Fig. 1) in the Fundamental Modeling Concept (FMC) nota-
tion [14]. We use FMC, because it has only few modeling
elements compared to UML and is quickly understood also

X

Client PC
Product A

Ul Layer

Qv

Application Layer

¢ = Legend
v Deployment
I Rt
Data Layer
Subsystem
s]

[] () Storage

Server

Figure 1: Obfuscated excerpt of an architecture sketch from
an interview in FMC notation [14]

Q Data Read/
Write

by non-computer scientists [2]. Even when UML or other
models are already available, redrawing the high-level archi-
tectures in FMC helps to describe all products on a similar
level of abstraction.

Features are documented in a feature map or table [10],
which shows for each product (as columns) the supported
feature domains, feature subdomains, and features (as rows)
(see Table 3). Additionally to the product documentation,
industry standards, similar products, and current technol-
ogy trends also serve as input for the feature map.

It is advisable to time-box Step 3 and 4 to avoid spending
too much time. A trade-off must be found between the prior-
itized reuse potential criteria, the available documentation,
and the availability of the domain experts in the interviews.

In Step 5, the INTERVIEWS are usually conducted as face-
to-face meetings at the development site of the respective
product by one or two interviewers. Together with the inter-
viewees, we go through questionnaire, architecture, feature
map, and the other artifacts. The interviewee(s) might be
different for each reuse potential criterion, in order to save
efforts. For example, for drawing the architecture only the
architect is required. If some things were prepared before-
hand, such as interview answers, the feature map, or the
architecture sketch, we verify these together with the inter-
viewee(s) in the interview and add or correct information.
In between the interviews of the different products, artifacts
such as the feature map, which are used again in the next
interview, are already cleaned up and pre-analyzed.

In the EVALUATION PHASE, questionnaire, architecture,
and feature map are cleaned up. Then, the products are
compared with each other to identify and assess reuse op-
portunities (Step 6). These might be reusable components,
or starting or extending a software product line. For each
identified potential reuse scenario, we describe assumptions,
scope, as well as pros and cons with regard to the reuse cri-
teria. If the business units define this as important reuse
criteria, we calculate the return on investment (ROI) or net

Table 3: Obfuscated excerpt of a feature map

Feature
Domain
Feature
Sub-
domain
Feature
Product 1
Product 2
Product 3
Product 4
Product 5
Product 6

Subdomain 1.

Subdomain 1.

Subdomain 2.

Subdomain 2.

Oleoleleooee®OCCeCeeoee®
O[O Cle|O|O|e|e e O|O(C|O|0| o o|0|e|®
oe/®O|0 00000 OCOCOOCEOGOGOGOGEO
O[O CO|O|O[OOIAHO|O[O]O|0|O (@O @@
LJel= L JIe][e][1[=] = [e](e][el[e]ie][J[el[el[J[=]
O|@|«|O]O|@(O]le|e| O|O(C|O|0|O|e|O]|e|w

Legend
® [supported

not supported
partially supported

o O IZ[L N R — P om0 x>

present value of promising reuse scenarios in Step 7. For this
purpose, we are using, e.g., the formulas and assumptions
defined by Boeckle et al. [15]. In Step 8, the results of the
domain analysis are documented in a report and presented
and discussed in a final presentation or workshop with man-
agers and interviewees. The goal of the final meeting is to
agree with the management on concrete follow up activities,
e.g., to implement the identified reuse scenarios that have
a high potential with regard to the defined reuse potential
criteria.

4. APPLICATION CASE 1: DEVICE ENGI-
NEERING TOOLS

4.1 Domain and Challenges

ABB sells products and solutions in various industrial sec-
tors, e.g., process and factory automation, power generation
including renewables, substations, oil & gas. These prod-
ucts and solutions need to be configured, commissioned, and
maintained by ABB, customers, or integrators by using ded-
icated PC tools. In this application case, we analyzed four
different ABB device engineering tools of a single industrial
sector.

We started the domain analysis with a set of three existing
tools, which are developed by three different teams at three
different sites and which are owned by two different business
units. All three tools have a history of several years and ver-
sions. Tool A is based on an outdated technology and needs
to be reimplemented. Tool B has been developed for a par-
ticular market segment. However, due to the products’ suc-
cess new market segments will be addressed requiring new
tool variants. Tool C is already a software product line: A
PC tool framework that is extended by dedicated plug-ins
for configuring dozens of different device types. Based on
the intermediate results after analyzing the three tools, the

management of the industrial sector decided to extend the
domain analysis with a fourth new tool (D) that is planned
to be implemented in the coming years based on its market
and technical requirement specification. This is to ensure
that this new product can directly benefit from and support
the systematic software reuse opportunities that are identi-
fied during the domain analysis.

4.2 Domain Analysis

1) List products and information sources.

We received a list of relevant ABB software products in the
target industrial sector from the involved managers. This
initial list was discussed and then reduced to only focus on
the already mentioned four device engineering tools based
on their assumed functional overlap and assumed roadmaps.
The managers also named contact persons for each of the
tools.

2) Establish criteria for reuse potential.

We started with the generic reuse criteria from Table 2.
Due to their long history, the management asked us to put
specific emphasis on lessons learned from the existing prod-
ucts and on the future roadmaps. Finally, as management
appeared to be open minded towards reuse for future de-
velopments, reuse culture also received a high priority. As
a result, processes and market fit received lower priority to
still be able to execute the entire domain analysis process in
time.

3) Collect and analyze documentation.

As a refinement of the originally described process, we
had a kick-off video meeting of 30 minutes with the named
contacts, the architect and the product manager, separately
for each product. There, we motivated the domain analysis,
explained the management motivation, and already clarified,
which inputs and documents would be required from them
before and during the interviews. Furthermore, we identified
who of our contacts would be the main interviewee for each
of the different reuse criteria.

We received documentation on the different engineering
tool products as well as the devices to be engineered, e.g.,
product manuals, specification sheets, and getting started
guides. For the tool framework, we also received detailed
internal technical documentation, such as an architecture
review of a previous tool version.

4) Prepare initial interview documents.

Based on the received documentation, particularly the ex-
tensive documentation of the device engineering tool frame-
work (C), we were able to create an initial feature map
with roughly 200 features categorized into 10 feature do-
mains. Each feature domain contained several feature sub-
domains, features, and sometimes subfeatures. The initial
feature map already covered approximately 80-90% of the
final features. Mainly the naming and grouping of features
into feature domains and subdomains had to be revised dur-
ing and after the interviews. For extracting features from
free text documents such as user manuals, we used the pat-
terns defined by John [16]. Even though the patterns are
straight forward such as searching features in headings of
sections, they provide good guidelines particularly for new-
bies to domain analysis.

For the framework, we created a first architecture sketch,
based on the received architecture documentation and the
old architecture review. Moreover, the architecture review
document in particular also contained known challenges and
limitations as well as unique selling points and opportunities,
which helped us to prepare questions for the interviews. For
the other two existing products, the architecture sketches
had to be drawn in the interviews.

5) Conduct interviews.

We scheduled one and a half days for the interviews with
lead architect, product manager, and line manager for each
product. We started each interview with a short tool and
device demonstration to get a common understanding and
a better idea about the functionality of the most impor-
tant features. During the interviews we spent most time
discussing and refining the feature list, followed by recon-
structing the architecture, lessons learned, future roadmap,
as well as reuse culture.

The detailed initial feature map of the previous step accel-
erated the interviews and facilitated deeper discussions with
the interviewees. As a side effect, the feature map enabled
an early and quick clarification of wording and terms during
the interviews. When analyzing multiple products it is es-
sential to develop and maintain such a shared glossary. To
avoid results of one product influence the interview results
of another product, the interviewees were only shown their
respective tool in the feature map.

In the interview for the new product, the feature map was
also valuable to give the product manager an idea about
feature domains that are also relevant for his product, but
have not yet been in the focus of the requirements specifi-
cations. For the tool framework (C), we discussed the pre-
prepared architecture sketch and open questions from the
architecture review with the architect. We corrected several
aspects in the architectural model that have been changed
during the latest releases of the platform, partially triggered
by the architecture review. Due to these changes and the
large experience of the architect from the long history of the
framework, we collected a large number of positive and neg-
ative lessons learned from building and maintaining such a
platform.

For the two existing tools A and B, we created the archi-
tecture sketches in FMC notation from scratch during the
interviews and already included their ideas for extending
their products in the future. We used the CrossModel Ar-
chitecture Discovery Pattern Language from Fairbanks [17]
to prepare the reconstruction sessions. In particular, the
Refinement Patterns and Expert Interviewing Patterns were
helpful. While most of the CrossModels patterns are quite
generic and mainly based on common sense—e.g., Many Eyes,
Gain Consensus, Technical Rationale or Single Level of
Abstraction—it still was very useful to have such guidelines
and be able to prepare for the architecture reconstruction
session. Moreover, there are controversy patterns available,
e.g., Blackbox-Whitebox Refinement or Passive and Active
Facilitation for Expert Interviews, which allows for catering
to the respective personality type of the architect. For the
new tool D, no architecture sketch could be drawn as the
development was still in a very early stage.

To gather lessons learned, future roadmap, as well as reuse
culture, we prepared some open questions in the question-
naire such as “what are positive lessons learned?” and “what

are negative lessons learned?”. In all interviews, this initi-
ated productive brainstorming and discussions of up to two
hours, e.g., for the lessons learned, resulting in long lists of
valuable findings.

In one interview, we were not able to complete the ques-
tionnaire in the one and a half days on site. Therefore, we
performed two two-hour video conferences to complete the
questionnaire afterwards. These video sessions were less pro-
ductive and produced not as good results as the face-to-face
interviews.

6) Evaluate results and identify opportunities.

In the feature map, the feature support of all products was
compared, some duplicated features identified and merged,
as well as the grouping of features in feature (sub-)domains
revised. Afterwards, we checked and documented the over-
lap of the products for each feature domain. The result
was a large overlap in the basic engineering tool features of
this particular industrial sector such as several dialog types
as well as device communication related features. However,
each product supported unique feature domains. Each of
these unique feature domains reflects a particular aspect (or
feature) of the respective device to be configured by the
tool. There was only a medium functional overlap between
the different tools, i.e., less than 50 % of the features.

The architecture sketches did not require extensive re-
work. Architecture and technology of all considered prod-
ucts are quite different in the current versions and thus do
not suggest a high reuse potential. However, some compo-
nents might fit for reuse or re-factoring in a new common
platform.

We consolidated and documented the lessons learned and
reuse culture in a report and derived recommendations for
systematic reuse. We also documented successful systematic
reuse cases in the history of the products as well as known
organizational and technical learnings and challenges. Fur-
thermore, we compared the future roadmaps of the products
and identified strong relations as well as many ideas which
show that the overlap between the device engineering tools
will probably increase in the future, due to a stronger collab-
oration and alignment of the tools as well as of the devices
to be engineered by the tools.

7) Create business case.

Based on the results of the domain analysis, in particu-
lar the future roadmaps of the products, the management
of the business units created the business case for a com-
mon tool platform. In this calculation, the potential savings
due to more reuse as described in literature [15] is only one
factor to be considered. Additional factors are addressing
new markets as well as gaining more market share in exist-
ing markets. These existing markets could benefit from a
better integration of the tools and products through better
usability and easier integration of new tool features.

8) Handover results and discuss actions.

We held a one-hour telephone conference to present and
discuss our findings. Furthermore, a written report, the ar-
chitectural maps of the tools, as well as the feature maps
were provided to the stakeholders.

4.3 Results

Based on the results of our domain analysis, the manage-
ment of the business unit created the business case calcula-
tion and decided to go for a common platform for the three
individual tools A, B, and D, due to their future roadmaps
and intended increased functional overlap and integration.
The fourth analyzed product, the existing device engineer-
ing tool framework, will be continued as a separate platform
as it addresses a different market segment and would add
significant complexity to the platform development.

It has been decided to develop the new platform archi-
tecture as a framework with defined extension points (hot
spots). Tools derived from the platform would be realized
via these extension points. In order to support the devel-
opment of the new common device engineering tool plat-
form, we extracted high level requirements from the fea-
ture map and the future roadmaps of the products. This
information is to be used as input for the market and
technical requirements specification of the platform. The
high level requirements cover both commonalities as well as
tool/market /customer specifics. Currently, we support the
business units in developing for the platform: 1) the feature
model [18], 2) the common data model with variable and
common parts, as well as 3) the platform architecture.

S. APPLICATION CASE 2: ENTERPRISE
INFORMATION SYSTEMS

5.1 Domain and Challenges

In this application case, we analyzed a set of ABB enter-
prise information systems, which are used to store large data
sets and to provide them to different kinds of users via cor-
responding views, filters, and search functions. The analysis
comprised a family of five products and additionally, two
individual products that have grown independently of each
other. Today, the two individual products (A and B) and
one product from the family (C) are used to support similar
business processes, i.e., some users require all three systems
to manage related sets of data for particular tasks. The four
remaining products of the family have different users each
and handle independent data.

The product managers wanted to know whether and how
the three related products could be merged, integrated, or
built on the same platform. Assumed potential advantages
were, for instance, reduced development and maintenance
efforts and easier usage.

To better understand the relationships of the considered
enterprise information systems, we extended the domain
analysis: We used a comparison of the database schemata
to analyze the relation and overlap of the data managed by
the products. Additionally, we conducted an evaluation of
the underlying business processes to assess the tool overlap
on this level as well as the impact of merging the tools.

5.2 Business Processes

An overview of different business process definitions can
be found in [19]. Davenport and Short [20] define business
processes as a “... set of logically related tasks performed to
achieve a defined business outcome.”. According to the au-
thors, information technology (IT) should support new or re-
designed business processes while business processes should
consider the capabilities provided by IT.

Table 4: Used business process template

Business Pro-
ID Roles| Input) Output
Process cessing
system_U: . system_V:
1 BP_1 [role_X action_7
- - data_Z — data_B
system_V: . system_W:
2 BP_2 le_Y t 8
- role_ data_B action_ data_A

Usually, the business process life-cycle starts with process
discovery and should consider various criteria [21], such as
the process space, the process topology, and the process at-
tributes. Process space describes all the relevant processes
and their integration points. Process topology describes the
process steps or activities and the flow logic. Process at-
tributes (e.g., owner and purpose of the process) and activ-
ity attributes (e.g., roles, resources, data) provide detailed
information required for process analysis.

In our domain analysis, we discovered and analyzed the
business processes of different products on a high-level to
better understand and compare the required functionality of
the products, to identify their relations, commonalities, and
differences, and to assess whether the products can be inte-
grated, merged, or share common features. For document-
ing the business processes, we did not use a comprehensive
model such as the Business Process Model and Notation [22],
because these are too detailed for our interviews. Therefore,
it was more practical to use the business process descrip-
tion shown in Table 4. The table lists all business processes
that are supported by a particular resource, i.e., IT prod-
uct. For each business process, the roles of all people that
perform this process are summarized as well as the required
data inputs (incl. source systems), the processing step(s)
performed by the product, and the data outputs generated
by the product (incl. receiving systems). The details of the
business process activities and flow logic are not relevant for
the domain analysis, in this step.

5.3 Domain Analysis

1) List products and information sources.

The product managers provided the list of products to
analyze as well as the contact persons. The development
of the product family and the two individual products was
distributed among three different teams at three different
sites.

2) Establish criteria for reuse potential.

We conducted a 30 - 60 minutes kick-off meeting via phone
or video conference with each product’s responsible person
to explain and plan the analysis and to discuss the reuse
potential criteria based on the generic list in Table 2. The
product responsible persons decided that all criteria should
be considered. High priority was given to the criteria fea-
tures and architecture. Furthermore, two new criteria were
added with a high priority: Data models and business pro-
cesses.

3) Collect and analyze documentation.
In the kick-off meeting, we used a table to collect for each
reuse potential criteria the available documentation as well

as the roles and persons to be interviewed. After the kick-off
meeting, the contact persons provided the respective docu-
mentation. It included product overviews, user manuals,
database schemata, UML use case descriptions, and high-
level management summaries of the architectural descrip-
tions.

4) Prepare initial interview documents.

From the collected documentation, we were able to pre-
pare approximately 70 % of the final feature map and signifi-
cant parts of the architecture sketches before the interviews.
Similar to the feature map, we prepared a table that mapped
the data model entities (rows) to products (columns). We
mainly used the product overviews and user manuals of the
products as input for the data entity map. The database
schemata were too detailed and complex for a high level
mapping.

Based on use case documentation, we were able to create
a draft version of a business process description of one of the
products. The corresponding document already included a
subset of the involved user roles and information how the
product is used. This information can serve as a starting
point for a business process comparison. However, it pro-
vides only a subset of the required information. One reason
for this is the fact that a use case describes only the cor-
responding interactions with the involved system(s). Thus,
activities that are not directly connected to the functionality
of the system(s) are not covered. This fact was of special in-
terest because we considered multiple systems in the domain
analysis. Therefore, further investigations were needed for
which we created a template document (cf. Table 4).

5) Conduct interviews.

The interviews were separated into two parts. As for the
other application case, we performed the interviews on site
together with the interviewees. The focus of the interviews
was, as defined by the criteria priorities, the questionnaire,
the feature map, the data entity map, and the architecture
sketch. We split off the interviews for the business processes,
as they were performed by one of our experts for business
process analysis and as we required several additional prod-
uct experts and users as interviewees.

The ON-SITE INTERVIEWS required one and a half days for
each product. We interviewed an architect and a product
manager or owner of each product or family. In the first step,
the interviewees gave us a 15 minutes live demonstration of
the products, which increased our understanding and started
useful discussions, e.g., about the purpose and usability of
some features. Then, we went through the questionnaire
based on the previous criteria prioritization. Subsequently,
we reviewed the preliminary feature map (created before-
hand) and added missing feature support. In each interview,
we showed the feature support of all products to the inter-
viewees. In this way, the interviewees were able to compare
the feature support of their product with the other prod-
ucts. Some interviewees disputed the features supported by
other products or argued that despite missing support in
their own product, a work around would be possible. These
discussions were valuable, as they allowed to cross check
the feature map and to achieve a better understanding of
the differences between the products. It also supported the
mapping of features that have different names in different
products. This review took two to three hours for each tool.

Between the interviews, we cleaned up the feature map. The
final feature map contained more than 250 features grouped
into feature domains and subdomains.

In the same way as for the feature map, we went through
the data entity map and checked and marked the data model
entities that are managed by a product. We also merged
data entities that have different names in different products,
but a similar meaning. This step took half an hour using an
80 % completed table as a starting point.

In the last step of the interview, we reviewed the pre-
prepared FMC architecture sketches and completed them
together with the interviewees. The original architecture
documentations used UML and proprietary notations and
described the architecture on different levels of abstraction
for each product. Representations of the architectures could
be created on a similar abstraction level using FMC. Impor-
tantly, all interviewees understood the notation immediately
and were able to provide corrections and additions. For sup-
porting the review, we asked questions regarding the under-
standing of the architectures as well as about parts where
we suspected missing details. In this way, we were able to
review and complete the architecture sketch of each tool in
one to two hours. After the interviews, we sent the ques-
tionnaire, the feature map, and the architecture sketch to
the interviewees for offline review and approval. Only minor
corrections were required in this step.

The BusINESS PROCESS analysis was performed itera-
tively in three to four video conference interviews with do-
main experts of each product. Each interview took up to
two hours. In advance, a template or draft document to-
gether with corresponding questions was sent to the inter-
view partners, who provided their feedback by e-mail. Af-
terwards, it was consolidated by the business process expert
and discussed in the forthcoming video conferences. This
procedure was repeated three to four times until the busi-
ness process descriptions of all systems reached sufficient
levels of quality and granularity to compare them with each
other. In the end, we collected around 30 business processes
for each product. Because we performed the business pro-
cess interviews iteratively via phone or video conference and
relied completely on their results, we decided to not show
the business process of one product to the domain experts
of another product, in order to avoid mutual interferences.
Hence, the mapping of the business processes had to be per-
formed afterwards in step 6.

6) Evaluate results and identify opportunities.

After the interviews, we compared the products with each
other with a particular focus on their business processes,
features, architectures, and data models. For comparing
the BUSINESS PROCESSES, we mapped them onto a related
reference business process specification and visualized the
comparison as a table. In this way, we identified a large
overlap between the individual product A and product C
from the family, although some processes are instantiated
differently.

We cleaned up the FEATURE MAP again and restructured
the assignment of features to feature domains and subdo-
mains according to, e.g., the product feature support. We
assessed the functional overlap for each feature domain and
subdomain by rating it high, medium, and low and added a
rationale statement. As for the business processes, the indi-
vidual product A and product C from the family showed a

large functional overlap on a generic level, i.e., both prod-
ucts have implemented the features differently, but if the
products would be merged, they could use the same imple-
mentation. The functional overlap inside the product family
is lower and mainly covers basic tool functionality such as
open, edit, and store data sets. The same is true for B with
respect to A and the product family.

From the ARCHITECTURE SKETCHES, we compared logical
structuring and used technologies. The two individual prod-
ucts and the tool family had been implemented in different
technologies, which hinders direct reuse of components be-
tween the products. The logical structures of the products
were also different, but the cores of the individual product A
and the product family were similar and provide potential
for a common platform.

For comparing the DATA MODELS, we reviewed and com-
pared the data entity map from the interviews and, based
on this, the database schemata of the products with each
other. The structure of the models as well as the exact
names and types of the entities were different. We iden-
tified similar elements in different models, i.e., the entities
have different names with a similar meaning and their types
are also similar or can be transformed into each other. The
largest overlap was found between the individual product A
and product C. The models are different in structure and
details, but they are similar enough to merge them into a
single common model in the future. The overlap with prod-
uct B is very low and non-existent with the rest of the tool
family.

In conclusion, the comparison of the business processes,
features, architectures, and data models has shown a large
overlap between the individual product A and product C
of the product family. In some business processes, Product
B exchanges data with product A and product C, but this
covers only a small part of their data models and they only
have some basic features in common. The product family
shares only the basic functionality and no data or business
processes.

Based on these results, we elaborated several scenarios for
integrating the products: 1) data integration of A and C via
corresponding interfaces, 2) merging A and C into a single
product, 3) building A and C based on a common platform,
and 4) building a software product line for implementing
product A, product B, and the family (including C). For
all scenarios, we listed the most important advantages and
disadvantages such as usability, complexity, maintainability,
time to market, and investment cost. We also sketched mi-
gration roadmaps between the scenarios.

7) Create business case.

We performed a return on investment calculation for the
common platform scenarios 3) and 4), because they seemed
to be the most interesting ones based on the intermediate re-
sults. The business units provided the past development and
maintenance costs for the calculations, and we estimated a
50 percent higher effort for building generic, shared parts
instead of specific, separated parts as in literature [15]. Al-
though the feature map indicated a high functional over-
lap, we conservatively assumed the overlap to be 50 percent
after consulting the architects. With these and other as-
sumptions, we expected a positive return on investment for
scenario 3) after seven years at latest. Due to the larger

number of products, the return on investment of scenario 4)
would likely be sooner.

8) Handover results and discuss actions.

The results of the domain analysis were documented and
discussed in an additional meeting with the interviewees,
product managers, and other responsible stakeholders from
the business units.

5.4 Results

The business unit first implements scenario 1) (data inte-
gration) for better usability of products A and C in common
business processes and will align their business processes for
preparing a deeper integration scenario. After the alignment
of the business processes, the proposed integration scenarios
will be reassessed for the long term planning.

6. LESSONS LEARNED

Required efforts.

Table 5 provides an overview of the four domain analyses
we conducted in the past three years. The cases Indus-
trial control systems (A) and Commissioning and monitor-
ing tools (B) were previously presented in [2]. The rows #
products, # developers per product, and Lines of code per
product are an indication of the relative magnitude of the
application cases.

In case A, the efforts for FEwvaluation are very high com-
pared to the other cases. This has mainly two reasons. First,
the Industrial control systems were the most complex prod-
ucts we analyzed. Second, we applied the domain analysis
the first time in this application case. We extensively com-
pared the products with regard to all reuse potential criteria
and created a detailed documentation of the high-level ar-
chitecture of each product. In case B, we had only a very
small budget and, therefore, prioritized the reuse potential
criteria and were very efficient during the interviews, which
resulted in the low efforts for Evaluation. In case C and D,
we applied the improved approach, customized and priori-
tized the reuse potential criteria, and invested more time in
the preparation phase. In case C, one product was added
during the analysis based on the intermediate results, which
increased the efforts of the Fvaluation compared to case B
and D.

There are many factors that influence the time required
for a domain analysis and Table 5 can only give some orien-
tation. However, the table shows that one can estimate per
product up to one week for preparation and up to two days
for the interviews. The evaluation should be planned with
two to three weeks for similar cases as B, C, and D.

Customization.

Our experiences show that the domain analysis can and
should be customized regarding the prioritization of reuse
potential criteria. This is critical in order to produce rele-
vant results within the given budget. In the case device en-
gineering tool (C), we focused on future roadmaps, lessons
learned, and feature map and put less emphasis on markets
and architecture. In the case enterprise information system
(D), the main focus was on feature map, architecture, and
the new criteria business processes and data model. In the
case commissioning and monitoring tool (B), features and

architecture received the highest priority. In the case indus-
trial control system (A), which was the first application case,
all reuse potential criteria from Section 3 have been analyzed
with a particular focus on comparing the architectures.

Preparation based on documentation.

Preparing feature map, answers in the questionnaire, and
architecture sketches based on provided documentation be-
fore the interview is our preferred approach. The reasons
are twofold: First, the interviewers start with a more broad
and deep understanding of the domain and the respective
products, enabling them to ask the right questions. Second,
in our experience the time the stakeholders can be expected
to invest in the interviews is limited. A thorough prepara-
tion ensures that there will be enough time to deal with the
high priority reuse criteria sufficiently rather than having to
cover many basics first.

Importance of interviewers and interviewees.

Although we are using a questionnaire with many com-
ments and answer hints for each question, the quality of the
results very much depends on the experience and skill of the
interviewers in domain analysis and, of course, on the depth
of knowledge of the interviewees regarding the product. An
interview can in principal be conducted by a single inter-
viewer. However, having a second interviewer allows for a
better pace and more follow up questions and challenging
of answers, while still being able to document all important
aspects during the interview. Hence, we recommend having
two interviewers.

A lot of domain knowledge is gained in each interview.
Therefore, it is beneficial to have one interviewer to attend
all interviews. The acquired knowledge helps in conducting
the following interviews and in achieving comparable results
for all considered products. Another important aspect is the
role of the interviewees. Preferably, two persons should be
interviewed to capture both technical and business perspec-
tive. Architects and developers have significant technical
knowledge and are most often interested in reuse. Prod-
uct managers provide information about customers, mar-
kets, business and organizational aspects. However, techni-
cal discussions may suffer from political influences.

Phone and video conferences cannot substitute face-to-
face interviews.

Although we tried to perform all interviews as face-to-face
meetings, we had to use phone and video conferences in ad-
dition. In each of these cases, the interviews were not as
productive as face-to-face meetings and did not provide the
same quality of results. This is particularly true for the fea-
ture map as well as for drawing the architecture sketches.
This is an important observation for globally distributed
companies and we recommend to have face-to-face meetings
at least for certain aspects of the domain analysis.

Independence vs. comparability of results.

It has to be decided whether or not to share the results of
previously conducted interviews with the interviewees. This
is especially true for the feature map, but also for the other
artifacts. The trade-off is to prevent that the results of the
different interviews mutually influence each other versus the

Table 5: Overview of the application cases

. . A: Industrial| B: Commissioning | C: Device | D: Enterprise
Application o
case control and monitoring | engineering [information

systems tools tools systems
ient +
Type of Client-server De.sktc.)p De?sktf)p Web client
systems applications applications server
product 6 My 3 2
products 2 families of 10 [1 framework [1 family of 5
el <10 to >40 up to 10 up to 5 up to 3
per product
Lines of code | ¢ 5\ 300K - 2M 300 - 500K | 10 - 100K
per product
Required Efforts
Preperation
per product 1-3 days 1-2 days 1-5 days 1-5 days
Interview per
1-2 1-2 1-2 2
product days days days days
Evaluation 15 weeks 1 week 3 weeks 2 weeks

efforts required for the interviews as well as for information
consolidation and analysis after the interviews.

If the involved parties are mostly interested in reuse op-
portunities, sharing the results is recommended. Especially
for the feature map we observed that most of the data con-
solidation gets done during the interview with very little
overhead. However, if there is a lot of competition between
the products it is better to not share the results until the
final report is ready for review. As these are only our ob-
servations more empirical evidence on the matter would be
very welcome.

Market share is important in business case.

In three of our four application cases, we analyzed a set
of PC tool products which belong to the same sector or sub-
domain of industrial automation. For each of these three
sets of tools, reduced maintenance costs are only one fac-
tor in the motivation and business case for systematic reuse
or software product lines. Of equal or higher importance
are opportunities to increase market share and revenues by
better meeting customer needs. Moving to a common plat-
form could achieve that by 1) sharing the best features be-
tween the tools, 2) providing a common look and feel, and 3)
providing new features for seamless integration or improved
workflows. Hence, reduced development and maintenance
cost as well as customer needs have to be taken into ac-
count.

Success factors for systematic reuse.

A lot of pitfalls and success factors for Software Product
Lines can be found in literature [5, 1, 23]. In the domain
analysis interviews, we collected several lessons learned,
which confirm these factors and give an additional indus-
trial power and automation domain perspective on some of
them:

1) Components must be systematically developed for
reuse; ad-hoc reusing arbitrary artifacts often failed.

2) Systematic reuse and, in particular, software product
lines need a clear decision and support from higher man-
agement, which needs to set the priorities for the involved
people and projects accordingly. Because there is a high risk

that the development splits again after the first common ver-
sion, management support is required over the entire lifetime
of the SPL and needs a long term focus.

3) The organization and processes need to be defined at
the beginning of a software product line. Often mentioned as
important were: communication between platform engineer-
ing and product engineering, deciding about new features,
release planning, maintenance, and how new stakeholders
can join a running project. Particularly, if a product line
covers multiple organizational units, a platform manager is
required, who is perceived as politically unbiased and is able
to align the requirements and expectations of the different
product units.

4) The funding of the development and maintenance of
reusable artifacts needs to be set up [24].

5) Previous negative experience increases reluctance for
reuse, i.e., seeing only additional efforts and overhead, but
not the overall benefits. This must be addressed very early
by transparency and by providing “personal” motivation for
all involved people.

6) It is more important that a software product line fits
into the business models and roadmaps of the participating
business units than being technically feasible, as technical
challenges can most often be solved.

7) The platform needs to be continuously re-factored to
keep it maintainable and usable by the existing and new
products. Because this requires a significant amount of time,
it is important to explicitly plan the re-factoring steps.

8) A strategy needs to be in place on how to handle back-
ward and forward compatibility between different versions
of platform, products, devices, communication, and data
models. For example, full backward compatibility between
platform and older versions of different devices to be en-
gineered requires testing a large number of combinations,
which might become very expensive.

9) For engineering tool frameworks, there must be a strong
governance of interfaces and guidelines (e.g., UI) in order to
efficiently utilize the platform, avoid double work, and pro-
vide a common look and feel.

10) Separating data model, business logic, and tool frame-
work facilitates reuse particularly for engineering tools.

11) Using a modern technology is risky but often made
the platform more sustainable and increased its lifetime.

7. CONCLUSIONS

In this paper, we presented our new domain analysis ap-
proach, which we improved based on the findings from two
former application cases [2]. The proposed changes increase
the time efficiency of the interview-based approach by invest-
ing more time in the interview preparation. This improves
the results of the interviews and facilitates their evaluation
as well as the comparison of the products. Beyond this,
we put more emphasize on adapting the approach for dif-
ferent application domains by prioritizing reuse criteria for
the analysis. In order to help other practitioners to perform
domain analyses in large to medium-sized companies, we
particularly focused on practical and concrete aspects such
as execution of the interviews, selection of involved people,
used artifacts, and required efforts. While applying our im-
proved domain analysis approach on two further ABB appli-
cation cases, we collected various lessons learned, including
success factors for systematic reuse. Presenting these in this
paper, practitioners as well as researchers might benefit in
their future work.

Currently, the results of the domain analysis of the device
engineering tool case are being used in the development of
a new tool platform. Beyond this future work encompasses
investigating patterns and automation for increasing the ef-
ficiency of feature analysis and architecture reconstruction.

8. REFERENCES

[1] Paul Clements and Linda Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2001.

[2] H. Koziolek, T. Goldschmidt, T. de Gooijer,

D. Domis, and S. Sehestedt. Experiences from
identifying software reuse opportunities by domain
analysis. In T. Kishi, S. Jarzabek, and S. Gnesi,
editors, SPLC, pages 208-217. ACM, 2013.

[3] H. Koziolek, T. Goldschmidt, T. de Gooijer,

D. Domis, S. Sehestedt, and M. Aleksy. An
exploratory case study on domain analysis to identify
reuse potential. Submitted to the Journal of Empirical
Software Engineering — Special Issue on Empirical
Evidence in Software Product Line Engineering.

[4] Klaus P., Giinter B., and F. van der Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. Springer, 2005.

[5] Frank J. van der Linden, Klaus Schmid, and Eelco
Rommes. Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering.
Springer, 2007.

[6] Carnegie Mellon University - Software Engineering
Institute. Product Line Hall of Fame.
http://splc.net/fame.html, 2013. last visited
2013-01-21.

[7] M. Khurum and T. Gorschek. A systematic review of
domain analysis solutions for product lines. J. Syst.
Softw., 82(12):1982-2003, December 2009.

[8] Carnegie Mellon University - Software Engineering
Institute. Software Product Lines.
http://www.sei.cmu.edu/productlines/, 2013. last
visited 2013-01-21.

[9] T. Davis. The reuse capability model: a basis for
improving an organization’s reuse capability. In
Software Reusability, 1993. Proceedings Advances in
Software Reuse., Selected Papers from the Second
International Workshop on, pages 126 —133, mar 1993.

[10] K. Schmid. A comprehensive product line scoping
approach and its validation. In Proc. 24th Int. Conf.
on Software Engineering, ICSE 02, pages 593-603,
New York, NY, USA, 2002. ACM.

[11] L. John, J. Knodel, T. Lehner, and D. Muthig. A
practical guide to product line scoping. In Software
Product Line Conference, 2006 10th International,
pages 3 —12, 0-0 2006.

[12] C. Stoermer and L. O’Brien. Map - mining
architectures for product line evaluations. In Software
Architecture, 2001. Proc. Working IEEE/IFIP
Conference on, pages 35 —44, 2001.

[13] P. Frenzel, R. Koschke, A. P. J. Breu, and
K. Angstmann. Extending the reflexion method for
consolidating software variants into product lines. In
Proc. 14th Working Conference on Reverse
Engineering, WCRE ’07, pages 160—-169, Washington,
DC, USA, 2007. IEEE Computer Society.

[14] P. Tabeling. Home of Fundamental Modeling Concept.
http://www.fmc-modeling.org/home, 2014.

[15] G. Bockle, P. Clements, J.D. McGregor, D. Muthig,
and K. Schmid. Calculating roi for software product
lines. Software, IEEE, 21(3):23 — 31, may-june 2004.

[16] I. John. Using documentation for product line scoping.
IEEE Software, 27(3):42-47, 2010.

[17] G. Fairbanks. Just Enough Software Architecture: A
Risk-Driven Approach. Marshall & Brainerd, 1st
edition, 2010.

[18] S. Apel, D. Batory, C. Kistner, and G. Saake.
Feature-Oriented Software Product Lines: Concepts
and Implementation. Berlin/Heidelberg, 2013.

[19] Siegel, J. OMG’s OCEB Certification Program, What
is the Definition of Business Process? An OCEB
Certification Program White Paper, May, 2008.

[20] Davenport, Thomas H. and Short, James E. The New
Industrial Engineering: Information Technology and
Business Process Redesign. Sloan Management
Review, Summer:11-27, 1990.

[21] Verner, L. The Challenge of Process Discovery.
BPTrends, May, 2004.

[22] Object Management Group. Business Process Model
and Notation (BPMN). 2011.

[23] M. Morisio, M. Ezran, and Colin Tully. Success and
failure factors in software reuse. IEEE Trans. Software
Eng., 28(4):340-357, 2002.

[24] T. de Gooijer and H. Koziolek. Agreements for
software reuse in corporations. In B. Meyer, L. Baresi,
and M. Mezini, editors, ESEC/SIGSOFT FSE, pages
679-682. ACM, 2013.

