
A QoS Driven Development Process Model
for Component-Based Software Systems

Heiko Koziolek and Jens Happe

Graduate School Trustsoft �, University of Oldenburg, Germany
{heiko.koziolek, jens.happe}@informatik.uni-oldenburg.de

Abstract. Non-functional specifications of software components are considered
an important asset in constructing dependable systems, since they enable early
Quality of Service (QoS) evaluations. Several approaches for the QoS analysis
of component-based software architectures have been introduced. However, most
of these approaches do not consider the integration into the development process
sufficiently. For example, they envision a pure bottom-up development or neglect
that system architects do not have complete information for QoS analyses at their
disposal. We extent an existing component-based development process model by
Cheesman and Daniels to explicitly include early, model-based QoS analyses.
Besides the system architect, we describe further involved roles. Exemplary for
the performance domain, we analyse what information these roles can provide to
construct a performance model of a software architecture.

1 Introduction

Quality of Service (QoS) analysis and prediction during early development stages of a
software system is widely considered as an important factor for the construction of de-
pendable and trustworthy systems. For component-based systems [10], the overall aim
is to analyse QoS properties such as performance, reliability, availability, and safety
based on specification documents of components and the architecture. For this purpose,
compositional, analytical models can be constructed to allow predictions, even if the
system only exists on paper. Using specifications of existing components, QoS predic-
tions may be more precise than predictions for systems built from scratch.

To make early QoS analyses feasible in the IT industry, they have to become an
integral part of the component-based development process. Cheesman and Daniels [2]
describe a component-based development process model based on the Rational Unified
Process (RUP). However, this approach does not contain any hint on how to include
QoS analyses into the process.

On the other hand, several component-based QoS predictions approaches have been
proposed. Most of these approaches focus on the analysis part and only contain very
brief descriptions on how they are going to be integrated into the development process.
For example, the component-based reliability [8, 9], performance [5, 1, 4], and safety [3]
prediction approaches consider a pure bottom-up development where already existing
components are assembled. This is a strong restriction, since combined top-down (start-
ing from requirements) and bottom-up (starting from existing components) approaches
as described in the following are more realistic.
� This work is supported by the German Research Foundation (DFG), grant GRK 1076/1.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 336–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A QoS Driven Development Process Model for Component-Based Software Systems 337

All these approaches require a lot of additional information. QoS attributes of a
component are not only determined by the component itself, but are influenced by the
usage model, the deployment environment, its internal structure, and the services used
by the component. In most cases, it is unclear how the information about all these factors
is obtained and integrated. This is due to a lack of distinction concerning the roles and
responsibilities during the development process.

The contribution of this position statement is an extension to the component-based
development approach described by Cheesman and Daniels [2] to include QoS analyses.
Augmenting the process model of the CB-SPE approach [1], we describe the respon-
sibilities of the roles of component developer, system architect, system deployer, and
domain experts. We discuss which information has to be provided by each role to con-
struct a QoS prediction model. Our approach is not limited to performance analyses,
but applicable to any QoS property.

This position statement is organised as follows. Section 2 introduces the roles in
component-based development and discusses their responsibilities. Section 3 describes
our QoS driven, component-based development process model and details on the spec-
ification and QoS analysis phases. In Section 4, we exemplary describe for a QoS prop-
erty, which input values are needed for the construction of a performance model and
associate these values with the roles discussed in Section 2. Conclusions follow in
Section 5.

2 Roles in Component-Based Development

Since we want to evaluate QoS attributes at an early development stage, we need ad-
ditional information about the internal component structure, the usage model, and the
deployment environment. Not all of this information can be given by system architects
themselves. Therefore, support of domain experts, component developers, and system
deployers is required.

In our model, the system architects drive the development process. They design the
software architecture and delegate work to other involved parties. Furthermore, they
collect and integrate all information to perform QoS analyses and assemble the com-
plete system from its parts. One of their information sources are the domain experts,
who are involved in the requirements analysis, since they have special knowledge of
the business domain. They are also familiar with the users’ work habits and, thus, are
responsible for analysing and describing the user behaviour.

On a more technical side, the component developers are responsible for the specifica-
tion and implementation of components. They develop components for a market as well
as on request. System architects may design architectures that are reusable in different
deployment contexts. Sometimes, the actual deployment context is determined not until
late development stages, especially if the software is developed for general markets.
System deployers are responsible for specifying concrete execution environments with
resources and connections. They also allocate components to resources. During the de-
ployment stage of the development process, they are responsible for the installation,
configuration, and start up of the application.



338 H. Koziolek and J. Happe

3 Integrating QoS Prediction into the Component-Based
Development Process

In the following, the roles described in the former section are integrated into the com-
ponent-based development process model featuring QoS analysis. We focus on the de-
velopment process that is concerned with creating a working system from requirements
and neglect the concurrent management process that is concerned with scheduling hu-
man resources and defining milestones. We base our model on the UML-centric devel-
opment process model described by [2], which is itself based on the Rational Unified
Process (RUP).

Requirements

Specification QoS Analysis Provisioning Assembly

Test

Deployment

Business 
Requirements

Use Case
Models

Tested
Applications

Applications

Use Case
Models

Existing Assets

Technical constraints

Component Specs 
& Architectures

Business Concept
Model

Deployment
Diagrams

Results for 
QoS Metrics

Components

Workflow

Change of Activity

Flow of Artifact

Legend:

Fig. 1. Component-based Development Process Model with QoS Analysis

The main process is illustrated in Figure 1. Each box represents a workflow. The
thick arrows between boxes represent a change of activity, while the thin arrows char-
acterise the flow of artifacts between the workflows. The workflows do not have to be
traversed linearly (i.e., no waterfall model). Backward steps into former workflows are
allowed. The model also allows an incremental or iterative development based on pro-
totypes. We have inherited the requirements, specification, provisioning, assembly, test,
and deployment workflows from the original model and added the QoS analysis work-
flow. Component specifications, the architecture, and use case models are input to the
QoS analysis workflow. Outputs of the QoS analysis are results for QoS metrics, which
can be used during specification to adjust the architecture, and deployment diagrams
that can be used during deployment.

In the following, we will only describe our extensions to the specification workflow
and the new QoS analysis workflow. However, most of the other workflows are also
influenced by QoS driven development. For example, a detailed description of the QoS
requirements has to be compiled within requirements workflow. Furthermore, testing
has not only to check functional properties, but also QoS attributes. For the other work-
flows and artifacts exchanged among them, we refer the interested reader to [2].



A QoS Driven Development Process Model for Component-Based Software Systems 339

3.1 Specification Workflow

The specification workflow (see Figure 2, right column) is carried out by the system ar-
chitect. The workflows of the system architect and the component developers influence
each other. Existing components (e.g., from a repository) may have an impact on the
component identification and specification workflow, as the system architect can reuse
existing interfaces and specifications. Vice versa, newly specified components by the
system architect can be input for the component requirements analysis of component
developers, who design and implement new components.

Component Developer

Component Repository

Component Requirements 
Analysis

Functional Property 
Specification

Non-Functional Property 
Specification

Component Implementation

Requirements

Interfaces
Internal Dependencies

QoS Relevant 
Information

Binary Component
and Specification

System Architect

Component Identification

Component Interaction

Component Specification

Interoperability Check

Initial Component 
Specs & Architecture

Service Effect 
Specification

Optimised Component 
Specs & Architecture

Business 
Type 
Model

Business 
Concept Model

Use Case
Model

Initial Interfaces

Interface 
Signatures

Interface 
Protocols

Existing 
Interfaces

and Assets

Component 
Requirements & 

Interface Signatures

Service Effect 
Specifications & 

Interface 
Protocols

Service Effect 
Specifications & 

Interface 
Protocols

S
pe

ci
fic

at
io

n

Technical
Constraints

Results of QoS 
Metrics

Initial Component 
Specs & Architecture

Initial Component 
Specs & Architecture

Fig. 2. Detailed View on the Specification Workflow

The workflows of the component developers are only sketched here, since they are
performed separately from the system architect’s workflows. If a new component needs
to be developed, the workflow of the component developer (see Figure 2) can be as-
sumed to be part of the provisioning workflow according to Cheesman and Daniels.
Any development process model can be used to construct new components as long as
functional and non-functional properties are specified properly. After the component
requirement analysis, the functional property specification and then the non-functional
property specification of the components follow. The functional properties consist of



340 H. Koziolek and J. Happe

interface specifications (i.e., signatures and protocols) and descriptions of internal de-
pendencies between provided and required interfaces. We use service effect specifica-
tions from [7] to describe such dependencies. They model how a provided services calls
its required services and can be specified by state machines. Non-functional, QoS rele-
vant information includes resource demands, reliability values, data flow, and transition
probabilities for service effect specifications. After component implementation accord-
ing to the specifications, component developers may put the binary implementations
and the specifications into repositories, where they can be retrieved and assessed by
third party system architects.

The specification workflow of the system architect consists of four inner work-
flows. The first two workflows (component identification and component interaction)
are adapted from [2] except that we explicitly model the influence on these workflows
by existing components. During the component specification, the system architect ad-
ditionally gets existing interface and service effect specifications as input. Both are
transferred to the new workflow interoperability check. In this workflow, interoperabil-
ity problems are solved and the architecture is optimised. For example, parametrised
contracts, which are modelled as service effect specifications, can be computed [7].
The outputs of the specification workflow are an optimised architecture and component
specifications with refined interfaces.

3.2 QoS Analysis Workflow

During QoS analysis, the software architecture is refined with information on the de-
ployment context, the usage model, and the internal structure of components. Figure 3
shows the process in detail.

Allocation

QoS Requirement 
Annotation

QoS Information Integration

Q
oS

 A
na

ly
si

s
System Architect

System Model 
Transformation

System Deployer Domain Expert

System Environment 
Specification

QoS Attribute Specification 
of Resources and 

Connections

Use Case Analysis

Usage Model Refinement

Use Case Models

Scenarios
(Activity Charts)

Component QoS 
Specification

(Data Dependencies,
Resource Consumption)

Annotated System 
Architecture

Fully QoS Annotated 
System Architecture

QoS Evaluation
Model

QoS 
Metrics

Results for
QoS Metrics

Component Specs &
Architecture

Component Specs & 
Architecture

Use Case Models

Annotated
Deployment 

Diagram Refined 
User 

Model

System
Environment

Deployment
Diagram

Component 
Developer

Business
Requirements

QoS Evaluation

Deployment
Diagram

Fig. 3. Detailed View of the QoS Analysis Workflow



A QoS Driven Development Process Model for Component-Based Software Systems 341

The system deployer starts with the system environment specification based on the
software architecture and use case models. Given this information, the required hard-
ware and software resources and their interconnections are derived. As a result, this
workflow yields a deployment diagram that describes only the system environment
without allocated components. The system deployer can also create a description of
existing hardware and software resources. Moreover, a set of representative system en-
vironments can be designed if the deployment context is still unknown. During the
allocation, the system deployer specifies the mapping of components to resources. The
resulting deployment diagram is annotated with a detailed QoS attribute specification
of the deployment environment. These specifications provide input parameters for the
QoS analysis models used later. The resulting fully annotated deployment diagram is
passed to the system architect.

The domain expert refines the use case models from the requirements during the
use case analysis. A description of the scenarios for the users is created based on an
external view of the current software architecture. The scenarios describe how users
interact with the system and what dependencies exists in the process. For example,
activity charts can be used to describe such scenarios. The scenario descriptions are
input to the usage model refinement. The domain expert annotates the descriptions with,
for example, branching probabilities, expected size of different user groups, expected
workload, and user think times.

As the central role in QoS analysis, the system architect integrates the QoS relevant
information, performs the evaluation, and delivers the feedback to all involved parties.
In the QoS requirement annotation workflow, the system architect maps QoS require-
ments to the software architecture. For example, the maximum waiting time of a user
becomes the upper limit of the response time of a component service. While doing so,
the system architect specifies QoS metrics, like response time or probability of failure
on demand, that are evaluated during later workflows.

During QoS information integration, the system architect collects the QoS specifica-
tions provided by the component developers, system deployers, and domain experts and
integrates them into an overall QoS model of the system. This information is sufficient
to transform the system and its behaviour into a stochastic process or simulation model
as done in the system model transformation.

The QoS evaluation workflow either yields an analytical solution or the results of
a simulation. QoS evaluation aims, for example, at testing the scalability of the archi-
tecture and at identifying bottlenecks. If the results show that the QoS requirements
cannot be fulfilled with the current architecture, the system architect has to modify the
specifications or renegotiate the requirements.

4 Information Required and Mapping to Roles

To construct a QoS prediction model, additional, extra-functional information besides
the pure functional UML model is required. We will focus on information required
for performance modelling as an example. The additional information needed to con-
struct a performance model (e.g., a queueing network or stochastic Petri net) can be
specified directly in UML with the SPT profile [6]. In this extension to UML, the per-
formance analysis domain model describes the information needed to create a



342 H. Koziolek and J. Happe

performance model. It allows the inclusion of workload, component-behaviour, and
resources into UML expressed as stereotypes and tagged values.

Domain experts are responsible for specifying all information closely related to the
users of the system. This includes specifying workloads with user arrival rates or user
populations and think times. In some cases, these values are already part of the require-
ment documents. If method parameter values have an influence on the QoS of the sys-
tem, the domain experts may assist the system architect in characterising these values.

The system deployer provides information about the resources of the system (e.g.,
hardware-related like processing devices or software-related like thread pools). In the
UML SPT profile, resources in deployment diagrams can be characterised as active or
passive. Further attributes are scheduling policies, processing rates, or context switch
times and must be specified by the system deployer. The system deployer is also re-
sponsible for adapting the platform independent resource demand specifications of the
component developer to the properties of the system under analysis.

The system architect is responsible for extracting information from the requirements
(e.g., maximal response times for use cases) and including them into the model. All
information provided by the other roles are integrated by the system architect, who
also has to estimate missing values. For example, the system architect might have to
specify a parameter distribution for certain services if it influences the performance or
he has to estimate the resource demand of components that have been provided without
extra-functional specifications.

Component developers specify the performance of their components without know-
ledge where the components will be deployed, thus enabling independent third party
performance analysis. First, they need to characterise the execution demands on the
resources of the system in a platform independent way, for example, by specifying
the number of processor or byte code instructions their services execute. The system
deployer will use these values and parametrise them for the environment under analy-
sis. Second, component developers have to specify how provided services call required
services. This is necessary, so that the system architect can describe the control flow
through the architecture. External calls to required services will be mapped to perfor-
mance model steps in the UML SPT profile. The component developer can obtain these
by code analysis or by evaluating design documents of the components.

For a performance analysis, transition probabilities and the number of loop iterations
are required for calls from provided to required services. These values cannot be fully
determined by the component developer, in case they are not fixed in the source code.
Influences on these values may come from external sources, for example from the pa-
rameter values the service is called with or the results of external services. If such an
influence exists, the component developer has to state this dependency in the component
specification explicitly, so that the system architect can specify probability distributions
for parameter values or exploit the postconditions of required services for this service.

5 Conclusions and Future Work

In this position statement, we have described how QoS analyses can be integrated into
the early stages of a component-based development process. Several developer roles



A QoS Driven Development Process Model for Component-Based Software Systems 343

participate in QoS analyses, as the system architects do not have all necessary in-
formation by themselves. We have demonstrated how component developers, system
deployers, domain experts, and system architects interact during early QoS analyses.
Additionally, we have described in detail, which information is necessary to conduct a
performance analysis (exemplified by the UML SPT profile) and which of the roles can
provide it.

A component-based development process model integrating QoS analysis is relevant
for practitioners and researchers. Practitioners receive a recipe on how to tackle QoS
problems during early development stages. Researchers are supported by showing a
method on how to integrate their QoS analysis models into a practical development
process.

Stating the specification responsibilities for the different values as in Section 4 is
just a first step to an engineering approach to component-based performance prediction.
Currently, we are looking for possibilities to retrieve some of the values from existing
code (semi-) automatically. In this position statement, we have omitted an experimental
evaluation of our development process model, which is planned for the future.

References

1. A. Bertolino and R. Mirandola. CB-SPE Tool: Putting Component-Based Performance En-
gineering into Practice. In Component-Based Software Engineering, volume 3054 of Lecture
Notes in Computer Science, pages 233–248. Springer, 2004.

2. J. Cheesman and J. Daniels. UML Components: A Simple Process for Specifying Component-
based Software Systems. Addison-Wesley, 2001.

3. L. Grunske, B. Kaiser, and Y. Papadopoulos. Model-Driven Safety Evaluation with State-
Event-Based Component Failure annotations. In Component-Based Software Engineering,
8th International Symposium, CBSE 2005, Proceedings, volume 3489 of Lecture Notes in
Computer Science, pages 33–48. Springer Verlag, 2005.

4. D. Hamlet, D. Mason, and D. Woit. Properties of Software Systems Synthesized from Com-
ponents, volume 1, chapter Case Studies, pages 129–159. World Scientific Publishing Com-
pany, 2004.

5. S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C. Wallnau. Packaging Predictable
Assembly. In Proceedings of the IFIP/ACM Working Conference on Component Deployment
(CD2002), pages 108–124, London, UK, 2002. Springer-Verlag.

6. Object Management Group OMG. UML Profile for Schedulability, Performance and Time.
http://www.omg.org/cgi-bin/doc?formal/2005-01-02, 2005.

7. R. H. Reussner, I. H. Poernomo, and H. W. Schmidt. Reasoning on Software Architectures
with Contractually Specified Components. In A. Cechich, M. Piattini, and A. Vallecillo, edi-
tors, Component-Based Software Quality: Methods and Techniques, number 2693 in Lecture
Notes in Computer Science, pages 287–325. 2003.

8. R. H. Reussner, H. W. Schmidt, and I. H. Poernomo. Reliability Prediction for Component-
Based Software Architectures. Journal of Systems and Software, 66(3):241–252, 2003.

9. R. Y. Shukla, P.A. Strooper, and D.A. Carrington. A Framework for Reliability Assessment
of Software Components. In Proceedings of the 7th International Symposium on Component-
based Software Engineering (CBSE7), Edinburgh, UK, volume 3054 of Lecture Notes in
Computer Science, pages 272–279, 2004.

10. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 2002.

http://www.omg.org/cgi-bin/doc?formal/2005-01-02

	Introduction
	Roles in Component-Based Development
	Integrating QoS Prediction into the Component-Based Development Process
	Specification Workflow
	QoS Analysis Workflow

	Information Required and Mapping to Roles
	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


