

Facilitating performance predictions
using software components

Jens Happe, Heiko Koziolek, Ralf Reussner

1. Introduction

Composing software systems of independent building blocks is the central vision of component-based
software engineering (CBSE) since the sixties. It became a core research topic of software engineering
during the nineties [1]. CBSE advocated the reuse of software building blocks without requiring
understanding of their internals, which led to the term “software component”. In this black-box
reusability, components deviated from objects and classes.

Since 2000, CBSE widened its perspective from a purely functional view on components to an extended
extra-functional view on quality attributes, which allows for example performance [2] or reliability [3]
evaluation of component-based software architectures (CBSA).

Performance prediction of CBSA follows other engineering disciplines that reason about a system’s
quality based on the properties of its components. In civil and electrical engineering, the early
assessment of quality attributes ensures reliable and cost-efficient development and production. In
software development, performance is often mainly considered at the end of the development cycle
when the complete system can be tested. This so-called ‘fix-it-later’ approach can become expensive if
the late detection of quality problems requires architectural changes and thus re-implementation which
can cause considerable time-to-market delays.

Performance modeling can assist in detecting potential performance problems during early development
stages and identifying alternative solutions. One benefit of component-based performance prediction is
the ability to divide the performance specification work among software architects and component
developers, thus leading to reduced complexity. Furthermore, a potential reuse of component
performance specifications enables cost-efficient predictions.

Component-based systems are specifically suited for early design-time quality predictions. The impact of
implementation decisions influencing performance properties is reduced, because implemented and
well-tested components reduce potential performance problems and may already be accompanied with
performance specifications.

Several CBSE performance prediction methods have emerged during the last decade [2], e.g., PECT [4],
KLAPER [5], CBML [6], PROCOM [7], as well as our own approach called Palladio [8]. In addition to these
core contributions, many supplemental approaches have been developed that contribute to the
performance analysis of component-based systems. These approaches concern the estimation of
resource demands as machine-specific values [9] or as machine-independent measures [10] by using
test-beds for components as well as the inclusion of middleware properties in prediction models [11].

In this article, we use Palladio to demonstrate how componentization can be exploited for software
performance analysis. While the concrete realization is specific to our approach, the principles

introduced here are generally valid. The remainder of this article will illustrate typical performance
questions, information required for performance models, and prediction results for a concrete setup.

2. Running example: MediaStore

Our running example “MediaStore” is a component-based system with intentionally reduced complexity
for illustration purposes. Figure 1 visualizes the static architecture of the system with UML diagrams. The
figure shows a combined component and deployment diagram. The system allows users to download
and upload various media files (e.g., audio/video files) to a central database. The expected usage profile
is 40 user requests per minute, where each requests consists of 8-12 files with a size of 1-8 MB each,
which can be modeled as a probability distribution.

MediaStoreWebForm UserManagement

EncodingAdapterOggEncoder DBAdapter

Web-Browser

MySqlClient MySqlDB

<<GAExecHost>>

Application Server
<<GAExecHost>>

Database Server

<<GAExecHost>>

Client <<GACommHost>>

capacity = (0.128,Mb/s)

<<GACommHost>>

capacity = (100,Mb/s)

<<GAExecHost>>

CPU

<<GAExecHost>>

Harddisk

throughput = (20,MB/s)

<<GAExecHost>>

CPU

<<GAExecHost>>

CPU

Figure 1: MediaStore system: components, servers, and network links

The software architect has assembled the system from a number of software components, which are
potentially provided by third-parties. For example, the “Webform” component handles user interactions,
while the “MediaStore” component contains the business logic. Upon an upload request the store re-
encodes the files provided by the user using the external OggEncoder component, which writes the files
to disk and encodes them to a standard bitrate.

The initial design in Figure 1 still has many degrees of freedom (e.g., size of the servers, allocation of the
components to servers, alternative components The software architect is interested in analyzing the
initial design from a performance viewpoint as detailed in the next section.

3. Typical performance questions and performance influencing factors

Software architects often ask the following questions to understand the performance interrelationships
within their design prior to deployment:

1) How does the architecture affect response times and throughputs for the expected workload?
2) How does the implementation of specific components influence performance?
3) How does the allocation of components to resources influence performance?
4) How does the system perform if its workload increases unexpectedly?

These questions capture four main influences on software performance detailed in the following. For
each question we give a concrete question to be answered for the MediaStore example, which will be
evaluated later.

Architecture

The architecture’s design specifies the connection of components and for white-box components also
their high-level internal behavior. Both can influence the software performance. Software architects can
apply different architectural patterns to optimize performance, such as caches or replication in
combination with load balancing. For the MediaStore example, software architects can ask: How does a
database caching component affect the maximum throughput of the MediaStore?

Component Selection

In some cases, multiple components with similar functionality are available for reuse. For example, there
are many different audio codecs or databases accessible through generic interfaces (e.g., WAV-file input,
ODBC). Software architects can either buy these components off-the-shelf (COTS) or decide for an in-
house development. Software architects need to consider the effect of the component implementation
(e.g., algorithm efficiency) on system quality. For the MediaStore, an interesting question is: To what
extent does a 20% faster (w.r.t. average response time) encoder improve the end-to-end response time?

Resource Allocation and Sizing

Once components have been selected and an architecture has been designed, components can be
allocated to hardware nodes and resources (CPU, HDD, and network) can be sized. Multiple criteria can
affect the allocation of components. Allocating individual components to dedicated nodes may be
beneficial for performance and reliability but also increases costs. While distribution can provide more
processing power for individual components, remote communication can bear expensive performance
overheads that might not be justified. Furthermore, the used middleware usually includes a number of
configuration options, such as thread pool sizes, message encryption or data caching all of which can
affect performance. For the MediaStore, one alternative allocation would be: How does a two-tier
deployment (Application and DB on a single but faster server) affect CPU utilisation and the maximum
throughput?

Usage profile

A system’s usage profile is characterized by its load (How many users are working concurrently on the
system?) and its user work (Which actions does a user execute? What amount of data is involved?).
Architecture design and sizing target a specific workload specified in extra-functional requirements (e.g.,
support for 100 requests / minute). For the MediaStore, software architects can evaluate: Can the
system handle the load if the user arrival rate increases from 40 users per minute to 60 users per minute?
How does the distribution of file sizes influence end-to-end response time?

To construct a performance model, software architects and component developers need to provide
information about the system under study as discussed in the following section.

4. Information required for modeling

A key postulate of CBSE is the separation of component developers implementing components according
to specifications and software architects assembling components to build an application. This separation
of concerns (implementing and assembling components) also implies that performance-relevant
information about components and the architecture is divided between these roles. We further consider
the role of system deployers who define the system’s execution environment and allocate components
to nodes and domain experts who are familiar with user behavior. All roles need to provide information
to build a predictive performance model.

To support these roles, we have designed and implemented the Palladio Component Model (PCM). It is
defined by a metamodel segmented into individual parts for each developer role. In the following, we
describe the information required from each role and how this information is captured in the PCM
(Figure 2).

Component
Repository

System
Model

Resource
Environment,

Allocation

Usage
Model

Prediction
Results

Component developers

Analysis

Components,
interfaces, service
effect specifications, ...

Assembly connectors,
delegation connectors,
composite comp., ...

Servers, processing
rates, network links,
allocation relations, ...

User arrival rate,
input parameter
distributions, ...

Response times,
throughputs, resource
utilizations, ...

Software architect System deployer Domain expert

specify specify specify specify

Palladio Model

Software architect

evaluate

Figure 2: Information required for performance modeling from different roles in CBSE

Information from component developers

The component developers’ choice of algorithms, design patterns, and tuning of the implementation
determine the component’s performance properties to a large extent. Ideally, this knowledge is held
only by component developers as components are supposed to be black-boxes. To enable performance
analyses, component developers need to specify (i.e., publish) how their components use hardware
resources (e.g., execution times for algorithms) as well as other components (via calls to required
interfaces). Depending on the development stage of the component, developers can roughly estimate or
measure the necessary values as discussed in Section 5.

The PCM provides a component repository, where component developers can publish components and
interfaces. For performance analysis, component developers can add abstract component behavior
models for each component service to the component repository. The PCM includes a special modeling
language for component behaviors called “Resource Demanding Service Effect Specification” (RDSEFF).

INTERNAL ACTION
Demand = 2.2 +
fileSize * 0.8 sec

EXTERNAL CALL
Interface „IEncode“

Service „encode“

CPU

GUARDED
BRANCH

RDSEFF
Encoding Adapter „storeFile“

INTERNAL ACTION
Demand = 0.2 +

fileSize * 0.01 sec

CPU

LOOP
iterations =
number of files EXTERNAL CALL

Interface „IDatabase“
Service „storeFile“

GUARD
watermark = true

GUARD
watermark = false

PARAMETERS
watermark (boolean)
numberOfFiles (int)

fileSize (real)

Figure 3: Example service effect specification

Figure 3 provides an example of an RDSEFF for the service “storeFile” of the “EncodingAdapter”
component from Figure 1. It consists of a flow of internal actions (i.e., computations on hardware
resources) and external calls (i.e., invocation of required services). Internal actions may subsume a large
amount of code in a compact form and include a parameterizable demand specification (e.g., a linear
CPU demand depending on the input file sizes). External calls are bound to required interfaces, not to
concrete components, because the component developer is unaware of the concrete connected
components. In our example, the two external calls will be directed to the OggEncoder and DBAdapter
components. An RDSEFF flow may contain branches, loops, and forks, which may in turn depend on
certain parameters (Figure 3) provided by other developer roles.

Information from software architects

At the architectural level, the choice of components and their connections influence performance.
Software architects need to specify the selection and assembly of components, but should be unaware of
component internals. Therefore, the PCM provides a modeling language (System Model) specifically for
software architects. It is an architecture description language that allows horizontal composition (i.e.,
connecting component to other components) and vertical composition (i.e., nesting components inside
composite components). Figure 1 shows the System Model of the MediaStore as a component diagram.
Internals of the components are not visible in the System Model. Software architects can evaluate
different design alternatives by, for example, exchanging components or adding components that realize
performance patterns such as caches or load balancers to their architecture.

Information from system deployers

The execution environment and deployment of component-based systems is managed by system
deployers. For software performance prediction, system deployers specify the execution environment
(i.e., servers and middleware) and allocate components to nodes. The PCM captures performance-
relevant information about the execution environment within a dedicated modeling language, which
includes the speed of processors and additional devices, network latencies, middleware configurations,
operating system parameters, virtualization, etc. Furthermore, system deployers can allocate
components to resource containers. Figure 1 illustrates the allocation of components used in the
MediaStore.

Information from domain experts

Finally, user behavior and workload have a large influence on system performance. Domain experts can
provide information about different classes of users and their behavior as well as the input data they
provide. Thus, the PCM has decoupled the usage specification from the architecture and environment
model, so that it can be specified independently. For the MediaStore example, the arrival rate of
customers (requests per minute) and their behavior (e.g., browse, download, and upload) determine the
load of the system. This includes usage parameters, such as the number of files uploaded into the store
(e.g., always 2 to 8 files) or their file sizes (e.g., between 5 and 10 MB).

Obtaining the necessary data for the models requires further considerations, especially for the
component developers, as detailed in the next section

5. Data collection

Collecting data to construct parameterized performance models as in Figure 3 is a challenging task. The
problem has to be approached differently depending on the availability of an implementation.

Estimation

If no implementation is available because the component is still in a design stage or the third-party
provides no information, the software architect has to estimate resource demands. The software
performance engineering methodology [12] provides guidelines on how to estimate the performance of
software at design time. While it is hard to provide accurate time consumptions for individual
computations steps, developers can often specify upper and lower bounds of a computation with
confidence.

Estimations can be based on the amount of data involved in a computation or the complexity of the
involved algorithms. For the MediaStore example, developers expect certain file sizes (e.g., MP3 files
between 5 and 10 MB). They also have an initial understanding of the algorithmic complexity of an audio
encoding or watermarking algorithm and can provide an estimate of the time consumption based on
small experience with existing encoders (e.g., between 40 and 80 seconds to encode a 5 MB file or
between 2 and 4 seconds for watermarking).

The upper and lower bound of such an estimation can be successively refined (i.e, narrowed down)
during the development once implementation artifacts or prototypes become available.

Measurement

If an implementation of the component is available, component developers can inspect the source code,
set up a test-bed, and run multiple experiments to get the necessary data for the performance model.
For white-box components, the developer can use profiling tools (e.g., gprof, Intel VTune, dotTrace,
JProfiler, JVMPI) or manually instrument the source code. For black-box components, monitoring tools
(e.g., Eclipse TPTP) assist the developer. In case of the MediaStore components, we instrumented their
Java code and used the System.nanoTime() method from the Java API to get precise timing values.

Component developers have to account for unknown usage profiles, unknown required service
implementations, and unknown hardware environments as explained in the following.

To account for unknown usage profiles, the component developer can configure load drivers to supply
input parameters. Existing unit tests can often be modified and used as load drivers. Another option is to
inspect the source code to determine parameter dependencies. For the MediaStore, the encoding
algorithm was measured for different file sizes and a linear function relating file sizes to execution time
was derived.

To account for unknown hardware environments, the component developer either needs to execute the
measurements on reference hardware or has to use an abstract resource demand measure, such as the
number and types of bytecode instructions in Java code, the number of transactions, or the SAP
Application Performance Standard (SAPS). For the MediaStore example, we determined the resource
demands in a reference hardware environment and specified them in milliseconds.

Special considerations are necessary for middleware properties. Application containers may have a
significant impact on the overall system performance, e.g., by managing thread pools for optimal
concurrency or marshaling for remote communication [13]. Software architects can capture their
influence using standard benchmarks (e.g., SPECjEnterprise2010, SPECjms2007, .NET stock trader) to
determine their processing overhead.

. Such performance data can be woven into a performance model by replacing the abstract connectors
between components with concrete marshaling actions and network latencies [11]. In our running
example, the connectors between the “WebBrowser” and “WebForm” as well as between the
“MySQLClient” and the “MySQLDB” could be refined reflecting the marshaling overheads for remote
communication.

Tool support: PALLADIO Modeling Workbench

The Palladio Modeling Workbench is an Eclipse-based tool providing graphical editors to construct
component repositories, system models, resource models, and usage models. It seamlessly integrates
various analysis tools (e.g., a discrete-event simulator, the layered queuing network solver) and provides
software architects immediate feedback on performance bottlenecks. The PCM-Bench is an open source
project available at www.palladio-simulator.com.

Figure 4: Screenshot Palladio Modeling Workbench showing the system model editor and prediction result visualizations

http://www.palladio-simulator.com/

6. Predictions

Once the models of all roles have been collected, a complete performance model (e.g., a Palladio model)
can be constructed and analyzed automatically. Many recent approaches rely on mathematical
formalisms, such as (layered) queueing networks, stochastic Petri nets, and stochastic process algebra, or
simulation [2]. Ideally, tools encapsulate these formalisms and hide their details from software
architects.

(a) Architecture: Impact of adding a DBCache component on

the maximum throughput

(b) Component Selection: Impact of using a faster encoder on

end-to-end response time

(c) Resource Allocation & Sizing: Impact of deploying all

components to a faster server

(d) Usage profile: impact of different file size distributions on

response time (two histograms)

Figure 5: Performance prediction results for the MediaStore.

Figure 5 to 8 illustrate typical performance metrics provided by the Palladio Modelling Workbench based
on predictions for the MediaStore example. We initially calibrated the MediaStore performance model
with measurement data. We showed in a former study [8] that the deviation between the measured and
predicted performance is less than 10 percent if accurate input data is provided. The predictions answer
the performance questions raised earlier:

 Architecture (Figure 5(a)): altering the architecture by adding a database caching component
with a cache hit rate of 20% leads to an approx. 22% higher maximum throughput of the system.

 Component selection (Figure 5(b)): exchanging the default encoder with a faster (but also more
expensive) encoder leads to slightly reduced mean end-to-end response times. The main

bottleneck in the system is the hard disk of the database server, thus this faster CPU
computation has only limited impact.

 Resource environment (Figure 5(c)): using a faster application server leads to a reduced load on
its CPU even though the database component was additionally allocated to this server. The
system would be able to handle approx. 90 instead of 60 requests per minute. However, the CPU
gets not saturated (i.e., only exhibits a maximum utilization of 40 percent) as the bottleneck of
the system is the hard disk.

 Usage profile (Figure 5(d)): the response times of the MediaStore depend on the size of files
requested by the customers. Assuming a given file size distribution, thus also the user response
times follow this distributions. In Figure 5(d), two predictions were performed for two different
file size distributions. The resulting histograms show a certain deviation.

The effort required for modeling depends on the required accuracy and granularity. Several companies
have used the Palladio Modelling Workbench (e.g., IBM [14], ABB [15], and Ericsson under guidance in
joint projects. The studies ranged from performance evaluations of I/O concepts of virtualization layers
to process control systems. The effort to analyze typical scenarios was in the range of 3-6 person
months. It has been demonstrated that early design-time performance analysis can produce accurate
prediction results (e.g., less than 20 percent prediction error in [16]), which enables the comparison of
different design alternatives. The PCM provides means to include influence of middleware platforms into
the prediction. However, even if exact predictions are not possible, the PCM provides good results with
respect to the ranking of design alternatives.

7. Conclusions

The component paradigm has proved useful not only for the functional design of software systems, but
also for the evaluation of software performance and other quality attributes such as reliability and
maintainability. We have shown in this article how component performance can be modeled, how the
required data can be collected, and what kinds of analyses are possible.

CBSE posed two new major challenges for software performance engineering. First, the development
process is distributed among multiple parties (at minimum component developer and component
consumer). For performance analysis, this distribution has to be reflected in the design of prediction
models. Second, performance specifications of components have to be parameterized with respect to
their usage and deployment.

While early reasoning on the extra-functional properties of a software system based on its components
cannot rule out all quality problems, it has however proved to be an important step towards a true
engineering approach to software design.

8. Bibliography

[1] Clemens Szyperski, Dominik Gruntz, and Stephan Murer, Component Software: Beyond Object-
Oriented Programming.: Addison-Wesley, 2002.

[2] Heiko Koziolek, "Performance Evaluation of Component-based Software Systems: A Survey,"
Performance Evaluation, vol. 67, no. 8, pp. 634-658, August 2010.

[3] A. Immonen and E. Niemelä, "Survey of reliability and availability prediction methods from the
viewpoint of software architecture," Journal on Software and System Modeling, vol. 7, no. 1, pp. 49-
65, 2008.

[4] Scott A. Hissam, Gabriel A. Moreno, Judith A. Stafford, and Kurt C. Wallnau, "Packaging Predictable
Assembly," in Component Deployment, 2002, pp. 108-124.

[5] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta, "Filling the gap between design and
performance/reliability modelsof component-based systems: A model-driven approach," JSS Vol.
80(4), pp. 528-558, 2007.

[6] Xiuping Wu and Murray Woodside, "Performance Modeling from Software Components," SIGSOFT
Software Engineering Notes Vol. 29(1), pp. 290-301, 2004.

[7] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and Ivica Crnkovid, "A Component
Model for Control-Intensive Distributed Embedded Systems," in Component-Based Software
Engineering, 2008, pp. 310-317.

[8] S. Becker, H. Koziolek, and R. Reussner, "The Palladio component model for model-driven
performance prediction," JSS Vol. 82(1), vol. 82, no. 1, pp. 3-22, January 2009.

[9] M. Woodside, V. Vetland, M. Courtois, and S. Bayarov, "Resource Function Capture for Performance
Aspects of Software Components and Sub-Systems," in Performance Engineering: State of the Art
and Current Trends, 2001, pp. 239-256.

[10] Michael Kuperberg, Klaus Krogmann, and Ralf Reussner, "Performance Prediction for Black-Box
Components using Reengineered Parametric Behaviour Models," in Component Based Software
Engineering, 2008, pp. 48-63.

[11] Jens Happe, Steffen Becker, Christoph Rathfelder, Holger Friedrich, and Ralf H. Reussner,
"Parametric performance completions for model-driven performance prediction," Performance
Evaluation, vol. 67, no. 8, pp. 694-716, August 2010.

[12] Connie Smith and Lloyd Williams, Performance Solutions: A Practical Guide to Creating Responsive,
Scalable Software.: Addison-Wesley, 2003.

[13] Y. Liu, A. Fekete, and I. Gorton, "Design-level performance prediction of component-based
applications," IEEE Transactions on Software Engineering, vol. 31, no. 11, pp. 928-941, 2005.

[14] N. Huber, S. Becker, C. Rathfelder, J. Schweflinghaus, and R. Reussner, "Performance Modeling in
Industry:A Case Study on Storage Virtualization," in ICSE'2010 - Industrial Track, 2010, pp. 1-10.

[15] Heiko Koziolek et al., "An Industrial Case Study on Quality Impact Prediction for Evolving Service-
Oriented Software," in ICSE'2011 - Industrial Track, 2011, p. to appear.

[16] Samuel Kounev, "Performance Modeling and Evaluation of Distributed Component-Based Systems
Using Queueing Petri Nets," IEEE Transactions on Software Engineering, vol. 32, no. 7, pp. 486-502,
July 2006.

[17] M.D. McIlroy, "Mass Produced Software Components," in Software Engineering, Report on a
conference sponsored by the NATO Science Committee, 1968, pp. 138--150.

[18] Ralf H. Reussner, Heinz W. Schmidt, and Iman H. Poernomo, "Reliability prediction for component-
based software architectures," JSS Vol. 66(3), vol. 66, no. 3, pp. 241-252, June 2003.

