
Sustainability Guidelines
for Long-Living Software Systems

Zoya Durdik∗, Benjamin Klatt∗, Heiko Koziolek†, Klaus Krogmann∗, Johannes Stammel∗ and Roland Weiss†
†Industrial Software Systems, ABB Corporate Research Ladenburg, Germany

Email: {heiko.koziolek, roland.weiss}@de.abb.com
∗Research Center for Information Technology (FZI), Karlsruhe, Germany

Email: {zoya.durdik, benjamin.klatt, klaus.krogmann, johannes.stammel}@fzi.de

Abstract—Economically sustainable software systems must be
able to cost-effectively evolve in response to changes in their
environment, their usage profile, and business demands. However,
in many software development projects, sustainability is treated
as an afterthought, as developers are driven by time-to-market
pressure and are often not educated to apply sustainability-
improving techniques. While software engineering research and
practice has suggested a large amount of such techniques, a
holistic overview is missing and the effectiveness of individual
techniques is often not sufficiently validated. On this behalf
we created a catalog of ”software sustainability guidelines” to
support project managers, software architects, and developers
during system design, development, operation, and maintenance.
This paper describes how we derived these guidelines and how
we applied selected techniques from them in two industrial
case studies. We report several lessons learned about sustainable
software development.

Index Terms—Software maintenance; software engineering;
guidelines; sustainable development;

I. INTRODUCTION

Software systems in the industrial automation domain are
often long-living systems with a life-span of more than 10
years. These systems include a range of products from em-
bedded real-time systems to large-scale distributed control
systems. Such systems have to be constructed with special
requirements to their design, structure, and extra-functional
properties, such as safety, performance, and availability. Dur-
ing their life-cycle, they evolve in response to changes in their
environment (i.e., hardware and software), usage profile (e.g.,
changed workload), and business demands (e.g., new features,
changed business processes). Because this may require expen-
sive changes to a system, it is necessary to keep efforts and
costs under control during maintenance and evolution.

The term “sustainability”, i.e., the ability for cost-efficient
maintenance and evolution, is restricted to an economical
perspective here and subsumes quality attributes of a software
system that impact its maintenance and evolution [1], [2], [3].
Such sustainability properties should be kept in mind during
the whole life-cycle of a software system and are especially
relevant for long-living systems. Design and development
decisions are sometimes taken omitting sustainability aspects
in favour of time and budget or due to the lack of expert
knowledge, leading to accumulation of technical debt [4]. This
can lead to increased maintenance costs and introduce a major
risk due to insufficient flexibility and quality.

There is already a plethora of approaches for analyzing
and solving evolution problems [3]. Problem analysis is for
example supported by architecture analysis, software compre-
hension, and quality indicators. Evolution problems can be
resolved by improving architectural structures, reactive elim-
ination, variability strategies, development automation, pro-
cess improvement as well as knowledge management. Other
authors have defined evolution laws [5], [6], classifications
of evolution and maintenance types [7], [8], and taxonomies
of software changes [9]. Our approach provides a unique
perspective as it incorporates all phases of the system’s life-
cycle and aims at immediate developer support.

In order to facilitate long-living software systems, we
have created a catalog of “sustainability guidelines” for ABB
project managers, software architects, and developers. It fos-
ters an explicit consideration of sustainability during sys-
tem design, development, operation, and maintenance. The
guidelines consist of selected software engineering methods,
techniques and tools with a positive effect on sustainability.
The catalog provides condensed method descriptions, informa-
tion on their industrial validation, supporting tools, potential
benefits, connected risks, checklists, and literature references.
The catalog is a short and efficient reference to architects and
developers.

The overall benefits of the guidelines are i) a structured
overview of software sustainability-improving methods, ii) a
single point of access to all relevant information, and iii)
checklists and risk description for the guideline application
in practice. We have applied selected methods and tools from
the guidelines in two industrial case studies at ABB. First,
we analyzed the architectural sustainability of a reconfigurable
controller reference architecture. Second, we conducted a
change impact analysis for a third-party middleware integrated
in different industrial software systems. The results of these
case studies have been used to further improve the guidelines,
and system under study.

The rest of this paper is structured as follows: Section II
summarizes a systematic literature search for sustainability-
improving methods, which preceded the creation of the
guidelines catalog. Section III introduces our sustainability
guidelines catalog, its structure, target audience, outline and
covered topics. The application of selected guidelines follows
in Section IV. Finally, Section V reports lessons learned and
Section VI concludes the paper.

Requirements
(Management
and Tracing)

Architecture
(Patterns, Styles ,Tactics,
Reference Architectures,
ALMA, AC‐MDSD and SPL)

Design
(Bad Smells,
Antipatterns and
Refactorings)

Implementation
(Clean Code, xtUML,
Documentation and
Naming Conventions)

Verification & Validation, Testing
(Unit, Continuous Integration and
Regression Testing, and Test Beds)

Maintenance
(Consistency Checking and

Reverse Engineering)

General
(Documentation, UML

and Knowledge Transfer)

Fig. 1. Topics covered by the software sustanability guidelines catalog

II. STATE-OF-THE-ART SURVEY

A. Systematic literature review for sustainability supporting
solutions

In order to get an extensive overview of state-of-the-
art approaches to support software sustainability we have
conducted a systematic literature review. The results of this
literature review were published in [3] and later refined for
the guidelines document.

Information sources for the preparation of the literature
review included books, journals, dissertations, conferences,
workshops, selected podcasts, master’s theses, standards, and
white papers. All of them were examined for software
evolution-related topics. A list of keywords (e.g. “software
evolution”, “software maintenance”, “evolvability”, “sustain-
ability”) helped to choose the relevant publications. Those
selected publications were then manually investigated for po-
tentially relevant approaches. The further processing of those
information sources is discussed in detail in Chapter 7 of our
previous publication [3][p. 115ff].

Our criteria catalogue for the final selection of development
guidelines covered properties such as applicability, relevance,
positive/negative perspective, degree of formalization, abstrac-
tion level, and development phases of presented approaches.
We aimed to have a set of 2-5 approaches per develop-
ment phase. From this literature review, the most promising
approaches were selected to be included in the guidelines
document.

B. Sustainability guidelines: Literature classification

The idea of providing guidelines for recurring software
engineering problems is not new. Guidelines are for example
provided by software development standards (e.g., ISO or
IEC), development process models (e.g., V-model or ag-
ile methods), and software engineering books (i.e., Som-
merville [10]). However, these sources usually provide general
software engineering guidelines and do not focus on system
sustainability.

We separated the approaches identified in our literature
review, into one group of approaches for the identification
and analysis of evolution problems and another group of
approaches for solving evolution problems. For each area, we
name several approaches representative for the field.

Approaches for identification and analysis of evolution
problems were classified as architecture analysis, software
comprehension (including use of historical data), and quality
indicators. Popular architecture analysis approaches are for
example ATAM [11], SAAM [12], and ALMA [13]. State of
the art for software comprehension is for example surveyed by
Hassan [14], who reviews the field of mining software repos-
itories. Quality indicators are a broad field of qualitative and
quantitative approaches, which were surveyed by Kan [15] and
Fenton et al. [16], and can be classified based on their scope
as product-related, process-related, and project-related metrics.
Tool automation is required for quantitative approaches (e.g.
ISIS [17]).

Approaches for solving evolution problems include a broad
range of complementing strategies and were divided into static
architecture and software system structure, reactive elimina-
tion of evolution problems, variability strategies, automation
of software development, development process, knowledge
management and documentation, team support, and software
infrastructure. Recommendations for static architecture and
software system structures include design principles [18],
patterns [19], and reference architectures [20]. Reactive ap-
proaches tackle changes or their consequences. They range
from refactorings [21] to migration patterns on the architecture
level [22]. Variability can be tackled by generation (of code /
configurations) [23] on an abstract level (typically models) or
by architectural means such as product lines [24]. Automation
of software development comprises software generation [23]
as introduced above but also the model driven architecture [25]
and model-driven techniques by de-facto standards of the
Eclipse ecosystem [26], [27].

Development processes are nowadays influenced by agile
methods [28] which propose more flexibility and lower costs
for handling of change requests. To ease long-term knowledge
management and documentation the enduring presence of
knowledge and a complementary team management are crucial
to ensure a long-term knowledge for development teams (see
e.g. Bommer et al., [29] for an overview on suitable methods).
Evolution pressure such as the infrastructure (e.g. hardware or
middleware) are dealt with for example in Wolf et al. [30]. This
book focuses on different aspects of virtualization, including
virtual machines, virtual file systems, virtual storage solutions,
and clustering for both Windows and Linux.

This overview on existing approaches targeting software
evolution and long-term management provided the base to
derive the sustainability guidelines, which are described in
Section III, after the related work presented in the next section.

C. Other related work

The majority of methods to handle sustainability deals with
evolution aspects of existing software systems, for example,
the cost-effective evolution [7], [8], or laws, generalities and
management of evolution [5], [6]. To our best knowledge, there
are no overarching guidelines conditioning different methods
to improve the sustainability of a system.

Chapin et al. [7] proposed a clarifying redefinition of
the types of software evolution and software maintenance
to improve the sustainability of a system already during its
initial development. They propose a classification of software
evolution and software maintenance types, based on the main-
tainers activities. The classification distinguishes changes of i)
the software, ii) the documentation, iii) the properties of the
software, and iv) the customer-experienced functionality.

Godfrey and Buckley [9] discuss differences and relations
between software evolution and maintenance. They create a
taxonomy of software changes. The taxonomy is based on
characterizing the mechanisms of change and the factors that
influence these mechanisms. The goal of this taxonomy is to
provide a framework that positions concrete tools, formalisms
and methods within the domain of software evolution. How-
ever, they do not propose a solution, but rather analyse change
and evolution properties.

Mens et al. surveyed software refactoring [31] and provided
a list of challenges in software evolution [31]. Germain et al.
discuss the past, present, and future of software evolution [8].
They provide definitions of evolution and maintenance termi-
nology as well as a comparison with biological evolution.

Bass et al. [32] list a number of modifiability tactics for
software architectures. They focus on modifiability and do not
include requirements or implementation related issues.

Rozanksi and Woods [33] define an ”evolution perspective”
in their architectural framework ”viewpoints and perspectives”.
They discuss how architectural changes can be described and
characterized and list some abstract evolution tactics, but
exclusively focus on the software architecture. The approach of
defining tactics to handle specific evolution challenges is also
included in our sustainability guidelines and primary covered
in the architecture related sections.

Seacord et al. [1] discuss differences between software
maintenance and sustainability, overview existing sustainabil-
ity measures, and propose additional measures and sustainabil-
ity assessment.

Beside that the vast approaches only concentrate on one of
the phases of system life-cycle, it is difficult to select from
these methods and to determine upfront whether they can
address specific evolution problems. Moreover, it is not always
clear if methods are suitable for long-living systems and how
well the methods have been validated on practice. The effort
required for the introduction into the project and potential

benefits, especially considering sustainability, are seldomly
explained.

III. SUSTAINABILITY GUIDELINES

In this section we introduce our sustainability guidelines,
their general idea, target audience, outline and covered topics.
We explain our approach on how to navigate through the
guidelines as well as how to select appropriate ones. We
further provide an excerpt from one of the guideline-chapters
as an example.

A. General Idea and Target of the Guidelines

The sustainability guidelines support the explicit considera-
tion of sustainability during system design, development, oper-
ation, and maintenance. Their objective is to support the prob-
lem analysis and decision making with active incorporation of
sustainability aspects. The guidelines are based on an extensive
literature survey [3] and represent the condensed state-of-
the-art approaches with respect to methods and tools. They
cover design and analytical, as well as proactive and reactive
techniques for sustainability-aware software engineering. The
approaches have been selected with focus on industrial ap-
plicability and reasonable efforts for learning and application,
especially because only few of them can be automated.

The guidelines aim to make software architects and de-
velopers aware of state-of-the-art methods, their potential
benefits and risks. We expect them to be familiar with basic
concepts of software engineering, but do not assume any
specific knowledge of sustainability or one of the included
guidelines. In addition to software architects and developers,
the guidelines are intended to be considered by project leads,
requirements engineers and testers, who shall be aware of
sustainability and shall keep track of it during their work.

For this, the guidelines are designed to provide an overview
and a quick introduction into the particular topics to decide
about their relevance for the current project. Software ar-
chitects and developers can refer to these guidelines while
working on a new system or during the evolution of an existing
one. They can browse through the relevant approaches and
even if they are familiar with an approach, checklists and risk
estimations provide valuable information on recommendations
and possible pitfalls.

B. Guidelines Sections and Structure

The approaches are grouped by software life cycle phases:
Requirements, Architecture, Design, Implementation, Valida-
tion and Verification, and Maintenance. These groups are
followed by a general group of approaches, which are relevant
for multiple lifecycle phases. Note that the aforementioned
software life cycle phases do not imply a waterfall devel-
opment process but serve as an intuitive structure for the
document.

The overview of topics covered by the current version of
the guidelines is presented on Figure 1. Each guideline sec-
tion (requirements, architecture, etc.) contains several selected
approaches.

In order to quickly grasp the essence of each guideline, the
description follows a common description template, that fits on
one page, as presented on Figure 2. The header contains meta
information, such as application and learning efforts, relevance
for evolution, the addressed problem and existing validation of
the approach.

The efforts required to introduce a guideline are classified
as follows:

• High: A satellite-project or distinct resources are re-
quired.

• Medium: An introduction during project execution is
possible but should be considered explicitly in the project
plan.

• Low: An introduction can be done by a single person in
reasonable time. Implementation requires little overhead.

The provided effort of each guideline is complemented with
a short explanation of the estimation.

The efforts required to learn a guideline are classified as
follows:

• High: Requires to understand and learn complex, highly
abstract or large amounts of material, often accomplished
by a complex tooling.

• Medium: Requires some teaching or experience and get-
ting familiar with several tools.

• Low: The basic concept is simple and most of the tools
are familiar.

Furthermore, each guideline is provided with a note on
its relevance to sustainability, as well as problems that are
targeted. The validation is distinguished into general validation
experience and ABB-internal validation and expresses the
maturity of the approach for its application in practice. In both
cases, the validation is either strong (”+”), neutral (”0”), or
weak (”-”).

The body section of each guideline provides an introduction
to the individual topic, sources of further information and
guidance for its application. A short description gives an
overview and reflects the major aspects of the approach the
guideline is about. For further reading, each guideline provides
a primary literature reference, which can be used for detailed
understanding of the topic and answering of conceptual or
implementation questions. If tools are available to support
the application of a guideline, the most relevant or ABB
recommended ones are listed in a specific tool section. For
the advantages and risks of each guideline, two separate
sections have been introduced for these. The information about
each guideline, is always documented with a strong focus on
sustainability. In the same way, the usefulness and risks are
described from a system evolution point of view.

C. Guideline Navigation and Selection
We provide two strategies to identify suitable approaches

from the guidelines: based on a specific development phase
(life cycle phase) and based on an evolution scenario. While
the first strategy is intuitive due to the nature of software
product development, we discuss the second one in more detail
in this section.

Providing relevant and compressed information in a com-
pact document, which does not frighten users because of
its length, was an important goal during the creation of
the guidelines. To provide guidelines which address actually
relevant evolution scenarios we interviewed several developers
and engineers at ABB [34].

During the interviews, evolutions scenarios were collected
and prioritised. The most relevant evolutions scenarios (prior-
itized based on how many times a scenario was mentioned
in the interviews) were clustered into broader scenarios to
represent typical evolution cases. For example, the two sepa-
rate scenarios replace hardware “A” and “B” were generalised
to “update hardware execution environment”. Those scenario
clusters are specifically addressed in the guidelines document.
In the guidelines, an evolution scenario is a brief description
of an anticipated change because of modified requirements,
failures, changing technical infrastructure, or internal mainte-
nance activities.

The most common scenarios of each cluster were used to
build a table with the scenarios on the vertical axis and the
guideline chapters on the horizontal axis. As the complete
table can not be provided in this paper due to the limited space,
Table I provides an exemplary excerpt of it. With a specific
scenario in mind, the reader can identify the representing
scenario in the table head, and find relevant sections marked in
the specific column. The relevance of a guideline for a specific
scenario is marked as high (”+”), moderate (”0”), or irrelevant
(”-”).

Scenario / Chap-
ter

Enhance or
add in-house
components

Support for process-
ing larger amounts of
data

...

Requirements
Requirement
management

+ +

Sustainable
requirements
tracing

+ 0

Architecture
Patterns /
Reference
Architectures /
Tactics / Styles

+ +

Architecture-Level
Modifiability
Analysis (ALMA)

0 —

Software Product
Lines (SPL)

0 0

...
...

TABLE I
NAVIGATION TABLE FOR APPROACH LOOK UP AND SELECTION BY

EVOLUTION SCENARIO (EXCERPT)

D. Excerpt of a Guideline Chapter

All guidelines are documented according to a common
template shown in Figure 2. In this section we present the
Architecture-Level Modifiability Analysis (ALMA) guideline.
The ALMA approach [13] is used to assess the modifiability

of a software on an architectural level by analyzing the impact
of change scenarios with a series of interviews with key
stakeholders.

The header of this guideline captures the estimated appli-
cation and learning efforts as well as the rationales for these
estimation. ALMA is rated to require a medium application
effort, because it is applied manually by an analysis team, but
requires only a minimum upfront training. The learning effort
is also rated as medium.

Beside the focus of the architectural level, the header
describes the relevance of ALMA as high due to the support
of identifying changes with potentially high implementation
costs. The short description summarises the major steps to
conduct ALMA. This includes indentifying potential change
scenarios, clustering and prioritising them, and analysing the
architecture’s support of the most relevant scenarios.

The section about further readings states the major publica-
tion about ALMA by Bengtsson et al. [13].

Finally, the template discusses advantages and risks of
the guideline. In case of ALMA, the advantages include the
potential prevention of long-term costs and the applicability to
validate implementation costs upfront in early design phases.
The support of make-or-buy-decisions is also described. How-
ever, there are also documented risks such as missing analysis
results due to missing change scenarios, and unnecessary
analysis overhead due to the irrelevant scenarios. Furthermore,
the analysis resides on an abstract architectural level, and
lacking in the examination of modifiability on the code level,
which might be missed. Beside content regarding risks, a too
high effort might result from involving too many stakeholders
or an inefficient application of the ALMA process.

IV. SUSTAINABILITY GUIDELINES APPLICATION

We applied selected sustainability guidelines from our cat-
alog to two case studies to improve the systems under study.
These case studies are not intended to formally validate the
applicability of the guidelines, which would require a longi-
tudinal study to be able to quantify their effect on a software
system’s evolution. Rather the case studies gave hints on the
applicability of selected sustainability-improving methods and
helped to mature and refine the guidelines themselves.

In the first case study (Section IV-A), we compared a
legacy version of ABB’s so-called PCS (Protection Controller
System) with a newly designed version called RCRA (Recon-
figurable Controller Reference Architecture) in collaboration
with the system’s chief engineer.

In the second case study (Section IV-B), we analyzed the
impact of evolving third-party components on a communica-
tion middleware for industrial devices used at ABB.

A. Case study 1: Architecture evolution scenario analysis

The first case study consisted of two parts: (1) Checking
whether a subset of the guidelines would be applicable to
the new RCRA architecture, and (2) Evaluation of the PCS
and RCRA target architectures using ALMA, one of the
approaches highlighted in the sustainability guidelines.

 ZCRD
Corporate Research

< Doc ID >

Doc. title Revision Page

Software Sustainability Guidelines <Rev 06> 13/52

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden.
 2004 ABB Ltd.

4.2 Architecture-Level Modifiability Analysis, ALMA

Application
effort:

Medium (manual approach) Relevance for
evolution:

The approach can help identifying
evolution risks, i.e. changes that
can only be performed at high
costs.

Learning
effort:

Medium (requires architecture
modelling skills and knowledge
about modifiability)

Addressed
problem:

Prediction of future maintenance
costs / Identification of system
inflexibility (Risk assessment) /
Compare multiple alternatives

General
validation:

0 ABB internal
validation:

Checklists & further reading: 11.4

Short Description: The modifiability of a software system is the ease with which it can be modified to
changes in the environment, requirements or functional specification. The ease is represented by the costs
that are necessary when implementing evolution changes. Architecture-level modifiability analysis (ALMA) is
an analysis approach that focuses on modifiability. For the description of the architecture, an architectural
model, i.e., views from several architectural viewpoints have to be created. Change scenario elicitation is
done by interviewing stakeholders. Since the number of possible changes is almost infinite, the approach
considers the usage of equivalence classes, and the classification of change categories for change
scenarios. The approach proposes two techniques for the selection of scenarios: 1) top-down: predefined
classification of change categories is used to guide the search for change scenarios, 2) bottom-up:
stakeholders are interviewed without predefined classification. The scenario evaluation step evaluates the
effect of the change scenarios on the architecture. Therefore three impact analysis steps are performed: 1)
identify affected components, 2) determine effect on the components, 3) determine ripple effects. When ripple
effects occur, a change in one location causes changes in other locations. The change propagates from one
place to several locations in the system. The usage of encapsulation techniques can avoid ripple effects.

Tool: no tool support

Literature: Architecture-level modifiability analysis (ALMA) by PerOlof Bengtsson, Nico Lassing, Jan Bosch,
Hans van Vliet, The Journal of Systems and Software, 2004

Why useful? ALMA helps in identifying modifiability problems that might have a negative impact on
evolution. It urges the stakeholders to explicitly think about potential evolution scenarios and associated
evolution problems. ALMA brings together almost all stakeholders of a software system and allows for an
intensive exchange.

 Helps to estimate long-term impact of design decisions.

 If accompanied by standardised documentation, decisions can be traced.

 Quantifies the expected costs of changes to a system pro-actively to support decisions during system
evolution.

 Improves the initial design upfront to avoid maintenance and evolution problems.

 Provides a basis for make or buy decisions for expected changes.

Risks:

 Missing critical change scenarios can lead to missing modifiability

 Selection of non-relevant change scenario might lead to modifiability overhead

 Focus on architecture level can lead to miss of lacking modifiability on the code level

 High overall effort for involving too many stakeholders or due to inefficient execution of the ALMA
process

Fig. 2. Examplary chapter of sustainability guidelines

In the first part, a subset of potentially applicable guidelines
had been selected based on the recommendations within the
guidelines document itself. These guidelines were applied to
the architecture and design artefacts provided by the RCRA
development team, that also cover implementation aspects ex-
pressed in UML class diagrams of the technical documentation
of RCRA.

The general effort to familiarise the project participants with
the system architecture equals approximately 12 person days
(4 persons with 3 days per person). During this phase we
collected (1) experiences on the application of the subset of
the guidelines complemented by (2) findings about RCRA
as opposed to the guidelines (e.g., violation of principles
proposed by the guidelines), and (3) findings which go beyond
the sole application of the guidelines (findings that are specific
to the RCRA and cannot be generalized in the guidelines).

Our findings about the RCRA were summarised and pro-
vided as a report containing sustainability recommendations,
where each recommendation is linked to the corresponding
parent sustainability guideline. An overview of these recom-
mendations is provided in Figure 3.

For example, the “Copy-Paste-Instantiation” sustainability
recommendation proposes to extract a framework out of the
RCRA architecture instead of planned copy-paste code reuse.
The “Framework and Environment Distinction” sustainability
recommendation suggests to improve the layered architecture
by extracting the infrastructure layer, which is technology
dependent, out of the reusable core of the RCRA architecture.

Trace links

Design Decisions

Explicit
Architecture Style

Framework and
Environment
Distinction

Copy-Paste-
Instantiation

Maintenance effort
tracking

Systematic
consideration of

sustainability

Non-functional
requirements effort

capture

Low Medium High

Lo
w

M
ed

iu
m

H
ig

h
Recommendation

nameLegend:
Se

ve
rit

y

Required Effort

Fig. 3. Severity and effort classification of the derived recommendations for
the RCRA system

These recommendations were classified according to the
estimated required efforts and severity of impact on sustain-
ability of the improvement suggestions from the recommen-
dations. The estimated required effort is classified as high,
medium, and low, similarly to the efforts required to introduce
a guideline provided in the Section III-B.

The impact severity on sustainability of the improvement
suggestions is classified as:

• High impact on the sustainability: shall be implemented
if possible, otherwise high probability of noticeably neg-
ative consequences on sustainability.

• Medium impact on the sustainability: has no severe,
but some negative consequences on sustainability if not
implemented.

• Low impact on the sustainability: has few to no conse-
quences on sustainability if the recommendation is not
implemented.

In the second part of the case study, we executed ALMA to
compare the modifiability of the PCS and the RCRA systems.
According to Bengtsson et al. [13], for the RCRA system
we applied ALMA at an early stage of the development and
focused on the modifiability but not the maintainability of the
system. Furthermore, we assessed the current status of the
RCRA and the PCS systems from an external perspective. We
did this from a viewpoint based on the system’s structure,
including the components, externally visible properties and the
relationships among them. Bengtsson et al. defined “Prediction
of future maintenance costs”, “Identification of system inflex-
ibility”, and “Compare multiple alternatives” as three possible
goals for an ALMA analysis. We limited the analysis to the
cost prediction and inflexibility identification.

The generic, system-independent evolution scenarios men-
tioned in Section III-C were prioritized and the scenarios with
the highest priority were analysed in depth. A table with results
of the analysis for PCS and RCRA was provided per change

Application level Changes: Change of the Operating System
Analysis PCS RCRA
Sustainability
Rating

Medium High

Directly
affected
components

Affected components
 Potentially All

Effects on component
 The current implementation is

operating system specific and
all used components need to
be checked for their
dependency on the OS and
the compatibility to the new
operating system.

Affected components
 Platform specific layer

Effects on component
 The platform specific layer

encapsulates all operating
systems specifics and
provides a common interface
to the framework. This layer
needs to be adopted or
completely replaced for a new
operating system.

Potential ripple
effects

 All components already need
to be checked.

 None because the platform
specific layer has been
introduced to prevent ripple
effects.

Evaluation and
Quantification

 There is no layer or
component to encapsulating
the application from the
underlying operating system.
Potentially all components
depend on the operating
system and need to be
reviewed when it is changed.

 The platform specific layer is
a design decision to target
this specific change scenario
and the architecture is proven
to handle it.

 Fig. 4. An excerpt of the ALMA analysis

scenario in order to enable a direct comparison. As shown
in the exemplary Table II, each table contains sustainability
ratings for each system, which quantifies the support for the
individual scenario according to the available documentation
are. Possible ratings are:

• High: The scenario is explicitly considered in the archi-
tecture.

• Medium: The scenario is not explicitly considered but no
blocking issues have been identified.

• Low: Issues that might block this scenario have been
identified in the architecture and documentation.

Furthermore, each table contains the list of directly affected
components (in the example table there is only one component
called “Platform specific layer”) that are followed by the iden-
tified potential ripple effects, and evaluation and quantification
of the scenario based on the affected components and identifies
ripple effects.

The final results of the ALMA analysis are summarized in
Table II, where each of the selected scenarios is listed with
its subjective sustainability rating for PCS and for RCRA by
our analysis team. It can be concluded that the new RCRA is
better prepared for several of the analysed change scenarios.

B. Case study 2: Third-party component handling

The second case study focused on a particular evolution
scenario, namely the “change impact due to third-party com-
ponents”. In this scenario, the guidelines should assist software
architects during selection of third-party components to be
incorporated into a system by assessing the quality of the third-
party component and ensuring a sustainable way of integration.

In order to investigate some of our sustainability guidelines
we applied them on a communication middleware component
for industrial devices used by ABB. One special property of
this middleware component is the availability of source code
and bugtracker information.

Scenario PCS RCRA
Change of Third Party Component Medium Medium
UI Changes: Replacement of the User Interface
Technology

High High

Functionality level changes: I) Enhance in-house
components

Low Medium

Functionality level changes: II) Add new in-house
components

Medium Medium

Data level changes: Support for processing larger
amounts of data

Low Medium

Application level Changes: Change of the Operat-
ing System

Medium High

Application Level Changes: Support for Virtualiza-
tion

Low Medium

Hardware Level Changes: Exploit Multi-Core Pro-
cessors

Low High

Hardware level Changes: Deploying components in
cloud platforms

n/a n/a

TABLE II
SUMMARY OF THE ALMA ANALYSIS

We used the look-up table of Section 2.1 of the guidelines
document to select appropriate sustainability-improving tech-
niques for this scenario. This table provides particular guide-
line recommendations concerning third-party components. In
this study we limited the analysis to the life-cycle phases
architecture and design. In the following, we explain how we
interpreted and applied the selected guidelines.

With respect to the architecture phase the guidelines doc-
ument proposes to “update architectural documentation to
include third-party components, acquire comprehensive doc-
umentation from third-party component vendor”. We followed
this guideline by gathering documentation of the case study
system from the vendor. This included the source code of three
releases of the case study system, as well as user documen-
tation and access to the system’s bug tracker. Moreover, we
created an architecture overview aligned with the architecture
of the client code.

Furthermore, the guidelines document recommends to en-
sure a clean encapsulation of the third-party component. For
this we identified the API parts of the third-party component
which are used by client code. We also established a con-
tinuous update of the usage information based on static code
analysis in order to monitor the encapsulation.

Other guidelines for the architecture phase propose i) risk
assessment with information about the third-party component,
ii) analysis of ripple effects, and iii) an impact prediction
in case that the third-party component has to be replaced
or updated. We interpreted the proposed risk assessment as
analysing the dependencies of the client code on the third-
party component and within the third-party component which
might lead to instability in case of third-party evolution.

In order to address these three guidelines, we used static
code analysis to investigate the following aspects:

• Dependency overview within the subsystem structure and
dependency progress over time

• Identification of explicit and hidden semantic changes
within the third-party system

• Estimation of change impact on self-implemented code
based on dependency structure

We used the tool SISSy1, which derives code dependen-
cies and compares the dependency evolution over multiple
versions of the software system. We started with a depen-
dency overview that showed absolute numbers of dependencies
within the subsystems and packages of the third-party com-
ponent as well as absolute dependency numbers from client
code to the third-party component covering three versions.

Although the absolute numbers already gave a rough im-
pression of the dependency structure and on the change impact
potential, the assessment of risks and potentially required
efforts connected with evolution were difficult to determine.
Since high dependency numbers indicate a high manual effort
for investigation in case of evolution, we established a tool-
supported analysis process for continuous stability investiga-
tion and change impact analysis.

This approach investigates the stability of the third-party
component in terms of explicit signature changes and hidden
semantic changes inside the third-party component. As a
result, we retrieved locations of third-party code that were
actually modified during evolution over three given versions.
Then, the dependency chain was extended and filtered to
identify dependent client code potentially affected by third-
party evolution. Hence, we identified client code which is
dependent on actual modified third-party code. This approach
enabled a more straightforward and focused search and better
understanding of critical dependencies.

We also selected guidelines from the design phase. For
example, a guideline recommends the investigation of ”bad
smells” (also called anti-patterns or problem patterns). Hence,
we conducted a problem pattern analysis on three versions
of the middleware component again using the SISSy tool.
The problem pattern analysis of SISSy is able to calculate
a benchmark to compare problem pattern statistics with a
reference project set. We provide an extract of the analysis
results in the following.

Table III shows for three system releases the absolute
numbers of detected problem pattern instances in relation to
an appropriate reference value (such as number of classes,
number of files, etc.; reference values stem from [35]). Defi-
nitions of the detected problem pattern types can be found in
the online tool documentation2. In the next step the problem
pattern counts were normalized to 1000 lines of code and
mapped to statistical intervals of a reference project set. Table
IV shows the number of problem pattern types (for three
system releases) assigned to the statistical intervals of the
reference project set. For example, five problem pattern types
of Release 1 lie in the statistical range of “Minimum To Lower
Quartile”, which means that with respect to these five problem
pattern types the system is better than three quarter of the
reference projects.

1http://www.sqools.org/sissy/
2http://www.sqools.org/sissy/documentation/

Range Release 1 Release 2 Release 3
Minimum To Lower Quartile 5 5 5
Lower Quartile To Median 3 2 2
Median To Upper Quartile 4 5 5
Upper Quartile To Maximum 10 10 10
Over Maximum 1 1 1

TABLE IV
NUMBER OF PROBLEM PATTERN TYPES PER REFERENCE INTERVAL

In addition to the tables we used a box-plot for each problem
pattern type to visualize the ranking of each release compared
to the reference projects. Figure 5 shows an example boxplot
for problem pattern type “Refused Bequest”. In this example
all three releases are located between Lower Quartile and
Median which means that they are worse than one quarter
of the reference projects and better than half of the reference
projects.

The boxplox gives easy to understand feedback on the
quality of analysed source code. One can derive a tendency
whether a given software implies maintainability and thus
sustainability risks. For example, a source code project with
more bad smells than 95% of all reference projects indicates
poor quality with respect to the detected bad smell).

Release 1

Release 2

Release 3

Fig. 5. Example box-plot visualization for problem pattern type “Refused
Bequest”

In conclusion, we were able to select and apply guidelines
in a straightforward way for the given change scenario. Some
interpretation and adaption of the guidelines with respect to
the particular project context were necessary. However, the
more general setup of the guidelines enables the application
of guidelines in a broad and flexible way.

V. LESSONS LEARNED

This section lists several lessons learned by applying the
guidelines in the case studies described in Sections IV-A
and IV-B.

A. Applying sustainable software engineering requires practi-
cal instructions.

Instructions on sustainable software engineering should be
easy to transfer to the daily life of developers and software

architects. Lowering the application barriers is promising to
encourage the use of software engineering methods which
support sustainability.

B. Many sustainability problems can already be mitigated by
good software engineering practice

A range of sustainability problems found in current practice
stem from the lack of applying known software engineer-
ing best practices (e.g., modular design, coding standards,
regular code reviews, documentation). They do not require
further software engineering research, but rather education
and discipline on the developer side. When extending and
refining the current guidelines in the future, this lesson should
be incorporated to explore how developers can be efficiently
trained and then enabled to work in a way favorable for
sustainability.

C. Lacking motivation for sustainable development

Although those practices are well-known, they are some-
times neglected during the development due to the time and
budget pressure from one side, and low enforcement and lim-
ited motivation from the other side. Immediate incentives for
sustainable development are sometimes missing, which leads
to the accumulation of technical debt. However, we believe
that the incentives may be reinforced through activities, such
as an explicit documentation of the quality and sustainability
goals, enforced by a regular review process.

D. High costs for sustainable development

Sustainable systems cost more and require additional effort
and investment, as demonstrated by the two case studies. Qual-
ified people who are proficient in good software engineering
principles should be hired. They should be given time and
means to cleanly design and develop high quality software.
Moreover, there must be a business decision to invest for more
sustainable software. However, the estimation on the return of
investment and the right measure for the sustainability is still
an open and is a project-specific challenge.

E. High importance of concrete sustainability goals

Precise sustainability goals, requirements, and scenarios
help in choosing the right method to support the systems
sustainability. Otherwise there is the risk of wrong trade-
off decisions between alternative guidelines to be applied.
For example, a requirement for a “system to be operated
for 10 years” is too abstract, but a requirement to “manage
dependencies on third-party components” supports choosing
the right sustainability methods. Without explicitly stated
sustainability goals and scenarios, any sustainability improving
measure likely result in under- or over-engineering of the
system

F. Sustainability of the sustainable development

Paradigm shifts, such as technology game changers, might
make sustainability activities obsolete.For example, substantial
architectural changes (e.g., a change to multi-core comput-
ing, a change to mobile technology or a change to cloud

Problem Pattern Release 1 Release 2 Release 3 Reference Value
General Parameter 40 / 6602 38 / 7319 38 / 7608 number of methods
Long Parameter List 24 / 6602 27 / 7319 28 / 7608 number of methods
Permissive Visibility Attribute 1769 / 3129 1877 / 3341 1876 / 3379 number of attributes
Refused Bequest (Implementation) 8 / 746 8 / 778 8 / 794 number of classes
Variables Having Const Value 28 / 3129 36 / 3341 36 / 3379 number of attributes
Complex Method 502 / 6602 535 / 7319 545 / 7608 number of methods
Interface Bypass 181 / 746 251 / 778 252 / 794 number of classes
Mini Class 9 / 746 14 / 778 15 / 794 number of classes
Overloaded File 79 / 671 72 / 690 75 / 699 number of files
Polymorphic Calls In Constructor 125 / 875 168 / 952 169 / 980 number of constructors
Violation Of Data Encapsulation 716 / 746 760 / 778 769 / 794 number of classes
Attribute Overlap 2 / 3129 10 / 3341 10 / 3379 number of attributes
Dead Method 254 / 6602 258 / 7319 263 / 7608 number of methods
God Class (Attribute) 3 / 746 3 / 778 3 / 794 number of classes
God Class (Method) 1 / 746 1 / 778 1 / 794 number of classes
God Method 59 / 6602 67 / 7319 67 / 7608 number of methods
Ignored Abstraction 10 / 746 11 / 778 11 / 794 number of classes
Inconsistent Operations 3 / 6602 5 / 7319 5 / 7608 number of methods
Dead Attribute 28 / 3129 19 / 3341 23 / 3379 number of attributes
Import Chaos 74 / 671 45 / 690 47 / 699 number of files
Informal Documentation 2878 / 6602 3428 / 7319 3658 / 7608 number of methods
Misleading Naming Files 119 / 671 133 / 690 133 / 699 number of files
Violation of Naming Convention 6982 / 671 7794 / 690 8079 / 699 number of files

TABLE III
PROBLEM PATTERN SUMMARY

computing) can render previous sustainability efforts useless.
Technology changes cannot be anticipated too far ahead.

To cope with this an alternative strategy is an evolutionary
approach, which is based on the incremental and iterative
refinement in conditions when requirements or context are
either not (well-)known or change rapidly. An example of
such an evolutionary approach is the evolutionary architecture
practice. It proposes incremental and iterative refinement of
software architecture in context of unknown or rapidly chang-
ing requirements.

G. Trade-offs in applying different guidelines

The guidelines applicability check in the “RCRA” scenario
required more time to find out which guidelines are feasibly
applicable for the given context then we have expected, due
to the fact that we were new to the RCRA. The application
of the guidelines often involved a trade-off between separate
guidelines due to the connected costs and risks, whereby the
sustainability shall be kept in mind. For example, the architec-
ture issues are more important than the implementation, while
the implementation issues are likely to be eliminated easier.

Finally, in the case study we decided to follow a problem-
and scenario-driven sustainability improvement instead of soft-
ware development life cycle style partitioning in phases. We
assume that the problem- and scenario-driven sustainability
improvement better fits projects that are already beyond their
initial stage. And vice versa, the software development life
cycle style partitioning in phases is more applicable for the
projects at their initial development stage.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented “sustainability guidelines” that
provide a guide for explicit consideration of sustainability

during system design, development, operation, and mainte-
nance. The guidelines contain selected software engineering
approaches with a focus on sustainability. Approaches are
structured according to software lifecycle phases for easier
navigation, and are followed by a general group of approaches,
that are relevant for multiple lifecycle phases. The template
description is used to provide a systematic overview for each
approach. template description contains information approach
validation, supporting tools, targeted problems, benefits, con-
nected risks and literature for further reading. Whereby, the
guidelines provide a short practice-oriented reference for a
system architect or developer about the sustainability-relevant
software engineering topics and approaches.

The guidelines applicability have been successfully vali-
dated on an industrial case study involving a real system
RCRA (Reconfigurable Controller Reference Architecture).
The results of the case study have been evaluated and im-
provements both for the guidelines and for RCRA system were
derived.

For the case study a subset of applicable guidelines has been
selected based on the recommendations within the guidelines
document itself. The selected guidelines could be successfully
applied, the improvement remarks mainly focused on collec-
tion of primary literature sources and rework of requirements
engineering guidelines due to not being specific enough.

The RCRA system already complied to many points of the
guidelines. However, we also identified possible improvements
especially about the explicit documentation of design and
decisions.

In our future work, we are planning to apply the guidelines
within business units within ABB. We also plan to extend the
guidelines with additional sustainability-relevant approaches

and to port guidelines from a word document into a easier
accessible and editable WiKi form.

ACKNOWLEDGMENT

The authors would like to thank the RCRA project team by
ABB for the active assistance in the case study and provided
feedback.

REFERENCES

[1] R. Seacord, J. Elm, W. Goethert, G. Lewis, D. Plakosh, J. Robert,
L. Wrage, and M. Lindvall, “Measuring software sustainability,” in
Software Maintenance, 2003. ICSM 2003. Proceedings. International
Conference on, 2003, pp. 450 – 459.

[2] H. Koziolek, “Sustainability evaluation of software architectures: a sys-
tematic review,” in Proceedings of the joint ACM SIGSOFT conference –
QoSA and ACM SIGSOFT symposium – ISARCS on Quality of software
architectures – QoSA and architecting critical systems – ISARCS, ser.
QoSA-ISARCS ’11, 2011, pp. 3–12.

[3] J. Stammel, Z. Durdik, K. Krogmann, R. Weiss, and H. Koziolek,
“Software Evolution for Industrial Automation Systems: Literature
Overview,” Karlsruhe, Germany, Karlsruhe Reports in Informatics 2011
- 2, 2011.

[4] W. Cunningham, “The wycash portfolio management system,” in
Addendum to the proceedings on Object-oriented programming
systems, languages, and applications (Addendum), ser. OOPSLA ’92.
New York, NY, USA: ACM, 1992, pp. 29–30. [Online]. Available:
http://doi.acm.org/10.1145/157709.157715

[5] M. M. Lehman and J. F. Ramil, “Software evolutionbackground, theory,
practice,” Information Processing Letters, vol. 88, no. 12, pp. 33 – 44,
2003.

[6] M. Lehman and J. Ramil, “Rules and tools for software evolution
planning and management,” Annals of Software Engineering, vol. 11,
pp. 15–44, 2001.

[7] N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and W.-G. Tan, “Types
of software evolution and software maintenance,” Journal of Software
Maintenance: Research and Practice, vol. 13, no. 1, p. 3, 2001. [Online].
Available: http://portal.acm.org/citation.cfm?id=371697.371701

[8] M. W. Godfrey and D. M. German, “The Past, Present,
and Future of Software Evolution,” in Proc. 24th Int.
Conf. on Software Maintenance, 2008. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.8949

[9] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel,
“Towards a taxonomy of software change:Research Articles,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 17, no. 5, p. 309, 2005. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1090744.1090746

[10] I. Sommerville, Software Engineering. Pearson Studium, 2007.
[11] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and

J. Carriere, “The architecture tradeoff analysis method,” in Engineering
of Complex Computer Systems, 1998. ICECCS ’98. Proceedings. Fourth
IEEE International Conference on, 10-14 1998, pp. 68 –78.

[12] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based
analysis of software architecture,” Software, IEEE, vol. 13, no. 6, pp.
47 –55, nov 1996.

[13] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-
level modifiability analysis (ALMA),” Journal of Systems and Software,
vol. 69, no. 1-2, pp. 129–147, 2004.

[14] A. Hassan, “The road ahead for mining software repositories,” Frontiers
of Software Maintenance, 2008. FoSM 2008, pp. 48 – 57, 2008.

[15] S. H. Kan, Metrics and Models in Software Quality Engineering (2nd
ed.). Addison-Wesley Longman, 2002.

[16] N. E. Fenton and S. L. Pfleeger, Software Metrics A Rigorous and
Practical Approach. PWS Publishing Company, 1997.

[17] andrena objects AG, “Isis,” http://www.andrena.de/node/160, last re-
trieved 2012-06-01.

[18] R. C. Martin, Clean Code A Handbook of Agile Software Craftmanship.
Prentice Hall, 2009.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns
Elements of Reusable Object-Oriented Software. Addison-Wesley
Publishing Company, 1995.

[20] AUTOSAR-Konsortium, “Automotive open system architecture,
http://www.autosar.org.” [Online]. Available: http://www.autosar.org

[21] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional,
1999.

[22] W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke,
and S. Krieghoff, “The dublo architecture pattern for smooth migration
of business information systems: an experience report,” in Software En-
gineering, 2004. ICSE 2004. Proceedings. 26th International Conference
on, 23-28 2004, pp. 117 – 126.

[23] K. Czarnecki and U. W. Eisenecker, Generative Programming.
Addison-Wesley, 2000.

[24] J. Bosch, Design and Use of Software Architectures Adopting and
evolving a product-line approach. Addison-Wesley, 2000.

[25] OMG, “MDA Guide Version 1.0.1,” http://www.omg.org/cgi-
bin/doc?omg/03-06-01, 2003. [Online]. Available:
http://www.omg.org/cgi-bin/doc?omg/03-06-01

[26] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development. John Wiley & Sons, 2006.

[27] Eclipse Foundation, “Eclipse modelling framework (emf),”
http://www.eclipse.org/emf/, last retrieved 2012-06-01.

[28] O. Salo and P. Abrahamsson, “Agile methods in european embedded
software development organisations: a survey on the actual use and
usefulness of extreme programming and scrum,” Software, IET, vol. 2 ,
Issue:1, pp. 58 – 64, 2008.

[29] C. Bommer, M. Spindler, and V. Barr, Softwarewartung. dpunkt.verlag,
2008.

[30] C. Wolf and E. M. Halter, Virtualization: from the desktop to the
enterprise. Apress; 1 edition, 2005.

[31] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and
M. Jazayeri, “Challenges in Software Evolution,” in 8th Int. Workshop
on Principles of Software Evolution (IWPSE’2005), 2005, p. 13.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1108137

[32] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Addison-Wesley Professional, 2003.

[33] N. Rozanski and E. Woods, Software systems architecture: working
with stakeholders using viewpoints and perspectives. Addison-Wesley
Professional, 2005.

[34] H. Koziolek, R. Weiss, Z. Durdik, J. Stammel, and K. Krogmann,
“Towards Software Sustainability Guidelines for Long-living Industrial
Systems,” in Proc. of Soft. Eng. 2011 (SE2011), 3rd W. ”Long-living
Software Systems (L2S2)”, 2011.

[35] O. Seng, F. Simon, and T. Mohaupt, Code Quality Management. dpunkt
Verlag, Heidelberg, 2006.

