
Identify Impacts of Evolving Third Party
Components on Long-Living Software Systems

Benjamin Klatt∗, Zoya Durdik∗, Heiko Koziolek†, Klaus Krogmann∗, Johannes Stammel∗ and Roland Weiss†
∗Industrial Software Systems, ABB Corporate Research Ladenburg, Germany
†Research Center for Information Technology (FZI), Karlsruhe, Germany

Email: {klatt, durdik, krogmann, stammel}@fzi.de {heiko.koziolek, roland.weiss}@de.abb.com

Abstract—Integrating 3rd party components in software sys-
tems provides promising advantages but also risks due to
disconnected evolution cycles. Deciding whether to migrate to
a newer version of a 3rd party component integrated into
self-implemented code or to switch to a different one is a
challenging task. Dedicated evolution support for 3rd party
component scenarios is hence required. Existing approaches such
as Clarkson, Kotoyana, and Zheng do not account for open source
components which allow accessing and analyzing their source
code and project information. The approach presented in this
paper combines analyses for code dependency, code quality, and
bug tracker information for a holistic view on the evolution with
3rd party components. We applied the approach in a case study
on a communication middleware component for industrial devices
used at ABB. We identified 7 methods potentially impacted by
changes of 3rd party components despite the absence of interface
changes. We further identified self-implemented code that does
not need any manual investigation after 3rd party component
evolution which was not obvious before, as well as a positive
trend of code and bug tracker issues.

I. INTRODUCTION

Integrating 3rd party components, also referred as COTS,
has become a common approach in industrial software devel-
opment aiming to satisfy expectations such as cost or time-to-
market reduction. However, when a long-living software sys-
tem needs to be maintained over several years, it is important
to carefully reflect and continuously monitor the long-term
impact of this integration. Individual release cycles of self-
implemented software and 3rd party components, including
discontinued 3rd party components, force the decision of
upgrading to a new version or even searching for an alternative
component.

Making such a decision is a challenging task due to the
need of assessing the change impact as well as the expected
improvement of the migration. In this paper, we present an
approach which combines code and bug tracker analyses to
estimate i) code change impacts, ii) source code quality, and
iii) development reliability of 3rd party components. This
approach supports decision making for 3rd party component
scenarios. The approach enables the identification of potential
sustainability problems arising from the use of 3rd party com-
ponents and the derivation of mitigation strategies to properly
handle them. We document our experiences from an industrial
case study which applied this approach to a communication
middleware for industrial devices. The case study shows that
the approach supports the assessment of migration decisions.
It helps identifying possible quality issues, as well as source
code which might be affected or not to reduce the required

manual investigation.
Our approach uses static code analysis to identify explicit

interface changes and internal code changes in 3rd party com-
ponents. Afterwards, a dependency analysis identifies potential
impacts on the self-implemented code. In addition, we use a
problem-pattern-detection and bug tracker analysis to estimate
the code quality and reliability of the 3rd party component’s
evolution. Opposed to the majority of the existing approaches
in this area such as such as [1], [2], and [3], we accommodate
the trend to integrate open source components which provide
access to their source code and project information. Our ap-
proach explicitly includes additional resources of open source
projects, such as their source code or bug tracker.

The contribution of this paper is a combined 3rd party
component analysis which is capable to (i) identify explicit
and hidden semantic changes, (ii) source code quality issues,
(iii) estimate the change’s impact on self-implemented source
code, and (iv) assess the development’s reliability of 3rd party
components.

The rest of this paper is structured as follows: Section II
summarizes related work in this area. Section III describes
our analysis strategies in more detail, followed by a summary
of our experiences from the case study in Section IV before
we provide our conclusion in Section V.

II. RELATED WORK
The research area of 3rd party evolution impact analysis is

embossed by two major trends of comprehensive approaches.
The first encompasses approaches making the assumption of
a black box view on integrated components, such as Kotonya
& Hutchinson [2], Voas [4], or Zheng et al. [3]. The latter is
an approach also developed within ABB research. In the same
manner as Kotonya et al., it follows the second major trend,
using an architecture description language (ADL) and process-
based approach to manage evolving 3rd party components.
Opposed to these approaches, our analysis copes with the trend
of integrating open source components that provide access to
source code and other software management information with
further possibilities for the impact and development reliability
analysis.

In the area of source-code-based impact analysis, there
are existing approaches using dependency analysis, such as
Clarksen et al. [1] and Bohner [5]. However, they neither
investigate in an explicit internal change analysis nor in a
comprehensive analysis considering a general quality trend
analysis to further support migration decisions.



Bug-Tracker
Database

3rd Party
Code

Own Code

Dependency 
Analysis

Quality 
Analysis

Bug-Tracker
Analysis

C
o

m
p

re
h

en
si

ve
 

3
rd

 P
ar

ty
 A

n
al

ys
is

Version 
n

Version 
n+1

Version
n+2

Fig. 1. Analysis Strategy Overview

Neamtiu et al. [6] presented a change detection approach
considering changed method signatures as well as internal
(hidden) changes. They used this change comprehension for
dynamic software updates. We use a comparable approach but
integrated in the SISSy tooling also used for other anlaysis of
the presented approach.

III. ANALYSIS STRATEGIES

Our approach combines code-based dependency and code
quality analyses with bug tracker analysis to reduce efforts
and risks connected to the long-term co-evolution of 3rd party
components. To provide a comprehensive evolutionary view
on a 3rd party component, we combine the analysis of source
code dependencies, code quality, and bug tracking information,
and consider multiple versions of a 3rd party component as
shown in Figure 1. The approach is designed to assess the
migration to (1.a) a new version of a 3rd party component,
(1.b) another 3rd party component with the same functionality,
(2) assess the migration impact in terms of affected source
code for 1.a/1.b, and (3) estimate development reliability
trends.

To estimate the possible migration impact, we performed the
same analyses on the version currently integrated, as well as
on versions that are candidates to migrate to. The code analysis
incorporates a dependency and a general quality analysis.
The former analysis included the identification of interface
changes as well as internal changes not reflected in them (i.e.
potential semantic changes in the interface’s implementation).
These results were combined with the dependency analysis to
identify possibly affected parts in the own code. The code
quality analysis was then used to compare the 3rd party
implementation with a quality benchmark (Seng et al. [7]) and
to get a trend analysis of the 3rd party code quality evolution
over the past versions. With the same purpose, the analysis
of the 3rd party bug tracker is used to provide an additional
trend information about the evolution and reliability of the 3rd
party component.

For the source code investigation, we use the SISSy tool
(Structural Investigation of Software Systems) also used by
Seng et al. [7]. SISSy is a free tooling for the automated
analysis and assessment of maintainability of object-oriented
systems based on static analysis techniques. While there are
many different tools providing analysis for coding issues such
as very large classes or dead code, we decided to use SISSy [8]

for a better comparison with the quality benchmark published
by the Q-Bench project as described in Section III-B1.

As a limitation of the presented analysis, access to the
3rd party source code and bug tracker is important. While
the former is easy to get for open source components and
often for commercial components as well, the availability and
maintenance state of the bug tracker often differs even for open
source projects. However, depending on the actual scenario,
even parts of the presented analysis can be performed to
support the migration process.

In the following, we present details about the analysis with
a focus on the dependency analysis and a brief summary of
the others.

A. Dependency analysis
For the source code dependency investigation we recom-

mend three sub-analyses, in more detail below:
1) Analyzing dependencies of self-implemented code to un-

derstand coupling of internal and external components.
2) Detecting 3rd party method signature changes and their

usage to identify code that might be affected.
3) Detecting internal changes of 3rd party methods with

unchanged signatures to identify self-implemented code
that is potentially affected.

1) Dependency Overview: The dependency analysis iden-
tifies the internal dependencies between system modules,
and external dependencies between system modules and 3rd
party libraries. The number of dependencies between two
components reflects the propability of change propagation
between them. Hence, the dependency analysis is an indicator
of which modules might be affected by changes and with
which probability. Central code elements of the system can
be identified based on this number of dependencies. Changes
to those central modules should be done carefully, since such
a change might lead to change propagation into some or all
of dependent modules. The considered types of dependencies
are method calls, variable accesses and type references.

2) Impact of 3rd party signature changes: A question that
should be considered when using a 3rd party component is,
whether updates to a new version might lead to change propa-
gation into the self-implemented code. The general procedure
of the regarding analysis consists of two steps: 1) Identify
signature changes in the 3rd party component, 2) Identify
dependent code fragments in the own code.

In step 1, we compare static code models (i.e. generalized
abstract syntax trees of the source code, represented in a
database) of two versions of the 3rd party component by using
a heuristic for identifying modified signatures. Methods are
defined as equal if they have the same signature and are located
in equal-named files. The signature consists of the name of
the method concatenated with the list of its formal parameter
types, (e.g., methodX(Type1, Type2)). Hence, we determine
a list of methods, whose signatures has not been changed
from one version to another. We then invert this list to get the
changed methods by taking all public methods and excluding
the previously identified list.



A manual investigation of the results is required to identify
mismatches, for example due to renaming or movement in
the directory structure. Afterwards, the list is reduced by the
manually identified false positives.

In step 2, we calculate the direct and indirect callers of these
changed methods based on the database representation of the
source code. We extend the call-hierarchy until ”‘we cross the
border”’ to the self-implemented code (i.e. change propagation
inside the 3rd party component is also considered). As a result
we get a list of methods residing in our code that are directly
or indirectly dependent on signature changed methods of the
3rd party library.

3) Impact of hidden 3rd party changes: The second de-
pendency analysis aims at identifying code fragments that are
affected by hidden changes in a 3rd party component. Hidden
changes are modifications of the logic within a method’s body
without modifications of the method’s signature.

The general procedure of the analysis consists of two
steps: 1) Identifying methods with internal but no signature
changes, 2) Identifying dependent code fragments. In step
1, we compare the static code models of two versions of
the 3rd party component by using a heuristic for identifying
modified method bodies. Methods are defined to contain
(hidden) implementation changes if they are recognized as
corresponding in two versions (since they are in equal-named
files and have equal signatures) but differ in number of state-
ments or number of logic lines of code (no comments). This
(extendable) heuristic also detects methods with restructurings
without semantically changes. Nevertheless, it restricts the
number of methods to be investigated in detail. Hence we
determine a list of methods whose body has been changed
from one version to another.

In step 2, we calculate the direct and indirect callers of
these changed methods. Again, we extend the call-hierarchy
until we ”‘cross the border”’ to our code. As a result we get
a list of methods residing in our code that are directly or
indirectly dependent on hidden changes in methods of the 3rd
party component.

B. Quality Analysis
For a complementary view on the 3rd party component and

its evolution, we consider not only the dependencies of our
own code, but also the code quality of the 3rd party and
information from its bug tracker system.

1) Code-Quality: To assess the quality of the code it-
self and its evolution over multiple versions, we perform a
problem-pattern-detection for analyzed versions of the 3rd
party component. We use the SISSy tooling, also mentioned
above, to detect problem patterns as described in Seng et
al. [7].

According to the number of affected quality aspects we
differentiate major and minor problem patterns. The assign-
ment of applicable categories and the ranking stems from
Seng et al. [7] to ensure objectivity. High-ranked problem
patterns should be considered with a higher priority than
low-ranked problem patterns. Independent from the actually

applied ranking, the presented method is suitable to identify
trends in the code quality.

According to Seng et al., we compare the numeric results of
the problem pattern analysis to reference values from the Q-
Bench research project. These values have been gathered from
analyzing more than 120 projects written in C++ and Java. The
empirical data covers large and medium size projects, as well
as open source and commercial software. The empirical values
contain minimum, lower quartile, median, upper quartile and
maximum regarding the numbers of problem pattern instances
normalized for 1000 lines of code for each problem pattern
type. Further details about this benchmark are documented in
[7].

This analysis allows i) trend analyses across multiple ver-
sions (i.e. how does software’s quality evolve over versions)
and ii) an evaluation of the absolute code quality of a software
product. When selecting a 3rd party library or during its risk
estimation, one can use the present information to argue for
or against a certain implementation of a 3rd party component.
For example, an increasing reaction time for fixing critical
bugs might be a threat to self-implemented code which relies
on the 3rd party component.

If the 3rd party code does not fall within the lower quartiles
of the benchmark’s reference values, this does not necessarily
mean that it is a risk to sustainability. It can only be inferred
that there is an increased probability of a such a risk. Espe-
cially, if the software quality decreases from one version to
another and many changes are made to poor quality artifacts,
the quality indicators should be treated as warnings.

2) Bug Tracker: The second part of the quality analysis is
performed on the bug tracker data of the 3rd party component.
Snapshots of the bug tracker data, according to the releases
of the component, are analyzed to derive the trend of the
component’s quality.

Although, there is no benchmark to compare the bug tracker
analysis with, the results provide an insight on the quality and
evolution of the component. Thus, if bugs remain open for a
long period of time and over multiple releases, or the amount
of severe bugs dominates in the overall bug number or the
amount of bugs increases from release to release, this might
be an indicator for quality and service problems of the 3rd
party component.

Such analysis is complementary to the code-level-analyses
presented above. However, the application of bug tracking,
in terms of stored information and bug tracker usage, strongly
depends on the project’s specific culture as mentioned by Kim
et al. [9].

IV. CASE STUDY
To evaluate the approach, we have applied the proposed

analysis in an industrial case study on a communication
middleware component for industrial devices used by ABB.
Figure 2 presents a high-level view on the components of the
ABB system relevant for this case study. Due to intellectual
property constraints, we had to perform the dependency anal-
ysis between OPC UA and OpenSSL and the code and bug
tracker quality analysis based on OPC UA only.



ABB 
Component

OPC UA 
C++ SDK

OpenSSL

libXML2Code & Bug Tracker
Quality Analysis

Dependency 
Analysis

Fig. 2. Components under study

We have analyzed three versions of the communication
middleware component OPC UA C++ SDK and two versions
of OpenSSL employed by those OPC UA versions. The
findings of this analysis can be transferred to other 3rd party
component integrations, and thus be used as a reference for
similar case studies and researches.

In order to investigate the source code, we created a
database for static code analysis (SISSy database) containing
three versions of OPC UA SDK code and their respective
OpenSSL full-code version.
A. Analysis Results

1) Dependency Overview: From the SISSy database we de-
termined the number of dependencies between OPC UA C++
SDK modules. We used the OPC UA C++ SDK directories as
modules for our analysis.

Based on the number of direct and indirect dependencies
a component named UA Stack has been identified to be a
central element of OPC UA C++ SDK code. Due to the high
number of dependencies, changes in this component should
be done very carefully, since a change might lead to change
propagation to some or all of its dependent modules. The usage
of OpenSSL functionality has increased from 149 references to
232 references in the analyzed OPC UA releases. As a result,
the dependency on this 3rd party component has become even
more solid. In the following, we describe the results of the
dependency analysis for this component.

2) Impact of 3rd party signature changes: In step 1, us-
ing the method signature impact analysis described in Sec-
tion III-A, we identified 83 public methods of OpenSSL which
have changed from one version to another. Step 2 of the
analysis returned no dependencies on these methods. Thus
no manual investigation is required for them and the analysis
saved unnecessary investigation efforts.

3) Impact of hidden 3rd party changes: The first step of
the hidden change impact analysis returned 130 methods of
OpenSSL that have been changed internally.

In the second step, we calculated affected methods within
OPC UA code based on the list of 130 methods with internal
changes. As a result we found seven methods within OPC UA
that are potentially affected by these implementation changes.
Manual investigations of those methods identified that the
source code does not need to be modified. Again, substantial
effort could be saved due to the limitation to only seven
methods. Otherwise all changes and their impact would have
had to be identified manually. The decision whether to migrate
to the new version could not have been made.
B. Code Quality Analysis

The problem pattern analysis of the OPC UA code returned
problem pattern instances in a good range of the benchmark
values. They reside in the range of minimum to lower quartile,
so they are better than three quarters of the reference projects.

No major trends for the quality could be observed for the
analyzed versions.
C. Bug Tracker Analysis

The bug tracker data analysis over three release snapshots
(overall 153 issues) indicated acceptable component quality
and a positive trend in its development. For example, the ratio
of major and critical bugs to minor bugs decreased from 1.62
to 0.

V. CONCLUSION
This paper addresses the impact estimation of evolving

3rd party components integrated into long-living industrial
software systems. We have presented our approach to use
static code dependency analyses to identify explicit and hidden
3rd party component changes that might be propagated into
the self-implemented software and need further investigation.
Further on, we included code quality as well as bug tracker
analysis to assess the quality trend for multiple versions of the
3rd party component.

We presented the results of our case study on an industrial
software system used by ABB for the automation domain. The
case study identified signatures and hidden changes, and their
potential impacts on the self-implemented code. In addition,
code has been identified which will not be affected and thus the
analysis saved the effort for manual investigation in these parts
of the code. Potential impacts that were identified, separated
for signature- and hidden changes, as well as code areas that
do not require any manual investigation, are valuable results
that support the management of dependencies and back up
decision making for 3rd party components.

In our future work, we extend and improve our code change
detection heuristics as proposed by Neamtiu et al. [6] in order
to reduce the required manual investigation. Further on, we
work on standardizing the queries performed for the analyses
to provide them as part of our free tooling. Within ABB, the
analysis strategy will be provided to business units and product
development to improve and support their decision making.

REFERENCES

[1] P. J. Clarkson, C. Simons, and C. Eckert, “Predicting change propagation
in complex design,” J. of Mech. Design, 2004.

[2] G. Kotonya and J. Hutchinson, “Analysing the impact of change in cots-
based systems,” in COTS-Based Software Systems. Springer, 2005.

[3] B. Zheng, Jiang ; Robinson and K. Williams, L. ; Smiley, “A lightweight
process for change identification and regression test selection in using
cots components,” in 5th Int. Conf. on COTS-Based Soft. Sys., 2006.

[4] J. M. Voas, “The challenges of using cots software in component-based
development,” Computer, vol. 31, 1998.

[5] S. Bohner, “Extending software change impact analysis into cots com-
ponents,” in Soft. Eng. Workshop, 2002. Proc.s. 27th Annual NASA
Goddard/IEEE, 2002.

[6] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” SIGSOFT Softw. Eng.
Notes, vol. 30, 2005.

[7] O. Seng, F. Simon, and T. Mohaupt, Code Quality Management. dpunkt
Verlag, Heidelberg, 2006.

[8] “SISSy – Structural Investigation of Software Systems.” [Online].
Available: http://www.sqools.org/sissy/

[9] S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories of bug fixes,” in
Proc. of the 14th Int. Symp. on Found. of Soft. Eng., 2006.


