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Abstract—Today’s industrial control systems store large
amounts of monitored sensor data in order to optimize industrial
processes. In the last decades, architects have designed such
systems mainly under the assumption that they operate in closed,
plant-side IT infrastructures without horizontal scalability. Cloud
technologies could be used in this context to save local IT costs
and enable higher scalability, but their maturity for industrial
applications with high requirements for responsiveness and
robustness is not yet well understood. We propose a conceptual
architecture as a basis to designing cloud-native monitoring
systems. As a first step we benchmarked three open source time-
series databases (OpenTSDB, KairosDB and Databus) on cloud
infrastructures with up to 36 nodes with workloads from realistic
industrial applications. We found that at least KairosDB fulfills
our initial hypotheses concerning scalability and reliability.

I. INTRODUCTION

To supervise industrial processes, such as power production,
oil refineries, or chemical processes, today’s industrial con-
trol systems store large amounts of sensor data into special
databases. These databases then allow human operators to an-
alyze trends in sensor data (e.g., temperature or flow pressure
curves) and to optimize the industrial processes.

Industrial monitoring systems are prevalently designed with-
out the ability for scaling with the number of nodes (horizontal
scalability) as they are assumed to be statically deployed to a
fixed number of servers located within an industrial plant. The
advent of cloud computing technologies potentially provides
an opportunity to save local IT costs and exploit highly
scalable remote IT infrastructures that are not affordable for
smaller industrial plants.

While cloud technologies have been successfully used for
enterprise applications, their maturity for industrial applica-
tions with higher requirements for responsiveness and robust-
ness is largely unknown. Sakr et al. [1] survey numerous
large-scale data management approaches specifically for cloud
environments, but did not discuss their trade-offs in industrial
settings. Wlodarczyk [2] compared four time series database
systems that exploit cloud environments. However, this com-
parison was only done on a conceptual level, no benchmarking
with realistic workloads was performed.

The contribution of this paper is an evaluation of cloud-
native time series databases regarding their scalability and
robustness. To assess these qualities we defined two rep-
resentative workload profiles from the smart grid domain.
Furthermore, we observe how graceful the databases handle
loads beyond their current capabilities. Based on these profiles
we evaluate three different open-source time series databases
(OpenTSDB, KairosDB and Databus). In particular, we aim
to determine the scalability and reliability of the technologies.

The remainder of this paper is structured as follows: Sec-
tion II explains the architectural context of our benchmark, i.e.,
how are the time series intended to be included in the overall
architecture of an industrial monitoring system. Sections III
and IV describe our benchmark setup and the experiment,
while Section V presents and discusses the results of the
benchmark. Section VI highlights related work and Section VII
concludes the paper.

II. ARCHITECTURAL CONTEXT

A. Conceptual Architecture

Fig. 1 depicts an overview on our conceptual architecture
that defines the context for our benchmarks. It mainly targets
level 3 and selected areas of level 2 of the ISA-95 stan-
dard [3], i.e., activities of manufacturing execution systems
(MES) [4]. In the figure, a number of annotations highlight
various technology decision point options. While there are
many commercial offerings for the mentioned technologies,
here we focus on Open Source alternatives to avoid bias and
allow independent replication of our experiments.

Clients access the cloud-based monitoring system through
Web Browsers using HTML5 via desktop or mobile devices.
The architecture includes a TimeSeries DB to efficiently store
arrays of numbers indexed by time. For example, a time
series could be the flow speed of oil through a pipeline. The
underlying industrial process continuously uploads this data
based on various sensor readings. Due to the high data volume
in many industrial processes, the storage solution must be
scalable. Numerous OSS time series databases are available
and under commercial use.
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Fig. 1. Conceptual architecture for a cloud-native monitoring system.

The TimeSeries DB relies on a Distributed NoSQL DBMS
to achieve high scalability and elasticity. Such a DBMS must
be able to store billions of values and seamlessly adapt
to workload changes to efficiently use the given hardware
resources. The DBMS is especially optimized for write op-
erations and supports occasional read operations. The DBMS
may support clusters spanning multiple datacenter to achieve
high availability. OSS examples with commercial adoption are
Cassandra and HBase.

To capture alarm and event data from industrial processes,
the monitoring system additionally contains an EventDB.

The KPI Calculation Engine computes key performance
indicators from the raw monitored data, such as machine
waiting times, production throughput, mean time between
failures, etc.

The communication between the components in the data-
center is facilitated through a Message-oriented Middleware
(MOM).

The Data Collector is the endpoint that receives, caches and
enqueues all data points as well as events from customer’s sites
or other installations. To offer endpoints for different kinds
of clients that can push data different technologies for the
endpoint are possible. For a generic endpoint a REST-based
implementation can be offered. For gathering data within a
plant and transferring it to the data center the framework
uses the Cloud Connector. The devices in the plant, such
as different types of sensors and actuators provide the actual
data values and events.

B. Focus of this Paper

Based on our conceptual architecture we implemented a
prototype. We aim at subsequently evaluating the different
characteristics of the used technologies in a systematic way.
We started by analyzing one of the core technologies of the
industrial monitoring system which is the time-series database.
In this paper, we focus on evaluating the scalability and
partially also robustness of this core technology. Future efforts
will aim at extending the evaluation to other parts of the
architecture as well as other architectural concerns such as
availability and security.

III. BENCHMARK DESIGN

Our benchmark aims at evaluating the scalability character-
istics of the time series database under test, namely the scaling
coefficient for different workloads. The following hypotheses
we aim to either prove or disprove:

1) Linear scalability: Time series databases on top of
cloud infrastructures scale linearly with the number of
nodes employed in the cluster.

2) Industrial workloads: Cloud-based time series
databases are able to handle industrial workloads.

3) Workload independence: The scaling is independent of
the type of data being stored. Only the amount of data
accounts for scalability.

4) Resiliency: Cloud-based time series databases can tol-
erate crashes of up to two instances.

5) Read/write independence: Cloud-based time series
databases show an independent read and write perfor-
mance (i.e., no “noisy neighbor” problem).

Additionally, we wanted to identify bottlenecks for specific
workloads in order to determine the most effective way for
scaling out the cluster. For example, we wanted to know if
provisioned I/O (pre-defined and guaranteed I/O operations1)
would be needed in case of hard disks being the bottleneck.

A. Industrial Workloads

For performance and scalability benchmarking, we have
acquired realistic workload profiles from representative indus-
trial processes. The following paragraph including Table I will
give an overview on the different load profiles consisting of
combinations from two workloads and different read and write
scenarios.

1) Phase-Measurement Workload: This workload comes
from electrical power engineering in the context of Wide
Area Measurements Systems (WAMS), which employs Phasor
Measurement Units (PMU) to measure the electrical waves
of a power grid [7]. The use of GPS receivers allows for
time synchronization of individual PMUs, thereby offering
synchronized real-time measurements of multiple remote mea-
surement points on the grid. Each PMU has fourteen analog
and eight digital signals, which we modelled as 14 32-bit
floats2 following a 12.5 Hz Sinus curve.

1http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER
PIOPS.html

2The digital signals have been merged into a single value.



In the first load profile called PMU Write, a PMU performs
a HTTP POST for the data collected since the last time (max.
2000ms ago) the PMU uploaded data with a resolution of
20ms. This accounts for 50 samples of each signal / sec, and
a total of 750 values per second per PMU. The PMU will
sleep for 1000ms after a successful post request. We define the
system to have reached maximum capacity, when the average
post latency is greater than 1000ms.

Besides the PMU Write profile, we also have two read
profiles related to PMU. The read tests are performed on
a time series database that holds 15 hours of data for the
identified maximum sustainable number of PMUs. In the first
read workload profile, called PMU ReadSingle, 1 minute of
data of a random selected signal is requested starting from a
random moment in the collected 15 hours of data. This query
represents the typical amount of data an engineer will analyze
when working with a single PMU’s data. We define the system
to have reached its maximum read capacity when the average
request time is greater than 1 second. The maximum number
of requests/sec before reaching this stop criterion is the value
we are after.

The second read workload profile, called PMU ReadAll,
reads the value of 50 stored signals for a random selected 1s
time window in the collected 15 hours of data. This query
represents the typical amount of data an engineer will analyze
when searching for deviations in PMU synchronization. A
similar stopping criteria as for the first read test is used, but
now the capacity is reached when the average request time is
greater than 20 seconds, as we are requesting large amounts
of data.

Finally, we also measure combined read and write work-
loads. We assume a possible ratio for the PMU WRS (write
& read single) which combines 90% PMU Write requests
and 10% PMU ReadSingle requests. For PMU WRA (write
& read all) we define the ratio as 95% PMU Write and 5%
PMU ReadAll. The The stopping criterion for the combined
tests is reached when the average response time is above 1
second.

2) Smart Meter Workload: The second workload is taken
from the advanced metering infrastructure (AMI) for smart
grids. Such systems collect energy usage from smart meters
installed in customer homes. The system stores and analyzes
the data in order to optimize energy production and distribution
and to prevent outtakes. The concrete scenario requires to
store many meter readings (in excess of 1,000,000) in 15
minute intervals that arrive in a 2-minute time window. Each
meter reading includes a 32-bit float representing the energy
consumed thus far. The connections are typically not made by
each meter individually but rather by intermediate aggregators
which typically aggregate several hundreds to thousands of
meters. For our benchmark we aggregated 1,000 meter read-
ings per request. Whereas the PMU workload tests the ability
to support continuously running uploads, this workload tests
the ability of the time series databases to handle peak demands.

Name OpenTSDB KairosDB Databus

Version 2.0 RC1 0.9.1 1.1.0
License LGPLv2.1+ Apache 2.0 Mozilla Public 2.0
Storage HBase 0.94 Cassandra 1.2.8 Cassandra 1.2.8
LOC 34,305 31,474 95,418
Activity3 21 53 113
Committers4 2 2 2

TABLE II
DETAILS ON THE TIME SERIES DATABASE PROJECTS.

B. Profile Definitions

Table I gives an overview on the profile definitions and
the defined number of experiments. For the write scenario we
executed both workloads (PMU and Smart Meters) starting
with an empty database. We then executed the experiment for
varying cluster sizes, i.e., 3, 6, 12, 24, and 36 nodes.

IV. EXPERIMENT

A. Evaluated Time Series Databases

Cloud-based time series databases originated often from IT
resource monitoring use cases. For these use cases, time series
databases gather information from servers, applications, and
other IT resources. Two of the three databases we analyzed
come from this domain (OpenTSDB and KairosDB). Databus
instead was developed for energy monitoring. There are many
time series databases available [2]. However, most of them did
not fit our requirements to be open-source, self-deployable and
having a REST API (removing TempoDB and Squwk from the
list). Other projects seem to be abandoned or in an immature
state (like Apache Chukwa, Sensor DB, or Rhombus). The
next sections and Table II give further details on the evaluated
technologies.

1) OpenTSDB: OpenTSDB [5] collects and stores time se-
ries data. It is based on HBase [6] database and runs on Linux
platforms. To store data into OpenTSDB provides a REST API
(also Telnet and batch import of data are supported), which
accepts post messages to containing JSON formatted data. The
latest 2.0 release candidate of OpenTSDB allows a millisecond
resolution to store time series data. OpenTSDB also offers
a comprehensive web interface for querying, displaying and
analyzing the time series data.

2) KairosDB: KairosDB [7] is a rewrite of OpenTSDB
that more clearly separates between data retrieval and its
representation. Therefore, KairosDB also includes more query
functionality such as more advanced time series aggrega-
tors. KairosDB uses Cassandra [8] as storage layer targeting
at improved speed and scalability. However, an abstraction
at the storage layer allows using also other databases. As
OpenTSDB, KairosDB supports submitting data points via
both Telnet as well as a REST API. The REST API accepts

3Total number of commits in the months October-December 2013.
4Active committers committing to dev. branch / master, excluding merge

commits for the same period as Activity.



Profile Scenario Workload DB content # of nodes Max resp. # Experiments
time per DB

PMU Write Write PMU empty 3,6,12,24,36 1s 5
SmartMeter Write Write Smart Meter empty 3,6,12,24,36 60s 5
PMU ReadSingle Read Single PMU 15h PMU 12 1s 1
PMU ReadAll Read All PMU 15h PMU 12 20s 1
PMU WRS 90% Write + 10% Read Single PMU 15h PMU 12 1s 1
PMU WRA 95% Write + 5% Read All PMU 15h PMU 12 1s 1

TABLE I
OVERVIEW OF THE DEFINED BENCHMARK PROFILES.

POST payloads in JSON format. Furthermore, KairosDB also
has native support for millisecond time series granularity,
supports compressed data upload of batch data.

3) Databus: The National Renewable Energy Laboratory
(NREL) developed Databus [9] for collecting and storing time
series data. A key feature of Databus is its ability to store
large amounts of data collected at a one second granularity.
Databus runs on top of the Cassandra database [8]. Databus
requires the POST payload of a request to be in the JSON
format. In Databus there are two types of tables, i.e., Stream
tables for time-series data, and Relational table for relational
data. To translate data into different forms when requesting
data Databus supports different computational modules, such
as an SQL module, a module to compute splines.

B. Experiment Environment

The server clusters for the experiments were set up on
infrastructure provided by Amazon Web Services (AWS). We
used Priam by Netflix [10] and Apache Whirr [11] to be able to
quickly deploy the Cassandra and HBase clusters for our time
series databases. These tools on top of Amazon’s compute
service EC2 created and configured a fresh cluster for each
experiment quickly and teared it down afterwards. From the
set of instance types available at AWS, we chose m1.large 5

instances with 8GB Memory, 2 cores and 2 420GB ephemeral
disks. We used the local machine disks for persistent storage.
For Cassandra we combined the disks into a single RAID0.
Our choice of instance type and storage for AWS deployments
of Cassandra was based on recommendations from [12] and
[13]. Based on these recommendations we also decided to use
triple replication for the underlying databases.

The time series database server components ran on the same
nodes as the NoSQL database services. Amazons’ Elastic Load
Balancing service distributed performance test traffic across
all cluster nodes. AWS CloudWatch was used to monitor the
machine instances, e.g. CPU utilization, data transfer and disk
usage. As test driver infrastructure we used the Visual Studio
Ultimate Web Load Test tools. The setup consisted of a client
for developing, triggering and monitoring the load tests, a
controller node that distributed load tasks and gathered the
metrics and finally a set of worker machines that create the

5http://aws.amazon.com/en/ec2/instance-types/

actual load. As we were not interested in measuring network
effects, we decided to put all servers and load driver machines
in the same AWS region (EU-West (Ireland)). The overall
infrastructure cost (i.e. the AWS bill) for setting up and
running the experiments was around 2000 US$.

C. Experiment Execution

To identify the maximum amount of PMUs/smart meters
that the systems can handle we gradually increased the load
by adding more and more virtual users (VU), during the run
of the experiment. A virtual user, in the PMU case produces
and submits the data of one PMU. Further VUs were added
until either the stopping criterion defined for the respective
scenario was reached or errors such as timeouts occurred. The
latter manifested in the load balancer producing a timeout as
its underlying service did not respond in a timely manner. The
default timeout for an AWS elastic load balancer was at 60s.

For the read profiles we filled the database with 15 hours
of data based on the highest stable input load the respective
database could handle. The read time frames had been ran-
domly selected from the available data to reduce the effect
of caching. Furthermore, the amount of data in the database
(e.g., 15GB per node for KairosDB6) was designed to be larger
than the buffers of the underlying database (e.g., 4GB for
Cassandra).

V. RESULTS

A. OpenTSDB

Performing load tests against OpenTSDB proved to be
difficult, as results could not be replicated between runs. Some
of the underlying HBase instances ran out of their allocated
memory during our load tests, which seemed to correlate with
the amount of data being pushed, but not the actual data rate.

This behavior is usually not problematic, but does become
a problem as OpenTSDB continues to accept data from
clients even though the underlying storage cluster is no longer
working. Even on light loads, given enough time, some of
the HBase nodes run out of memory. Increasing the memory
limits allocated to the HBase JVMs did not solve the problem.
Additionally, OpenTSDB does not throttle the IPC requests to

6In total this accounts for 60GB of raw data: 15Gb per node * 12 nodes =
180GB / 3 times replication = 60GB raw data.
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Fig. 2. Load test run of KairosDB in the PMU write scenario for a 24 node
cluster. The maximum capacity appears to be around 420 PMUs. As the load
increases there is a sudden drop in thoughput as the system gets overloaded.

the HBase instance. Together, these two aspects complicate
recovering an out-of-memory HBase instance, prevent data
loss, and to determine the load OpenTSDB can handle.

After 12 tests (each taking more than 1 hour) for a 6
node cluster using the PMU write scenario, we determined
that for the maximum capacity lies around 50 PMUs at 48,4
requests/sec with at least one HBase instance running out of
memory at around 43 minutes when using a constant load.

Concluding, both HBase and OpenTSDB fail to protect
themselves properly against massive uploads. HBase assumes
that it is configured correctly for the workload it gets. Hence,
expert tuning and monitoring of the HBase cluster is required
to make it operational sustainable. We did not have the
time to perform this for this benchmark. On the other hand,
OpenTSDB fails to detect problems with HBase and to alert
its clients when it no longer can handle the load.

B. KairosDB

The results of a typical PMU Write load test for a 24
node KairosDB cluster are depicted in Figure 2. The graph
illustrates the slowly increasing amount of virtual users and
beneath that curve the amount of pages per second. Ideally
the curves would overlap as then the complete data for the
PMU over the last second can be transferred as one. As the
maximum capacity of the system, in this case around 420
PMUs, which corresponds to the amount of PMUs installed in
small sized country, is reached there is a drop in the responses
and response times for individual requests go up. As the load
balancer times out at 60s longer request times show up as
timeout errors in the graph.

Figure 3 presents the server-side metrics for the same test
run. It shows the average values of various metrics for the
server nodes in the cluster over the time of the test run. Disk
write does not go beyond 4 MB/s on average which is way
beyond the maximum throughput of the provisioned disks.
Based on this data, which we also gathered for the other bench-
mark profiles we can conclude that KairosDB under the given
workloads is CPU bound. Even in the PMU ReadAll profile
which is the most I/O intensive profile wrt. the disk utilization,
CPU is saturated before the disk does. More specifically, in
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Fig. 3. Resource utilization for the load test run of KairosDB in the
PMU Write scenario with 24 nodes. The standard deviation of the CPU
utilization for the different nodes is denoted as error bars on the respective
series.

this profile the disk read utilization is on average across all
nodes only around 4 MB/s (max. 10MB/s) when the maximum
throughput is reached.

Having a deeper look at the CPU utilization reveals that
the load is mostly evenly distributed between the KairosDB
process (˜50%) and the Cassandra process (˜50%). Together
with the CPU boundedness of the system this allows for a good
scaling behavior. If more performance is required additional
nodes can be added increasing the capacity of both KairosDB
and Cassandra. We also found this in the distribution of the
load among the nodes. A simple load balancer configuration
is enough to evenly distribute the load.

Regarding robustness we found that the self-protection of
KairosDB behaves well. KairosDB monitors how well Cas-
sandra handles the current workload and tries to adapt its
queues accordingly so that they don’t overrun. This results in
the clients being throttled by response times when the back-
end can’t handle more load. This behavior can be seen in the
increasing response times towards the end of the load test run
depicted in Figure 2. Still, if load goes up more and queues still
fill more, nodes might fail. However, due to triple replication
this is not fatal.

We then could also observe a graceful degradation if a
node fails as the system remains functional. The load balancer
can then, based on configured health checks, just remove the
failing instance and distribute the load to the remaining nodes.

For the PMU write profile shown in Figure 4 KairosDB
scales almost linearly with the amount of nodes. The largest
cluster with 36 nodes could handle a maximum of 598 PMUs
with a maximum of 538 requests per second and a write
throughput of 403,500 values written per second.

The SmartMeter Write profile reached as much as
˜6,000,000 smart meters in the 36 node cluster as a maximum
throughput which corresponds to the amount of meters of a
large city. As depicted in Figure 5 the scalability is not fully
linear with the number of nodes in the cluster. When the
amount of smart meters goes beyond 2,000,000 the scalability
slightly decreases but then remains stable. A reason for this
could be the massive amount of different tables that need to
be handled in this case. The mapping table which identifies
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which metric belongs to which table could most probably be
completely cached for lower numbers but not anymore for a
number metrics beyond 2,000,000.

The read test profiles results shown in Figure 6 reveal
another interesting behavior. As a baseline we defined the
maximum throughput for the write case in a given cluster,
i.e., around 200 PMUs for the 12 node run. The results for the
PMU ReadSingle profile show a maximum throughput of 225
read PMUs with a maximum of 166 requests per second. The
throughput for the PMU ReadAll profile is significantly lower.
Only 40 virtual users could be handled with a maximum of
9.8 requests per second. This lower throughput results from the
data structuring. In this profile data from 50 different PMUs
and therefore also 50 different tables has to be accessed. This
causes significantly more effort on the database side to load
the appropriate chunks of data.

Finally, we analyzed the combined write and read profiles.
Compared to the write only baseline, the PMU WRS and even
the PMU WRA profile show a slightly increased throughput.
This indicates a good separation between the read and write
pipelines in the system. Even heavy queries, such as those in
the PMU WRA profile do not negatively influence the write
performance of the system.

In conclusion, KairosDB, handled our industrial workloads
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Fig. 7. Typical load test run behavior of Databus in the PMU write scenario
from a 24 node test showing a maximum capacity of around 65 PMUs.

well. Especially with the graceful degradation and linear scal-
ing behavior it fulfills the requirements for the implementation
of our architecture.

C. Databus

For Databus, the behavior for the PMU Write scenario was
similar to that of KairosDB (see Figure 2 and 7), i.e. once the
number of requests/sec started to decrease the number of errors
and request response time increased. However, there are two
significant differences. Firstly, the requests/sec first stabilizes
for a while in Databus before the request response time starts
to increase. Secondly, request (timout) errors do not occur so
suddenly when the system gets overloaded as for KairosDB.

Figure 8 presents the results for Databus for the PMU write
scenario. There is a widening gap between the requests/sec
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Fig. 8. Results for Databus in the PMU write scenario.
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Fig. 9. Results for Databus in the smart meter write scenario.
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Fig. 10. Databus resource utilization of 24 nodes in the PMU write scenario.
The standard deviation of the CPU utilization for the different nodes is denoted
as error bars on the respective series.

and the write/sec because of Databus’ mechanism for han-
dling HTTP connections. When a client establishes a HTTP
connection, Databus accepts and acknowledges the first packet
of the request. However, it only starts to request for content of
the HTTP request once the previous batch has been processed
and written to the Cassandra cluster. Consequently, Databus
actively throttles its client HTTP connections. Databus there-
fore does not asynchronously decouple writing to its Cassandra
back-end from reading information from its clients.

Although initially the performance of Databus seems to
scale linearly, at 36 nodes this trend is broken. Even cor-
responding with the authors of Databus, we were not able
to identify the source of this problem. Furthermore, we also
could not conduct the read load tests as we constantly ran into
problems during the 15h input phase for Databus.

The results for Databus in the smart meter write scenario are
presented in Figure 9. The results show a linear relationship
between the number of smart meters Databus can handle and
the number of nodes in the cluster. However, the number of
smart meters Databus can handle is an order of magnitude
lower than KairosDB. Because Databus throttles HTTP con-
nections, thereby causing an inflexibility in the system to deal
with peaks in work loads, as is the case with the smart meter
scenario.

Similar to KairosDB, Databus is CPU-bound. Databus
achieves a uniform distribution of CPU utilization across the
cluster (e.g. see standard deviation in Figure 10). Compared to

KairosDB, the CPU utilization of Databus is much smoother,
with no spikes happening at individual nodes until a single
core is fully utilized, i.e. at the 50% utilization point, as the
virtual machines have 2 cores available. However, Databus is
significant less efficient than KairosDB, a typical ratio between
the CPU usage of Cassandra and Databus on a node is 30%
versus 70%.

The self-protection of Databus is limited, as it is mainly
based on throttling its HTTP connections. Databus has an issue
with dealing with quickly ramping up traffic. In such cases,
nodes can stale out at 100% CPU utilization from Databus
(not Cassandra) without recovering when the connections are
terminated and the cluster is given several hours to recover.
Most likely this behavior is due to a concurrency connection
handling bug. As another issue, heavily used nodes can run
out of memory. To resolve this issue, we increased the initial
memory size of the JVMs from 1GB to 4GB each, which
resolved this issue.

D. Summary

The results for the databases differed heavily. For example,
KairosDB could handle almost an order of magnitude more
PMUs/smart meters than Databus. Furthermore, we failed to
execute the load tests for OpenTSDB in a reproducable way.
Therefore, the checks against most of our initial hypotheses
only hold for KairosDB:

1) Linear scalability: The evaluated databases, especially
KairosDB, show a good near-linear scaling behaviour.

2) Industrial workloads: KairosDB was able to handle
both workloads to an extent which would result in
realistic cluster sizes, i.e., a 24 node cluster could handle
the smart meters of a large city.

3) Workload independence: For both types of industrial
workloads KairosDB as well as Databus could be scaled
in a similar, linear way.

4) Resiliency: Even with one or two instances down
KairosDB and to a certain extent also Databus could
continue working. Even though, response times partly
went beyond the specified timeouts.

5) Read/write independence: As the combined read/write
troughput of KairosDB is even above the write only
performance and even complex queries (e.g., in the
PMU WRA profile) did not lead to a degredation of
the write thoughput we can assume a good separation
between read and write tasks.

We calculated the costs of the used time series database
clusters based on AWS prices. For example, the 24 node
cluster capable of handling 6,000,000 smart meters would cost
4147.20 US$ with on-demand machines or 1468.80 US$ on
3-year reserved instances per months.

E. Limitations and Threats to validity

Threats to the validity of our results mainly stem from
three different areas. First, we did not have expert knowledge
in tuning the underlying databases (HBase and Cassandra).
Secondly, the time series databases (OpenTSDB, KairosDB



and Databus) are still immature. Future, more stable versions
of these technologies might perform differently. Finally, as we
run our experiments in a virtualized environment we had no
control of hardware underneath provided test VMs. However,
as AWS does not do over-provisioning of CPUs and we used
local (ephemeral storage) the effects of this uncertainty might
be not that significant.

Concrete data from OpenTSDB could not be measured due
to technical issues. Furthermore, as we could perform the read
tests only for KairosDB we cannot relate the read performance
to other technologies.

VI. RELATED WORK

There is limited work in the literature on supporting the
design of cloud-native monitoring systems for industrial pro-
cesses. Most of the available literature on cloud computing
technologies is either for enterprise applications or generic
without a particular domain focus. Sakr et al. [1] provide a
comprehensive survey of large scale data management ap-
proaches in cloud environments including MapReduce pro-
gramming models and NoSQL databases.

There are also several benchmarks and performance com-
parisions for NoSQL databases available. Yet none of these
involve time-series databases or industrial workloads. For
example, Cooper et al. [14] introduced the Yahoo Cloud
Serving Benchmark (YCSB) that issues differently distributed
request against databases, and was applied on Cassandra,
HBase, Yahoo’s PNUTS and MySQL. Bushik [15] built on
their results, but instead used commodity hardware for mea-
surements and also analyzed MongoDB and Riak. Nelubin et
al. [16] altered YCSB for ultra-high performance scenarios and
compared Cassandra, Couchbase, MongoDB, and Aerospike.
Datastax [17] benchmarked Cassandra, HBase, and MongoDB
on Amazon AWS using modified YCSB workloads. The
results of all these benchmarks are helpful, but cannot be
directly transferred to the domain of cloud-native monitoring
systems.

In the general area of cloud benchmarks Folkerts et al. [18]
provide an introduction on the specific challenges in creating
benchmarks for cloud applications, e.g., using meaningful
metrics and creating an appropriate workload design.

Wlodarczyk [2] compared four time series database sys-
tems that exploit cloud environments including OpenTSDB,
TempoDB and Squwk. OpenTSDB was used by Andreolini et
al. [19] to monitor IT resources in cloud environments. None
of these approaches focuses on industrial applications and their
specific requirements.

VII. CONCLUSION

We have proposed a conceptual architecture for a cloud-
native monitoring system for industrial processes. We pre-
sented a benchmark for evaluating its included time-series
database scalability and robustness based on realistic, in-
dustrial workloads. The results indicate that our hypotheses
(linear scalability, support for industrial workloads, workload
independence, resiliency and read/write independence) are

mostly supported at least for KairosDB. The results can be
used as a baseline for the evaluation of other time series
databases.

In future work, we plan to conduct our benchmark in
extended setups, e.g., spanning multiple availability zones on
the server side as well as the load driver side. Furthermore, we
will extend our evaluations and provide generic test scenarios
as well as benchmark results for other components of the
conceptual architecture.
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