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ABSTRACT

Determining the trade-off between performance and costs
of a distributed software system is important as it enables
fulfilling performance requirements in a cost-efficient way.
The large amount of design alternatives for such systems of-
ten leads software architects to select a suboptimal solution,
which may either waste resources or cannot cope with fu-
ture workloads. Recently, several approaches have appeared
to assist software architects with this design task. In this
paper, we present a case study applying one of these ap-
proaches, i.e. PerOpteryx, to explore the design space of an
existing industrial distributed software system from ABB.
To facilitate the design exploration, we created a highly de-
tailed performance and cost model, which was instrumental
in determining a cost-efficient architecture solution using an
evolutionary algorithm. The case study demonstrates the
capabilities of various modern performance modeling tools
and a design space exploration tool in an industrial setting,
provides lessons learned, and helps other software architects
in solving similar problems.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures; D.2.11 [Software Engineer-
ing]: Software Architecture

1. INTRODUCTION

Evolving a software intensive system is typically far from
trivial. One of the first steps in this process is to create a
common shared vision among the system stakeholders for
the future of the system. Omnce this vision has been es-
tablished, a system road-map can be created that outlines
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the steps and time-schedule in which the system should
evolve. However, creating a reasonable vision and associ-
ated road-map proves to be complicated in practice. Often,
the trade-offs among the quality attributes are not under-
stood well enough to make an informed decision. One way
to improve this understanding is by performing design space
exploration. In such an exploration, quantitative analysis
models are created that evaluate various architectural al-
ternatives with respect to the system’s relevant quality at-
tributes. In turn, this activity creates a deeper understand-
ing of the trade-offs among the quality attributes, thereby
enabling more informed decision making.

A challenge for the aforementioned approach is that its
associated methods and tools are largely untested in an in-
dustrial setting outside the academic research groups they
originated from. This creates uncertainty about whether
these methods and tools are fit for purpose and actually de-
liver the value they promise. This in turn stands in the way
of popularization, i.e. the ability of an approach to gain
wide spread industrial acceptance [38].

The main contribution of this paper is therefore a case
study presenting the application of various academic tools
and methods for design space exploration in an industrial
setting. Our case study presents how we explore compo-
nent re-allocation, replication, and hardware changes and
their performance and cost implications. To the best of our
knowledge, this combination of explored changes has not
been automatically explored for performance in other works
yet. We present the selection criteria for the used meth-
ods and tools, the application of them, and the results they
delivered. Finally, we present lessons learned and provide
pointers for future research directions.

The rest of this paper is organized as follows. Section 2
introduces the system under study, the performance and
costs goals of the case study, and the overall approach fol-
lowed. Next, Section 3 presents the performance measure-
ments, which are used in Section 4 to build a performance
model. Section 5 reports on our manual exploration of the
design space with the aforementioned performance model,
the formalization of our cost model, and how we used both
to automatically explore the degrees of freedom in our de-
sign space. Lessons learned and pointers for future research
directions are presented in Section 6. The paper concludes



with related work in Section 7 and with conclusions and
future work in Section 8.

2. CASE STUDY OVERVIEW
2.1 System under study

The system studied in this paper is one of ABB’s remote
diagnostic solutions (RDS). The RDS is a 150 kLOC system
used for service activities on thousands of industrial devices
and records device status information, failures, and other
data. We note that throughout the paper certain details
of the system are intentionally changed to protect ABB’s
intellectual property.

During normal operation the industrial devices periodi-
cally contact the RDS to upload diagnostic status informa-
tion. In cases of abnormal behavior, the devices upload error
information to the RDS for future analysis. Customers can
track the status of their devices on a website and can gen-
erate reports, for example, showing device failures over the
last year. Service engineers can troubleshoot device prob-
lems either on-site or remotely by sending commands to the
device through the RDS.

Part of the RDS is illustrated in Fig. 2. The devices run
device specific software that connects to the ‘RDS Connec-
tion Point’, which runs in ABB’s DMZ (perimeter network
for security reasons). Here the data enters ABB’s internal
network and is send onward to the core components on the
application server.

The system core components handle both the processing
and storing of the uploaded data, as well as the publishing
of data and interaction with external systems. Data that
is received from devices is processed and then stored in the
database. Certain data uploads are mined in the ‘Data Min-
ing and Prediction Computation’ component, for example,
to predict the wear of parts. The customer website is hosted
outside the RDS back-end and gets data from the RDS web
services via a proxy (not shown). The website for service en-
gineers is hosted within the same environment as the RDS
web services. Both websites offer access to reports that are
created by a separate reporting component, which is not
shown in the model.

The RDS is connected to various other systems. One ex-
ample is shown in the diagram in Fig. 2: the ‘ABB customer
and device database’ interface, which represents a Microsoft
SQL Server (MS-SQL) plug-in that synchronizes the RDS
database against a central ABB database recording infor-
mation on which customers have what service contracts for
which devices. This synchronization scheme reduces the la-
tency for look-up of this information when a human user or
device connects to the system.

2.2 Performance and Cost Goal

ABB wants to improve the performance of RDS by re-
architecting, because its back-end is operating at its perfor-
mance and scalability limits. Performance tuning or short
term fixes (e.g., faster CPUs) will not sustainably solve the
problems in the long term for three reasons. Firstly, the ar-
chitecture was conceived in a setting where time-to-market
took priority over performance and scalability requirements.
Hence, the current architecture has not been designed with
performance and scalability in mind. Secondly, the number
of devices connected to the back-end is expected to grow by
an order of magnitude within the coming years. Finally, the

amount of data that has to be processed for each device, is
expected to increase by an order of magnitude in the same
period. Together, these dimensions of growth will signifi-
cantly increase the demands on computational power and
storage capacity.

The performance metric of main interest to the system
stakeholders is the device upload throughput, i.e., the num-
ber of uploads the system can handle per second. It was
decided that the system resource on average must not be
utilized more than 50% to be able to cope with workload
peaks. Considering that the speed of the target hardware
resources will grow significantly in the next years, the per-
formance goal for the system was specified as: “The system
resources must not be utilized more than 50 percent for a
ten times higher arrival rate of device uploads”.

The architectural redesign should manage to fulfill the
performance goal while controlling cost at the same time. It
is not feasible to identify the best design option by prototyp-
ing or measurements. Changes to the existing system would
be required to take measurements, but the cost and effort
required to alter the system solely for performance tests are
too high because of its complexity. Furthermore, the capac-
ity predicted by a performance model can be combined with
the business growth scenario to get a time-line on the archi-
tectural road-map. Thereby, we can avoid the risk of start-
ing work too late and experiencing capacity problems, or
being too early and making unnecessary investments. There-
fore, ABB decided to create a performance model and cost
model to aid architectural and business decision making, to
conduct capacity planning and to search the design space for
architectural solutions that can fulfill the performance goal
in a cost effective manner.

2.3 Case Study Activities

Our case study consisted of three major activities: per-
formance measurement (Section 3), performance modeling
(Section 4), and design space exploration (Section 5). Fig. 1
provides an overview of the steps performed for the case
study. The following sections will detail each step.

3. PERFORMANCE MEASUREMENT

Measurements are needed to create an accurate perfor-
mance model. To accurately measure the performance of
the RDS, a number of steps needs to be performed. First,
tools have to be selected (Section 3.1). Second, a model
should be created of the system workload (Section 3.2). Fi-
nally, measurements have to be performed (Section 3.3).

3.1 Measurement Tool Selection

The first step entails finding the appropriate tools needed
to measure the performance of the system. In short, this
consists of:

e A load generator tool to simulate stimuli to the systems
in a controlled way.

e An Application Performance Management (APM) tool,
which can measure the response time of different stimuli
(called business transactions) to the system.

o A (distributed) profiler, which can tell us how the re-
sponse time of the different stimuli is distributed. This
information is vital, as we would like to understand how
the performance is build up to focus our re-architecting
efforts.
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Figure 1: Case Study Approach

We created an initial list of 58 different tools that could
fulfill some of this functionality. After removing the alterna-
tives that were no longer maintained or lacked feature com-
pleteness the list shrunk to 17 tools. For each of these 17
tools, we classified their functionality and costs by attend-
ing online sales presentations of the various tool vendors.
In the end, we settled on using the NeoLoad load generator
tool [17] in combination with the dynaTrace APM tool [16],
because the tools integrate nicely, dynaTrace makes instru-
mentation of .Net applications easy and NeoLoad supports
MS Silverlight.

The dynaTrace tool offers normal performance measure-
ment functionality and distributed profiling functionality.
DynaTrace traces requests through all tiers in a distributed
application and stores measurements on each individual re-
quest in so-called PurePaths. DynaTrace instruments the
.NET application code in the CLR layer, thus allowing
PurePaths to show timings (i.e., CPU time, execution time,
latency) as deep as at the method-level. The recorded mea-
surements can be summarized and viewed in several ways.
For example, dynaTrace can create sequence diagrams of
PurePaths or show a break-down of how much time was
spent in various APIs.

3.2 Workload Modeling

The second step deals with the issue of finding out what
the typical workload on the system is. Firstly, we organized
a workshop with the developers to find out the actors on the
system and their main use cases. Secondly, we turned on the
logging facilities of the IIS containers to record the stimuli
to the system for a month in production. Using the Sawmill
log analysis tool [18], we determined the most frequent used

use cases: the periodic uploading of diagnostic/error infor-
mation by devices and the interaction of Service Engineers
(SE) with the system. Surprisingly enough, the customer re-
lated use cases were relatively low in frequency. Most likely
this is due to customers being only interested in interacting
with the system when the devices have considerable issues,
which is not often the case.

The RDS thus executes two performance-critical usage
scenarios during production: periodic uploading of diagnos-
tic status information from devices and the interaction of
service engineers (SE) with the system. We approximated
the uploads with an open workload having an arrival rate
of 78.6 requests per minute. Furthermore, we characterized
the SE interactions with a closed workload with a user pop-
ulation of 39.3 and a think time of 15 seconds. All values
were derived from the production logs of the system.

We decided to run load tests with the system on three
different workload intensities: low, medium, and high. The
workloads are specified in Table 1 as the number of sustained
uploads received from the devices per minute, and the num-
ber of concurrent service engineers requesting internal web
pages from the system.

The medium workload approximates the current produc-
tion load on RDS. The low workload was used as an initial
calibration point for the performance model and is approxi-
mately half the production load. The advantage of the low
workload is that the system behavior is more stable and
consistent, making it easier to study. The high workload
represents a step towards the target capacity and enables
us to study how the resource demands change at increasing
loads.

workload uploads/min SE requests/min

Tow 41.0 20.5
medium 78.6 39.3
high 187.9 93.9

Table 1: The model calibration workloads used.
(data is altered to protect ABB’s intellectual property)

3.3 Measurement Execution

The third and final step, performing the measurements,
has to deal with an important constraint to the case study:
the need to minimize the impact of the study on ongoing
development and operation activities of the system. To ad-
dress this issue, we built a separate “experimental” copy of
the system in the ABB Corporate Research labs. This copy
consisted of a recently released version of the RDS, which is
deployed on a large server running virtualization software.
This deployment in virtual servers allows us to easily test out
different deployments of the system with varying hardware
resources. For the virtualization software we choose to go
with VMWare ESX, as we have local in-house IT expertise
to manage such servers.

The experimental copy of the RDS runs on three virtual
machines. The NeoLoad load generator runs on a separate
physical machine to emulate industrial devices uploading
data and service engineers generating requests to the RDS.
DynaTrace data collection agents were installed on the DMZ
and application server. Information on the performance of
the database server was recorded by subscribing dynaTrace
to its Windows performance monitor counters, as dynaTrace
cannot instrument the Microsoft SQL Server (MS-SQL).



During the first load tests on our system, we verified the
consistency of the performance measurements and we gained
sufficient confidence in dynaTrace’s instrumentation to run
all our measurements for 30 minutes. In the next tests, we
stressed the system to observe its behavior under peak loads
and to find its bottlenecks and capacity limits. Both test
phases needed several iterations to adjust dynaTrace’s in-
strumentation, so that requests were traced through all tiers
correctly. During the stress tests we varied the hardware
configuration of the virtual machines to explore the sensi-
tivity of the application to the amount of CPU cores and
memory and several concurrency settings of the ASP.Net
container.

Finally, we performed two types of structured measure-
ments to support the performance modeling. First, we ran
load tests matching our workload model, which later could
be compared to model predictions to calibrate the model.
We used average values from these load tests to instatiate
our model. Second, we measured just a single request to get
a clear picture of runtime system behavior to base the be-
havioral part of the performance model upon. When recre-
ating the workload model in NeolLoad, we needed several
iterations until the generated workload matched the model.

Some data we could not gather using dynaTrace. First
of all, some metrics were not easily recorded or isolated.
For example, network latency measurements were more eas-
ily obtained using a ping tool and MS-SQL’s performance
counters were better studied with the MS-SQL profiler tool.
Second, it was difficult to interpret results. For example, sig-
nificant differences between CPU and execution time were
difficult to account for, because the instrumentation of the
ASP.Net container itself was insufficient.

4. PERFORMANCE MODEL

To construct a performance model for the ABB RDS, we
first selected an appropriate modeling notation (Section 4.1),
which turned out to be the Palladio Component Model (Sec-
tion 4.2). Based on the performance measurements results,
the workload model, and additional analyses, we constructed
a Palladio model for the ABB RDS (Section 4.3), which we
calibrated (Section 4.4) until it reflected the performance of
the system under study well.

4.1 Method and Tool Selection

We conducted a survey of performance modeling tools [23]
and selected initial candidates based on three criteria: (i)
support for performance modeling of software architectures,
(ii) available recent tooling, (iii) tool maturity and stabil-
ity. Most mature tools do not meet the first criterion, while
prototypical academic tools often fail on the latter two as
described in the following.

The low-level Petri Net modeling tools GreatSPN [15] and
ORIS [7] as well as the SHARPE [12] tool do not reflect soft-
ware architectures naturally. This problem also applies to
PRISM [10]. The ArgoSPE [1], and TwoTowers [14] tools
are not actively updated anymore. Intermediate modeling
languages, such as KlaperSuite [4] or CSM [2], were dis-
carded due to their still instable transformation from UML
models.

The commercial Hyperformix tool [35] is expensive, while
from publicly available information it is difficult to judge
whether the tool offers major benefits in our use case. The
PEPA tools [9] use a powerful process algebra, but the pro-

totypical mapping from UML models to PEPA has not been
maintained for several years.

Six tools appeared mature enough and promising to fit
our architectural modeling problem: Java Modeling Tools
(JMT) [3], the Layered Queuing Network Solver (LQNS) [5],
Palladio workbench [8], QPME [11], SPE-ED [13], and
Mébius [6].

Based on our requirements, we analyzed the different
tools. Some of Mdbius’ formalisms do not target at soft-
ware architecture performance modeling. The SPE-ED tool
specifically targets architecture modeling, but it is no longer
actively updated. Furthermore, both Mébius and SPE-ED
are subject to license fees for commercial use. While their
price is reasonable, the acquisition of commercial software
within a corporation considerably delays work. Therefore
both tools were rejected.

For QPME, we lacked a release of the stable version 2.0,
thus we could not use the improvements made in this ver-
sion. While both LQNS and Palladio workbench offer mod-
eling concepts that are easily mapped onto software mod-
eling concepts, we decided to start modeling using JMT,
which feature more intuitive user interfaces and the best
documentation. JMT’s simplicity in modeling and ability
to be directly downloaded contributed to this decision.

Unfortunately, JMT quickly proved not expressive
enough. For example, asynchronous behavior could not be
directly expressed. Also, the semantic gap between our soft-
ware design concepts (components interacting by web service
calls) and the QNM formalism were an obstacle.

Finally, we opted to use the Palladio workbench, because
it supports the simulation of architectural models and be-
cause its ‘UML-like’ interface makes it easier to construct
models and communicate them with the stakeholders than
LQNS. The ability to re-use models and components was
another useful feature [23]. Moreover, the Palladio work-
bench has been used in industrial case studies before [27,
33], thus we assume that it is mature and sufficiently sta-
ble. Palladio’s drawbacks lie in its more laborious model
creation due to the complex meta model and its weaker user
documentation.

4.2 Palladio Component Model

The PCM is based on the component-based software en-
gineering philosophy and distinguishes four developer roles,
each modeling part of a system: component developer, soft-
ware architect, system deployer, and domain expert. Once
the model parts from each role have been assembled, the
combined model is transformed into a simulation or analysis
model to derive the desired performance metrics. Next, we
discuss each role’s modeling tasks and illustrate the use of
the PCM with the ABB RDS model (Fig. 2).

The component developer role is responsible for modeling
and implementing software components. She puts models of
her components and their interfaces in a Component Repos-
itory, a distinct model container in the PCM. When a de-
veloper creates the model of a component she specifies its
resource demands for each provided service as well as calls
to other components in a so-called Service Effect Speci-
fication (SEFF).

As an example consider the SEFF on the right of Fig. 2. Tt
shows an internal action that requires 100 ms of CPU time
and an external call to insert data into the database. Be-
sides mean values, the PCM meta model supports arbitrary



/ <<SEFF>>\

ABB customer and

N Service
in = Engi i i <
Uploads/min = 5 _ Engineer ST Application Server AS1 CPUs =8 device database <<InternalAction>>
- ~ 1 #Replicas = 1 | -
Device ~.__ | Systeminterface>> HWCost = 40 CPUs = 12 i || CPU demand =100 ms
/ Q T = = !
d SRIEET Service £ ] AN #Replicas =1 | |
S = R ervice = H
S Users = 3 A - HWCost =15 | ! <<ExternalCall>>
#Repllcas_— ! Think time S8— Englne_zer Data Access 46 77777 IS ? ! DataAccess insert
HWCost = 40 =155 Website - D L b s ' |
~ = ! gtabase Server o |
77777777777777777 | i i [If prediction [\ ‘ else [\
DMZ Server k[) | + = | =z
! e} H =
- O Database <<ExternallCall>>
RDS . g] 2] Data M""."g. g ] - DataMining mine
X{ Connection Gt =>0— Parser O— Device Data —O—{ and Prediction
Point Computation
(web services) O
<<implements>> \ J

Figure 2: Palladio Component Model of the ABB remote diagnostic system (in UML notation)

probability distributions as resource demands. Other sup-
ported resource demands are, for example, the number of
threads required from a thread pool or hard disk accesses.
The component developer role can also specify component
cost (CCost), for example, our database component has cost
10 (CCost = 43) (cf. Section 5.3).

The software architect role specifies a System Model by
selecting components from the component repository and
connecting required interfaces to matching provided inter-
faces. The system deployer role specifies a Resource En-
vironment containing concrete hardware resources, such as
CPU, hard disks, and network connections. These resources
can be annotated with hardware costs. For example, appli-
cation server AS1 in Fig. 2 has 8 CPU cores (CPUs = 8),
costs 40 units (HWCost = 40, cf. Section 5.3), and is not
replicated (#Replicas = 1).

Finally, the domain expert role specifies the usage of the
system in a Usage Model, which contains scenarios of calls
as well as an open or closed workload for each scenario.

The Palladio workbench tool currently provides two per-
formance solvers: SimuCom and PCM2LQN. We chose
PCM2LQN in combination with the LQNS analytical solver,
because it is usually much faster than SimuCom. Automatic
design space exploration requires to evaluate many candi-
dates, so runtime is important. PCM2LQN maps the Palla-
dio models to a layered queueing network (LQN). This does
not contradict our former decision against LQNS, since here
the LQN models remained transparent to the stakeholders
and were only used for model solution. The LQN’s ana-
lytic solver [26] is restricted compared to SimuCom, since it
only provides mean value performance metrics and does not
support arbitrary passive resources such as semaphores.

4.3 Model Construction

To model the RDS like in the experimental setup as a
Palladio model, we studied its structure and behavior by
analyzing the available documentation, talking to its devel-
opers, analyzing the source code and performing different
load tests. Then, we constructed the model as follows:

Component Repository: Using the existing architec-
tural descriptions to create the component repository formed
a major challenge, because these documents were limited
in detail and only provided a component level logical view
and a deployment view. We used these views to select the
components to include in our PCM component repository.
Initially, the RDS repository consisted of seven components,
seven interfaces, and 27 component services.

SEFFs: To specify the SEFF's for each component service
(step 2), we used dynaTrace to analyze the system behav-

ior. We created single stimulus measurements (e.g., a single
upload) and analyzed them in depth using the method-level
performance information for each transaction in dynaTrace
PurePaths [16]. The method level turned out to be far too
detailed for a useful behavioral model.

Therefore, we opted to model system behavior at the level
of web service calls between the tiers. In some cases, we
added more detail to capture differences between use cases.
For example, the data mining component needed to be mod-
eled in some detail to get accurate predictions for each type
of upload, because the component is quite complex and re-
source intensive. We further used various overviews of dy-
naTrace to ensure that we included the most frequent and
demanding parts of the software. While we used the afore-
mentioned server log analysis results to limited the SEFFs
in our model to represent only the most frequent use cases.

One of the more complex SEFF's is depicted as an example
in Fig. 3. While heavily abstracting from the actual source
code, it still shows a complex control flow with several re-
source demands to CPU and hard disk as well as several
calls to other components and web services.

While log analyses also revealed that the uploads were
not uniformly spread over time, we assumed that the upload
rate will be flattened due to easily implementable changes
to the system. Since ABB can control the upload schedule
to a great extent this is a reasonable assumption. However,
we do reserve capacity for (limited) peaks. The reporting
functionality of RDS was not included despite its significant
performance impact, because there are concrete plans to mi-
grate this functionality to a dedicated server.

Several aspects of the application infrastructure were not
considered in the performance model. First of all, the RDS
interacts with ABB internal and external 3rd party systems.
Our model assumed that the response times of the services
offered by these systems do not increase as the load within
RDS increases, because we could not easily obtain informa-
tion about the scalability of these systems.

Second, the Microsoft SQL Server (MS-SQL) database
replication/duplication mechanisms were not modeled in de-
tail. The exact behavior of the MS-SQL in these cases is
hardly known, and it was not feasible to conduct experi-
ments to prototype the behavior. As a result the database
scalability figures and resource requirements are expected to
be slightly optimistic.

System Model: From the resulting Palladio component
repository, we created a system model instantiating and con-
necting the components. It contained 7 component instances
and 7 connectors. In this case, creating the connections of
the components was straightforward.
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Figure 3: An example service effect specification
(SEFF) from the RDS Palladio model showing the
inner behavior of one component service in terms of
resource demands and calls to other components

Resource Environment: In our case, this model is
made up of three servers, each with a CPU and hard disk.
The network capacity is assumed to always be sufficient and
scaled up by the IT provider as required. The first rea-
son for this assumption is that we expect our IT provider
to actually be able to provide the capacity and latency re-
quired. The second reason is the limited detail offered by
Palladio’s network simulator and the subsequent difficulty of
specifying the network subsystem in detail. One would have
to determine, for a complex system running in .NET, how
much latency network messages are issued in each layer.

Allocation Model: We mapped the seven component
instances to the three servers in the resource environment ac-
cording to the allocation in our experimental setup (Fig. 2).

Usage Model: Our usage model reflects the upload ser-
vice and the service engineering interaction with the system.
The former was a periodic request to the system modeled
with an open workload and three differently weighted upload
types. The latter comprised a more complex user interaction
with different branches, loops, and user think times and a
closed workload.

4.4 Model Calibration

Calibration of performance models is important to ensure
that the resource demands in the model accurately reflect
the resource demands in the real system. For calibration
of the RDS model, we executed the Palladio performance
solvers and compared the predicted utilization for each re-
source with the utilizations measured by their respective
windows performance counters. We conducted this compari-
son for each of the three workloads introduced in Section 3.3
to assure that the model was robust against different work-
load intensities.

Despite using the detailed resource demands measured by
dynaTrace, the utilizations derived from the initial RDS Pal-
ladio model showed a moderate deviation from the actually
measured utilizations. Thus, we ran additional experiments
and performed code reviews to get a better understanding of
the system and why the prediction was off. We focused on
those parts of the model where it showed errors of more than
20 % compared to the measurement results. This led to use-
ful insight, either to refine the model or to learn more about
the RDS architecture, the system behavior, and bottlenecks
in the system. The utilizations derived in each calibration
step were recorded in an Excel sheet to track the model
accuracy and the effect of changes made to the model.

After calibration the model gives values up to 30% too low
for the DMZ server CPU utilization. That means that for
a 25% CPU utilization the actual CPU utilization could be
32.5%. The application server utilization figures are off by a
maximum of 10% and the database server CPU utilization
results are at most 30% too high. Three quarter of the
response times for both internal and external calls are within
30% of the measured value.

We report the errors for our high load scenario, because
this is most representative of our target workload. The er-
rors for the other two workloads are lower. Overall, the
error percentages are reasonable, but not desirably small.
However, both our measurements in the experimental setup
and our experience during earlier work [23] showed that the
application server, for which our model most accurately pre-
dicts utilization, would be the most likely bottleneck. There
are two main reasons it was not economical to further im-
prove the accuracy of the model. First, the complex be-
havior of the ASP.Net container especially with our asyn-
chronous application could not be understood within rea-
sonable time. Second, the application behavior was com-
plex, because of its size and the way it was written.

5. DESIGN SPACE EXPLORATION

Based on the created performance model, we want to
find cost-efficient architectures to cope with the expected
increased workload (cf. Section 3.2). We consider three
workload scenarios: Scenario 1 considers a higher workload
scenario due to more connected devices. Scenarios 2 and
3 additionally consider an eightfold (scen. 2) and fourfold
(scen. 3) increase of processed data per device. For each
scenario, we want to determine the architecture that fulfills
our main performance goal (50% utilization maximum) at
the lowest cost. We first ran several manual predictions us-
ing the calibrated model (Section 5.1). Because of the large
design space, we applied the automated design space explo-
ration tool ‘PerOpteryx’ (Section 5.2). As a prerequisite we
created a formal PerOpteryx cost model (Section 5.3) and
a degree of freedom model (Section 5.4). Finally, we ran
several predictions and created an architectural road-map
(Section 5.5).

5.1 Manual Exploration

Initially, we partially explored the design space by man-
ually modifying the baseline model [23]. First, we used the
AFK scale cube theory, which explains scalability in three
fundamental dimensions, the axes of the cube. Scalability
can be increased by moving the design along these axes by
cloning, performing task-based splits or performing request-
based splits. We created three architectural alternatives,



each exploring one axis of the AFK scale cube [19]. Second,
we combined several scalability strategies and our knowl-
edge about hardware costs to create further alternatives to
cost-effectively meet our capacity goal. Finally, we reflected
several updates of the operational software in our model,
because the development continued during our study.

The first of our AFK-scale cube inspired alternatives,
scales the system by assigning each component to its own
server. This complies to the Y-axis in the AFK scale cube.
However, some components put higher demands on system
resources than others. Therefore, it is inefficient to put each
component on its own server. The maximum capacity of this
model variant shows that network communication would be-
come a bottleneck.

A move along the X-axis of the AFK scale cube increases
replication in a system (e.g., double the number of appli-
cation servers). All replicas should be identical, which re-
quires database replication. We achieved this by having
three databases for two pipelines in the system: one shared-
write database and two read-only databases. This scheme
is interesting because read-only databases do not have to be
updated in real-time.

The AFK scale cube Z-axis also uses replication, but addi-
tionally partitions the data. Partitions are based on the data
or the sender of a request. For example, processing in the
RDS could be split on warning versus diagnostic messages,
or the physical location, or owner of the sending device.

All alternatives did not consider operational cost. There-
fore, we also developed an informal cost model with hard-
ware cost, software licensing cost and hosting cost. Hard-
ware and hosting costs are provided by ABB’s IT provider.
A spreadsheet cost model created by the IT provider cap-
tures these costs. For software licensing an internal soft-
ware license price list was integrated with the I'T provider’s
spreadsheet to complete our informal cost model.

We further refined the alternatives with replication after
finding a configuration with a balanced utilization of the
hardware across all tiers. In the end, we settled on a config-
uration with one DMZ server running the connection point
and parser component, one application server running the
other components and one database server only hosting the
database, i.e., a 1:1:1 configuration.

To scale up for the expected high workload (scen. 1), we
first replicated the application server with an X-split (i.e.,
two load-balanced application servers, a 1:2:1 configuration).
For further workload increase (scen. 2+43), this configura-
tion could be replicated in its entirety for additional capac-
ity (i.e., a 2:4:2 configuration). This resulting architecture
should be able to cope with the load, yet it is conserva-
tive. For example, no tiers were introduced or removed, and
there was no separation based on the request type to differ-
ent pipelines (i.e., z-split).

The potential design space for the system is prohibitively
large and cannot be explored by hand. Thus, both to con-
firm our results and to find even better solutions, we con-
ducted an automatic exploration of the design space with
PerOpteryx, as described in the following.

5.2 PerOpteryx: Automated Exploration

The PerOpteryx tool was designed as an automatic de-
sign space exploration tool for PCM models [34, 30]. We
selected PerOpteryx because of its ability to explore many
degrees of freedom, which sets it apart from similar tools.

Additionally, its implementation can directly process PCM
models. PerOpteryx applies a meta-heuristic search process
on a given PCM model to find new architectural candidates
with improved performance or costs. Fig. 4 shows a high-
level overview of PerOpteryx’s search process:
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Figure 4: PerOpteryx process model (from [30])

As a prerequisite for applying PerOpteryx, the degree of
freedom types to consider for optimizing the architecture
need to be defined. These types describe how an architecture
model may be changed to improve its quality properties [31].
For example, the degree of freedom type “component allo-
cation” describes how components may be re-allocated to
different servers that provide the required resources.

In step 1, we manually model the search space as a set of
degrees of freedom instances to explore. Each degree of free-
dom instance has a set of design options (e.g., a set of CPU
clock frequencies between 2 and 4 GHz, or a set of servers
a component may be allocated to). Each possible archi-
tectural candidate in the search space can be represented
relative to the initial PCM model as a set of decisions. This
set of decisions—one for each degree instance—is called the
genome of the candidate. Furthermore, the optimization
goal and requirements are modeled in step 1. For example,
we can define that the response time of a certain system
service and the costs should be optimized, while a given
minimum throughput requirement and a given maximum
utilization requirement must be fulfilled.

If multiple quality metrics should be optimized, Per-
Opteryx searches for Pareto-optimal candidates: A candi-
date is Pareto optimal if there exists no other candidate
that is better in all quality metrics. The result of such an
optimization is a Pareto front: A set of candidates that are
Pareto optimal with respect to other candidates evaluated
so far, and which should approximate the set of globally
Pareto-optimal candidates well. If only a single quality met-
ric should be optimized, the minimum or maximum value
(depending on the metric) is searched.

In step 2 PerOpteryx applies evolutionary optimization
based on the genomes. This step is fully automated. It uses
the NSGA-II algorithm [24], which is one of the advanced
elitist multi-objective evolutionary algorithms. In addition
to the initial PCM model genome, PerOpteryx generates
several candidate genomes randomly based on the degree of



freedom instances as the starting population. Then, itera-
tively, the main steps of evaluation (step 2a), selection (step
2b), and reproduction (step 2c) are applied.

First, each candidate is evaluated by generating the PCM
model from the genome and then applying the LQN and
costs solvers (2a). The most promising candidates (i.e. close
to the current Pareto front, fulfilling the requirements, and
well spread) are selected for further manipulation, while
the least promising candidates are discarded (2b). Dur-
ing reproduction (2c¢), PerOpteryx manipulates the selected
candidate genomes using crossover, mutation, or tactics
(cf. [30]), and creates a number of new candidates.

From the results (step 3), the software architect can iden-
tify interesting solutions in the Pareto front fulfilling the user
requirements and make well-informed trade-off decisions. To
be able to apply PerOpteryx on the RDS Palladio model, we
first created a formal PerOpteryx cost model (Section 5.3)
and a degree of freedom instances model (Section 5.4) as
described in the following two subsections.

5.3 Formal RDS Cost Model

The PerOpteryx cost model allows to annotate both hard-
ware resources and software components with the total cost
of ownership, so that the overall costs can be derived by
summing up all annotations. For our case study, we model
the total costs for a multiple year period, which is reason-
able since the hosting contract has a minimum duration of
several years. In total our cost model contained 7 hardware
resource and 6 software component cost annotations. The
hardware resource costs were a function depending on the
number of cores used.

However, the cost prediction cannot be fully accurate.
First, prices are re-negotiated every year. Second, we can
only coarsely approximate the future disk storage demands.
Finally, we do not have access to price information for strate-
gic global hosting options, which means that we cannot ex-
plore the viability of replicating the RDS in various geo-
graphical locations to lower cost and latency.

Furthermore, we are unable to express between different
types of leases. The IT provider offers both physical and
virtual machines for lease to ABB. The two main differences
are that virtual machines have a much shorter minimum
lease duration and that the price for the same computational
power will drop more significantly over time than for physi-
cal servers. While these aspects are not of major impact on
what is the best trade-off between price and performance,
it has to be kept in mind that a longer lease for physical
machines that have constant capacity and price (whereas
virtual machines will become cheaper for constant capacity)
reduces flexibility and may hurdle future expansion.

5.4 Degrees of Freedom and Goal

For the ABB RDS system, we identified and modeled three
relevant degree of freedom types:

Component allocation may be altered by shifting com-
ponents from one resources container to another. However,
there are restriction to not deploy all components on the
DMZ servers and to deploy database components on spe-
cific configurations recommended by the IT provider. With
four additional resource containers as potential application
servers in the model, PerOpteryx can explore a Y-axis split
with one dedicated application server per component.

Resource container replication clones a resource con-
tainer including all contained components. In our model, all
resource containers may be replicated. We defined the upper
limits for replication based on the experience from our man-
ual exploration [23]. If database components are replicated,
an additional overhead occurs between them to communi-
cate their state. This is supported by our degree of freedom
concept, as it allows to change multiple elements of the ar-
chitecture model together [31]. Thus, we reflected this syn-
chronization overhead by modeling different database com-
ponent versions, one for each replication level.

Number of (CPU) cores can be varied to increase or
decrease the capacity of a resource container. To support
this degree of freedom type, the cost model describes hard-
ware cost of a resource container relative to the number of
cores. The resulting design space has 18 degree of freedom
instances:

e 5 component allocation choices for the five components
initially allocated to application server AS1: They may
be allocated to any of the five application servers and to
either the DMZ server or the database server, depending
on security and compatibility considerations.

e 6 number of (CPU) cores choices for the five available ap-
plication servers and the DMZ server, each instance allows
touse 1, 2, 3, 4, 6, or 8 cores as offered by our I'T provider.

e 7 resource container replication choices for the five appli-
cation servers (1 to 8 replicas), the DMZ server (1 to 8
replicas), and the database server (1 to 3 replicas). The
resource container replication degree of freedom instance
for the database server also changes the used version of the
database component to reflect the synchronization over-
head of different replication levels.

The size of this design space is the combination of choices
within these instances and thus is 3.67 x 10'® possible archi-
tecture candidates.

The degree of freedom types “Resource container replica-
tion” and “Number of cores” have been newly defined for
this work. As such, the combined optimization of software
architectures along all three degree of freedom types has not
been presented before and shows the extensibility of Per-
Opteryx. Furthermore, the possibility to model the chang-
ing database behavior (due to synchronization) for different
number of replicas shows the flexibility of PerOpteryx’ de-
gree of freedom concept.

The goal of the design space exploration for a given work-
load is to find an architectural candidate that minimizes
costs while fulfilling performance requirements. Three per-
formance requirements are relevant: First, the response time
of service engineers when calling a system service should be
below a given threshold. Second, the response time of the
upload service called by the devices should be below a given
threshold to ensure the timeliness of the data. Finally, the
CPU utilization of all used servers should be below 50%.

5.5 Automated Exploration Results

In the following, we present the exploration results for the
three scenarios. As I/O activity is not modeled in the RDS
performance model, PerOpteryx cannot take it into account.
This assumption has to be validated in future work.
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Figure 6: Found Optimal Architecture for High
Workload (Scenario 1)

5.5.1 Scenario 1: Higher Workload

For the higher workload scenario, we first ran 3 Per-
Opteryx explorations of the full design space in parallel on a
quad-core machine. Each run took approx. 8 hours. Analyz-
ing the results, we found that the system does not need many
servers to cope with the load. Thus, to refine the results,
we reduced the design space to use only up to three appli-
cation servers, and ran another 3 PerOpteryx explorations.
Altogether, 17,857 architectural candidates were evaluated.

Fig. 5 shows all architecture candidates evaluated during
the design space exploration. They are plotted for their costs
and the maximum CPU utilization, which is the highest uti-
lized server among all used servers.

Candidates marked with a cross (x) have a too high CPU
utilization (above the threshold of 50%). Overloaded can-
didates are plotted as having a CPU utilization of 1. The
response time requirements are fulfilled by all architecture
candidates that fulfill the utilization requirement.

Many candidates fulfilling all requirements have been
found, with varying costs. The optimal candidate (i.e. the
candidate with the lowest costs) is marked by a square.
This optimal candidate uses three servers (DMZ server, DB
server, and one application server) and distributes the com-
ponents to them as shown in Fig. 6. Some components are
moved to the DMZ and DB server, compared to the initial
candidate. No replication has to be introduced, which would
lead to unnecessarily high costs. Furthermore, the number
of cores of the DMZ server are reduced in the optimal can-
didate to save additional costs.

Note, that we did not consider the potentially increased
reliability of the system due to replication. A reliability
model could be added to reflect this, so that PerOpteryx
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Workload and Information Growth 8 (Scenario 2)

could also explore this quality dimension (as for example
done in [34]).

5.5.2  Scenario 2: Higher Workload and Information
Growth

If each device sends more data for processing, this leads
to an increased demand of some of the components per de-
vice request. Thus, the overall load of the system increases
further. In this scenario 2, we assume an increase of device
information by a factor 8, which leads to higher resource
demands in some components where the computation is de-
pendent on the amount of processed data. The new demands
were modeled by adding a scalar to the original demands.
We defined the scalars based on the theoretical complexity of
the operation. For example, a database write scales linearly
with the amount of data to be written.

8436 candidates have been evaluated for this scenario in 3
parallel PerOpteryx runs, each running for approx. 8 hours.
Fig. 7 shows the evaluated candidates. Compared to the
previous scenario, fewer candidates have been evaluated be-
cause only the full design space has been explored. More of
the evaluated candidates are infeasible or even overloaded
and the feasible candidates have higher costs, as expected
for the increased workload. The initial candidate as shown
in Fig. 2 and the optimal candidate found for the previous
scenario 1 are overloaded in this workload situation.

The found optimal candidate is shown in Fig. 8. The
components are allocated differently to the servers. Addi-
tionally, five replicas of the application server and 2 replicas
of the database server are used. This also leads to higher
component costs for the database, as two instances have to
be paid for. Still PerOpteryx found it beneficial to use the
database server as well and even add components to it, be-
cause the (physical) database server is less expensive relative
to computing power (recall Section 5.3).
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Figure 9: Evaluated Architecture Candidates for
High Workload and Information Growth 4 (Scenario
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Figure 10: Found Optimal Architecture for High
Workload and Information Growth 4 (Scenario 3)

5.5.3 Scenario 3: Higher Workload and Intermedi-
ate Information Growth

As a migration step from scenario 1 to scenario 2 with
information growth, we additionally analyzed an intermedi-
ate information growth of a factor 4. The PerOpteryx setup
and run statistics are comparable to scenario 2. Fig. 9 shows
the evaluated candidates. As expected, the cloud of evalu-
ated candidates lies in between the results of scenario 1 and
2. For example, there are fewer feasible candidates than in
scenario 1, but more than in scenario 2.

Fig. 10 shows the resulting optimal candidate. Com-
pared to the optimal candidate from scenario 1 (Fig. 6),
PerOpteryx has moved the Parser component to the appli-
cation server as well, to be able to use only one DMZ server.
The database server is unchanged. The application server
has been strengthened to cope with the increased load and
the additional Parser component.

However, additional manual exploration shows that the
candidate is not truly optimal: PerOpteryx chose to use
5 replicas with 4 cores each here. After inspecting Per-
Opteryx’ optimal candidates, we found that an application
server with 3 replicas and 8 cores each would actually be
even slightly faster and cheaper (only costs of 120 instead of
150). Thus, a longer exploration run would be required here
for a truly optimal solution. Alternatively, we could devise
additional PerOpteryx tactics that first analyze the costs for
replication of cores and servers and then adjust the model to
achieve the cheapest configuration with equivalent process-
ing power. Note, however, that PerOpteryx’ automation
still is beneficial, as it would be laborious or even impossible
to come to these conclusions with manual exploration only.
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5.5.4  Summary and Recommendations

Based on these results, we can recommend a road-map
for scaling the RDS. First, to cope with the expected work-

load increase (scenario 1), the system should be configured
in a three tier configuration as shown in Fig. 6. During our
manual exploration we made a similar conclusion with re-
gards to the DMZ server. However, we did not know which
components to off-load from the application server to the
database server. We did consider to place both the data
access and data mining predictions on the database server
but this overloaded the database server. Hence, the optimal
solution for scenario 1 is a partial surprise, but is still valid.

If the workload becomes higher (e.g. due to information
growth, scenario 3), the application server should host more
components and should be replicated as shown in Fig. 10.
Finally, a further increased workload due to more informa-
tion growth (scenario 2) requires to replicate all three tiers as
shown in Fig. 8, while at the same time the allocation of com-
ponents to application server and database server is slightly
adjusted to make optimal use of the processing power. Based
one these findings, we formulated a 5 year road-map for the
future development of the system. We plan to validate our
evaluation after 2 years, as the first steps in the road-map
have been realized.

6. LESSONS LEARNED

In this section we share the lessons that we took from our
study and that we consider of value to other industry practi-
tioners. Researchers may find ideas on how to improve their
performance modeling techniques to meet industry needs.

Performance modeling increases understanding.

The performance modeling proved useful in itself, because
it forced us to understand the system’s (performance) be-
havior and identify the bottlenecks. It helped us to ask the
right questions about the system and gave us insight that
was potentially just as valuable as capacity predictions. For
example, model calibration helped us to find oddities in the
system behavior. The model represents a polished version
of the system that should match its average behavior, but
under varying loads measurements and predictions occasion-
ally diverge. One of the things we learned during calibration
was that a lock statement was put in the code to limit the
amount of concurrently running data mining processes, as
to free resources for the internal website that was running
on the same server.

Predictions shift stakeholder discussion.

The discussion about the architectural road-map with our
stakeholders changed once we introduced the model pre-
dictions. The data shifted the conversation from discus-
sion towards a situation where we explained the model-
ing/evaluation results and the road-map was more or less
taken for granted. There was no longer discussion about
what the way forward should be. This means that the cred-
ibility of our study was high, despite or maybe due to the fact
that we presented our stakeholders with a detailed overview
of the assumptions underlying the model, their effect on ac-
curacy, and a list of things we did to ensure accuracy.

Economic benefit must exist.

The cost of measuring and modeling are quite high. One
has to consider the cost for load generator and measurement
tools, training, an experimental copy of the system, and hu-
man resources. The latter include the strain on developers
and product owners, in addition to the cost for the perfor-
mance study team. Our study took approximately four full-
time employees six months. Adding everything up, one can



conclude this type of projects are too expensive for small sys-
tems. Short-term fixes may turn-out to be cheaper, despite
their inefficiency. We are therefore not surprised that perfor-
mance fire-fighting is still common practice. More support
for performance modelers would be required to decrease the
needed effort, e.g. by automatically creating initial perfor-
mance models based on log data.

Corporate processes may stall license agreements.

It is important to take into account the time required
to reach license agreements with vendors. We encountered
two problems. First, the license model of software vendors
may not fit multi-national companies that have the need to
migrate their licenses between machines in different coun-
tries. Second, academic software owners do not realize how
tedious corporate processes are and how even their simple
license hurdles corporate use of their software. For example,
due to the need for non-standard licenses to be reviewed by
legal experts. This is unfortunate because corporations can
often afford to be early adaptors of new technology due to
the expertise and money they have available to experiment.

Performance of performance modeling tools limited.
Even for modestly sized systems such as the RDS the per-
formance of the performance modeling tools may be a prob-
lem. In our earlier study, we could not use the standard
distribution of Palladio workbench, because it ran out of
memory [23]. In this study, we reverted to the LQNS to limit
the runtime of our design space exploration. The scalability
of the modeling formalism also proved to be important. We
could comfortably model the RDS and various architectural
variations, but we think that the model complexity will be
significant for systems that are two times bigger.

It pays off to invest in good tools.

It is difficult to overemphasize the convenience of having
the right tools. The combination of dynaTrace and NeoLoad
enabled us to take an enormous amount of measurements,
and to navigate these easily. In practice, this meant that we
could easily study the effect of different software and hard-
ware configurations on performance. The changing of hard-
ware configurations was enabled by using virtual machines
in our experimental setup. The repository of performance
measurements, which included over 100 load test runs, was
frequently consulted during model construction.

7. RELATED WORK

Our work uses the foundations of software performance
engineering [39, 21, 32] and multi-objective meta-heuristic
optimization [22]. We compare our approach to (i) recent
industrial case studies on performance prediction and (ii)
recent design space exploration approaches in the software
performance domain.

Most recent industrial case studies on performance model-
ing are restricted to a limited number of evaluated design al-
ternatives. Liu and Gorton [36] constructed a queueing net-
work for an EJB application and conducted a capacity plan-
ning study, predicting the throughput for a growing number
of database connections. Kounev [29] built a queuing Petri
net for the specJAppServer2004. The author measured the
system for different workloads and analyzed the impact of a
higher number of application server nodes (i.e., 2,4,6,8) for
various performance metrics.

Jin et al. [28] modeled the performance of a meter-data
system for utilities with a layered queuing network model.

They constructed a very large LQN with more than 20 pro-
cessors and over 100 tasks. After benchmarking the system,
they analyzed the throughput of the system for massively
higher workloads. Huber et al. [27] built a Palladio Compo-
nent Model instance for a storage virtualization system from
IBM. They measured performance of the system and ana-
lyzed the performance for a synchronous and asynchronous
re-design using the model. All of the listed case studies an-
alyze only a single degree of freedom and/or changing work-
load and do not explicitly address the performance and costs
trade-offs for different alternatives.

Concerning design space exploration approaches in the
performance domain, three main classes can be distin-
guished: Rule-based approaches improve the architecture by
applying predefined actions under certain conditions. Spe-
cialized optimization approaches have been suggested for
certain problem formulations, but they are limited to one
or few degree of freedom types at a time. Meta-heuristic
approaches apply general, often stochastic search strategies
to improve the architecture. They use limited knowledge
about the search problem itself.

Two recent rule-based approaches are Performance-
Booster and ArchE. With PerformanceBooster, Xu et al. [40]
present a semi-automated approach to find configuration
and design improvements on the model level. Based on a
LQN model, performance problems (e.g., bottlenecks, long
paths) are identified in a first step. Then, mitigation rules
are applied. Diaz-Pace et al. [25] have developed the ArchE
framework. ArchE assists the software architect during the
design to create architectures that meet quality require-
ments. It provides the evaluation tools for modifiability or
performance analysis, and suggests modifiability improve-
ments. Rule-based approaches share the two limitations of
being restricted to the pre-defined improvement rules and
the potential of getting stuck in local optima.

Two recent meta-heuristic approaches are ArcheOpteryx
and SASSY. Aleti et al.[20] use ArcheOpteryx to optimize
architectural models with evolutionary algorithms for mul-
tiple arbitrary quality attributes. As a single degree of
freedom, they vary the deployment of components to hard-
ware nodes. Menascé et al. [37] generate service-oriented ar-
chitectures using SASSY that satisfy quality requirements,
using service selection and architectural patterns. They
use random-restart hill-climbing. All meta-heuristic-based
approaches to software architecture improvement explore
only one or few degrees of freedom of the architectural
model. The combination of component allocation, replica-
tion, and hardware changes as supported by PerOpteryx is
not supported by the other approaches, and furthermore
PerOpteryx is extensible by plugging in additional model
transformations [31].

In addition, the other approaches target to mitigate ex-
isting performance problems or improve quality properties,
while our study targets to optimize costs while maintain-
ing acceptable performance (still, other quality properties
can also be optimized with our approach, if reasonable in
setting at hand).

8. CONCLUSIONS

This paper has demonstrated how to construct a
component-based performance model using state of the art
tools for measuring and modeling. We applied the automatic
design space exploration tool PerOpteryx on this model and



evaluated more than 33,000 architectural candidates for an
optimal trade-off between performance and costs in three
scenarios. Our case study resulted in a migration road-map
for a cost-effective evolution of the existing system.

Our approach enables ABB to comply with future per-
formance requirements (thus helping in sales) and to avoid
poor architectural solutions (thus improving development
efficiency). It also helps in better understanding the perfor-
mance impacts on the system and is thus instrumental in
performance tuning. Other practitioners can draw from our
experiences. For researchers, we have demonstrated that au-
tomated design space exploration is feasible for a complex
industrial system albeit incurring significant costs. We have
created a detailed performance models and found pointers
for future research.

Performance measurement and modeling should become
more tightly integrated (e.g., by creating Palladio models
automatically from dynaTrace results). Network modeling
was rather abstract in our study due to the lack of support
in the Palladio model. More detailed modeling of the net-
work could lead to even more accurate prediction results.
There is potential to automatically draw feasible migration
road-maps from the PerOpteryx results for different work-
loads by highlighting compatible candidates. This should be
investigated in future research in more detail.
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