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Abstract. Current software component models insufficiently reflect the different
stages of component life-cycle, which involves design, implementation, deploy-
ment, and runtime. Therefore, reasoning techniques for component-based mod-
els (e.g., protocol checking, QoS predictions, etc.) are often limited to a par-
ticular life-cycle stage. We propose modelling software components in differ-
ent design stages, after implemenatation, and during deployment. We allow the
composition of models of different development stages. Thus, abstract models
for newly designed components can be combined with refined models for al-
ready implemented components. Furthermore, we propose explicit modelling of
a component’s context, which influences extra-functional properties, but should
stay separated from component specifications. As a proof-of-concept, we have
implemented the new modelling techniques as part of our Palladio Component
Model (PCM). In this paper, we show how these techniques improve analysing a
component-based software system for business reporting.

1 Introduction

Methods for model-based reasoning about component-based software architectures shall
enable software architects to assess functional properties (e.g., correctness, interoper-
ability, etc.) and extra-functional (e.g., performance, reliability, etc.) properties already
during design [24]. By composing individual component specifications and running
different analysis and simulation tools, the properties of the whole system shall be
evaluated based on the properties of its individual parts. These methods shall avoid
the implementation of designs, which exhibit insufficient functional or extra-functional
properties.

During component-based system design, software architects specify new compo-
nents and incorporate existing components in their architectures [5]. To support this
mixed (i.e., top-down and bottom-up) development process, modelling and analysis
methods must account for different stages in the component life-cycle. A step-wise
refinement of component specifications is desirable as components progress from the
design to implementation stage. To enable the prediction of extra-functional proper-
ties, the software architect needs additional information about a component regarding
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its assembly, deployment, and usage, which can already be modelled during early de-
velopment stages. This contextual information about a component cannot be supplied
by component developers as part of a component specification, because they should
not know how their components will be assembled, deployed, or used to ensure broad
reuse.

Existing models for component-based systems support different stages in the com-
ponent life-cycle only insufficiently [12]. Industrial component models, such as EJB [7],
COM [6], or CCM [17], only refer to component implementations, but not to compo-
nent designs. Furthermore, their support for functional and extra-functional analysis is
limited. Other component models (e.g., SOFA [19], ROBOCOP [4]) mix up compo-
nent specifications and contextual information in a single model that does not account
for the different developer roles supplying this information (e.g., software architect,
component developer). This approach requires to change the component specifications
manually, if the components are composed into a specific context.

We propose modelling software components during different design stages and al-
low combining coarse specifications of new components with refined specifications of
already implemented components to improve functional and extra-functional analysis.
If the development of a component-based system progresses, coarse models of indi-
vidual components can be refined with additional information thereby increasing the
accuracy of analysis methods.

Furthermore, we propose modelling contextual information of software components
in separated context models aligned with different developer roles participating in the
development process (i.e., software architect, system deployer, and domain expert). Our
model allows to automatically adapt parametrised specifications of individual software
components (supplied by component developers) to these third-party defined context
models to correctly reflect the functional and extra-functional properties of a software
component in a specific deployment context. Thus, the component specification by the
component developer stays free from any contextual information.

Our approach improves functional and extra-functional reasoning for component-
based software architectures, as it better reflects the different life-cycle stages of a soft-
ware component than existing approaches. It allows a division of the modelling effort
to different developer roles, who can work independently and focus on their specific
viewpoint of the system. Component specifications by component developers including
extra-functional properties are completely reusable with our approach as they are not
tied to a specific context. They can be stored in repositories, so that different software
architects can include them into their models.

The contributions of this paper are (i) a component type hierarchy that enables mod-
elling software components at different design stages, and (ii) an explicit context model
for software components that enables different developer roles to add information nec-
essary for analysis without altering component specifications. We meta-modelled both
concepts and added them to our Palladio Component Model (PCM) [3]. To illustrate
the benefits of our approach, we model the components of a business reporting system
during different stages of their life-cycle in this paper.



This paper is organised as follows. Section 2 introduces the running example of a
business reporting system, which motivates the need for the new modelling concepts.
Section 3 introduces our concepts for modelling software component during differ-
ent development stages. Section 3.1 sketches the development process targeted by our
method and the involved developer roles. Afterwards, Section 3.2 introduces the PCM
type hierarchy, before Section 3.3 presents the PCM context model consisting of speci-
fiable and computable parts. Section 3.4 briefly explains the possibilities for analyses
based on the model. Section 4 compares our approach with related work, before Section
5 concludes the paper.

2 Running Example

To illustrate the new concepts introduced in this paper, we will use the so-called ”Busi-
ness Reporting System” (Fig. 1) as a running example. It is a typical 4-tier architec-
ture including a web server, load balancer, multiple application servers, and a database
server, and is loosely based on an industrial case study.
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Fig. 1. Example Model of a Component-based Software Architecture

The Business Reporting System manages the business data of a company. It supports
monitoring the current status as well as generating condensed reports for larger periods
of time. The architecture includes replication and caching for increased performance
and reliability.

Although being a simple example, the Business Reporting System includes multiple
instances of some components at different locations. Thus, these component instances
reside in different contexts. As functional and extra-functional analysis depends on the
context of a component, but component developers should not know the context their



components will be deployed in, contextual information has to be supplied by other
developer roles.

The design comprises a replicated application server. Both application servers con-
tain the same components, but each server hosts its own instances. A single QoS spec-
ification for the component is therefore not sufficient to model the actual performance
or reliability of the component instances. The application servers run on different hard-
ware, which influences the performance and reliability properties of the components.
Therefore, the component QoS specification by the component developer needs to be
adaptable to different deployment environments. For example, the failure probability of
a component depends on the failure probability of the hardware nodes it is allocated on.

Besides different allocations of the same component to different hardware nodes,
components can be composed multiple times in the same architecture. Software archi-
tects can compose them with other components (i.e., horizontal composition) or nest
them into composite components (i.e., vertical composition). Consider the component
Cache on application server 1, which is on the one hand horizontally composed with
the component Monitoring and on the other hand vertically composed into the com-
ponent BusinessReporting. According to their compositions, these components
may behave differently. For example, the response time perceived at the component’s
provided services depends on the execution times of the connected required services.

Clients can also use the same component differently in a single architecture. The
term ”use” subsumes the number of users or other components concurrently requesting
service, parameter values they use, and the propagation of requests to other components
via required interfaces. Usage may alter a components extra-functional properties. For
example, the run time of a component service sorting arrays depends on the size of
the arrays provided as parameter values. Furthermore, depending on input parameter
values, a component may propagate a different number of requests to other components,
which can lead to increased network traffic.

Propagation of requests cannot be determined using only black-box specifications.
Therefore, several component-based prediction approaches use an abstract behavioural
specification for component services [1], which describes the sequence of using re-
quired services and the use of hardware resources. This enables specifying the propa-
gation of user requests.

Fig. 1 contains an example of such a behavioural abstraction for the Monitoring
component on the right hand side. The depicted control flow graph subsumes all inter-
nal computations by the component in a single activity (”internal computation”) and
calls required services explicitly (”required service call”). The branch transition prob-
abilities, loop iteration numbers, and resource demands are needed for QoS prediction,
but depend on how the component service is used by its clients.

Thus, they cannot be specified by the component developer as they may change
depending on the usage of the component. For example, the abstract behavioural speci-
fication of the Monitoring component instance on application server 1 possibly has
different branch probabilities, because the Dispatcher component may direct com-
putational intense requests to this server.



Most component models do not reflect the context (i.e., assembly, deployment, and
usage) of a component explicitly, but instead rely on fixed specifications. However,
contextual information cannot be contributed by the component developer, as it should
remain open how the component is assembled, allocated, and used to assure broad reuse.

This paper demonstrate how the contextual influences of a componet’s performance
can be parameterised. Each role involved in the component based development process
provides its part of the information. Model transformations combine the specifications
to evaluate the performance and reliability of a component-based software architecture
in a given context.

3 Meta-Modelling Components during Life-Cycle

This section first sketches the component-based development process with the involved
developer roles (Section 3.1). Afterwards, it introduces new concepts for modelling
software components during design (Section 3.2) and deployment (Section 3.3). Finally,
this section describes techniques for functional and extra-functional analysis based on
the newly introduced models (Section 3.4).

3.1 Component-based Development Process

The component-based development process involves several developer roles with spe-
cific responsibilities. The following roles are particularly relevant in our setting [11]:

– Component Developers specify and implement software components either from
scratch or using existing components. They develop components for a market as
well as per request. They make as few as possible assumptions about a specific
deployment environment to ensure broad reuse.

– Software Architects lead the development process for a component-based appli-
cation. They design the software architecture and delegate tasks to other involved
roles. For the design, they decompose the planned application’s specification into
single component specifications.

– System Deployers set up the hardware and middleware resources the components
shall be allocated on. They determine which resources are needed, and how the
components shall be distributed among them.

– Domain Experts participate in the requirements analysis, since they have special
knowledge of the application’s business domain. They analyse the anticipated be-
haviour of the users interacting with the application.

– QoS Experts collect QoS-relevant information from the different developer roles
and assess the extra-functional properties of the system.

In practice, the process has to consider the desired reuse of components as well as
new requirements. Software architects can use existing components from repositories
or specify new ones for specific requirements, which shall be implemented by compo-
nent developers. During the specification of a software architecture, some of the used



components are already specified and implemented while others are only sketched. As
a consequence, the component-based development process does not follow a strict sep-
aration into classical top-down (i.e., going from requirements to implementation) and
bottom-up (i.e., assembling existing component to create an application) categories.
Instead, it is a mixture of both approaches.

Any software component model should account for the different developer roles
and the mixed top-down and bottom-up development process. Supporting different de-
veloper roles is beneficial as it allows reducing the complexity of modelling, because
the roles only need to provide information about their restricted viewpoint of the whole
system and can work independently. Supporting the mixed development process is ben-
eficial as it allows software architects to reason about the properties of their architecture
during early development stages when some components are not implemented yet, but
at the same time allows to rely on refined models of already implemented (e.g., third-
party) components. However, at this stage it is less costly to change design decisions.

3.2 Component Design

To support model-based reasoning about component-based designs in a mixed top-
down and bottom-up development process, it is necessary to model components in
different development stages. It must be possible to successively refine components
from early development stages. There are at least three different stages of component
specification as depicted in Fig. 2 and described in the following from top to bottom.
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Fig. 2. Component specification in different development stages

1. Bundling Provided Services into Components: At the first stage, software ar-
chitects specify components based on their desired functionality using provided inter-
faces. The architects might be unsure, which other components are required to pro-
vide this functionality, but nevertheless they want to include the desired functionality in



their model for early reasoning. Fig. 2 contains the BusinessReporting compo-
nent from Fig. 1 as an example.

We call such component specifications, which include provided interfaces, but only
optionally include required interfaces provides component types. These components are
merely stubs for reasoning and can for example contain estimated QoS-annotations
(e.g., execution times, failure probabilities) for early QoS predictions.

2. Full Specification of Required Services: At the second stage, it becomes clear
to the software architect, which components are additionally required to provide a cer-
tain functionality. In this stage, the implementation of the component is still unknown
and there are multiple possibilities to realise a component conforming to the specified
interfaces. For example, component developers can use different algorithms and data
structures behind the same interfaces. The specified required interfaces in this stage can
(but need not) be used by component developers implementing the component. How-
ever, they may not use additional required interfaces to remain type-conform.

We call such component specifications, which include provided interfaces and re-
quired interfaces, complete component types, as all their interfaces are known. Software
architects can pass these component specifications to component developers as require-
ments specifications. A complete component conforms to a provided component (and
thus can substitute it), if and only if it provides at least the services specified in the
provided type. With complete component type, functional and extra-functional analysis
can be refined, as for example estimated QoS-annotations can now also refer to required
services.

3. Modelling Component Implementations: At the third stage, a component spec-
ification has been implemented, and a model of the implementation (with refined infor-
mation) should be included in the architectural design model to improve the accuracy
of analyses. Developers can either assemble other components to implement a com-
ponent (i.e., a so-called composite component) or directly implement them (i.e., a so-
called basic component). The models of these component implementations can be re-
fined with service effect specifications (SEFF), which are a high-level abstractions of
the behaviour of component services and model how provided services of a compo-
nent call the required interfaces. SEFFs are useful for many kinds of functional and
extra-functional analysis (e.g., protocol checking [20], reliability prediction [22], per-
formance prediction [2], testability [23]).

A basic or composite component impl-conforms to a complete type (and thus can
substitute it) if and only if it provides at least the services specified in the provided
interfaces of the complete type and it requires at most the services specified in its the
required interfaces of the complete type. This principle is known as contra variance [24].
The conforms as well as the impl-conforms are n:m relations. Each basic or composite
component can conform to multiple complete types and each complete type can be
implemented multiple times.
Realisation: Fig. 3 shows the realisation of the formerly described component type
hierarchy in the PCM meta-model. Abstract meta-classes are colored in light grey. We
have introduced an explicit abstract class for the concept of providing and requiring an
interface, as it is common for all types of components.
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PCM Interfaces mostly follow the syntax and semantics of CORBA IDL [17],
therefore we omit the full meta-model for interfaces for clarity. PCM Interfaces
are first-class entities and may exist independently from components. The specification
of a RequiredRole to an Interfaces has different semantics according to the
underlying component type (i.e., recommended, restricted, or compulsory as described
above).

Meta-classes for QoS annotations (e.g., for provides and complete component type)
have been omitted for brevity. Component developers specify QoS properties of Basic-
Components using ServiceEffectSpecifications. Their meta-model is ex-
tensively described in [3]. Tools can compute the QoS properties of Composite-
Components by combining the ServiceEffectSpecifications of the in-
cluded BasicComponents.

3.3 Component Deployment

While component developers supply individual component specifications, further infor-
mation about each component in an architecture is necessary to enable analyses. This
information refers to the component context. It is only available when the component
is composed into a specific architecture and thus cannot be supplied by the component
developer.

A context model necessary for reasoning about component-based designs consists
of elements that have to be specified manually, and parts that can be computed. Tab. 1
depicts different elements of such a model. The following describes them in detail.

The assembly context refers to a component’s binding to other components and nest-
ing inside components. The manually specifiable part includes both the connections to
other components via provided and required interfaces and the containment relationship
between vertically composed components. The computable part refers to the paramet-
ric contracts introduced by Reussner [21]. For example, parametric contracts allow to
restrict the set of required services of a component if provided services using them are
not needed in a particular context.



Assembly Context Allocation Context Usage Context 
Specified by Software Architect: Specified by System Deployer: Specified by Domain Expert: 
• Horizontal Composition: 

Binding to other Components 
• Vertical Composition: 

Encapsulation in Composite 
Components 

• Allocation to Hardware 
Resources 

• Configuration 
o Component, Container  
o Communication 
o Security, Concurrency 
o … 

• Usage at System Boundaries 
o User Arrival Rate 
o Number of Users 
o Request Probabilities 
o Parameter Values 

 

Computed by Tools: Computed by Tools: Computed by Tools: 
• Parametric Contracts 

o Provided/Required 
Services 

o Provided/Required 
Protocols 

o … 

• Allocation-dependent QoS 
Characteristics 
o Timing Values  

for Resource Demands 
o Failure Probabilities 
o … 

• Usage inside Components 
o Branch Probabilities 
o Loop Iteration Numbers 
o Input/Output Parameters 
o Usage-dependent  

Resource Demands 
  Table 1. Component Context Model

A basic or composite component type can have multiple assembly contexts in the
same architecture model. In this case, each assembly context refers to a copy of the
same component implementation. In the architectural model from Fig. 1, the component
type Cache would be referenced by four different assembly contexts, as there are four
different instances of the component in the architecture, but type Cache itself only
exists once.

The allocation context refers to a component’s binding to hardware/software re-
sources. It requires manual specification of a component’s allocation and configura-
tion options related to hardware and software resources. Tools can compute allocation-
dependent QoS characteristics of a component by combining information from the com-
ponent specification and the hardware environment. For example, a resource demand
provided by a component developer (e.g., 500 CPU Units) can be transformed into a
timing value (e.g., 0.25 seconds), if the speed of the underlying hardware resource is
known (e.g., 2000 CPU Units/seconds).

A basic or composite component type can have multiple allocation contexts in the
same architecture, in which case each allocation context refers to a copy of the same
component implementation running on different resources. As an example, the com-
ponent type BusinessReporting from Fig. 1 resides in two different allocation
contexts, as it is allocated once on application server 1 and once on application server
2.

The usage context refers to the number of clients using a component, their sequence
of calling provided services, and the input parameter values they use. Domain experts
only need to specify this information at the system boundaries, tools can then propagate
it through the component-based architectural model using SEFFs. Section 3.4 will detail
on this.

As an example, the Monitoring component instances from Fig. 1 may be used
differently (i.e., reside in different usage contexts), because the Dispatcher may
direct different kinds of requests to each instance.
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Realisation: Fig. 4 shows the realisation of the manually specifiable parts of the con-
text model in the PCM. It should be understood as a first initial implementation of the
context concept, which can be extended in the future.

The software architect composes components using AssemblyContexts, which
reference a particular component type. Each AssemblyContext models a single in-
stance of a the component type. AssemblyConnectors bind components together
as they reference two AssemblyContexts and the ProvidedRole and Required-
Role of the encapsulated components.

Composed AssemblyContexts form a ComposedStructure, which can ei-
ther be a CompositeComponent ready for further composition, or a System, which
is the top-most composite structure of an architectural model (i.e., it cannot be encap-
sulated into another ComposedStructure).

System deployers model the ResourceEnvironment that contains a number of
ResourceContainers (e.g., servers), which in turn may contain different hardware
resources (e.g., CPU, HDs, not depicted here). The deployers allocate Assembly-
Contexts (i.e., composed component instances) to ResourceContainers using
AllocationContexts.

Domain experts model the number and type of user requests at the system bound-
aries. In the PCM, they specify this information in the so-called UsageModel, which
references the System. It allows specifying the sequence of user requests to compo-
nents at the system boundaries (e.g., the WebForm components in Fig. 1), as well as
parameter values. The full PCM usage model is described in [3]. The following sec-
tion describes the propagation of values specified in the UsageModel to individual
AssemblyContexts.

3.4 Computed Context Models and Analysis

Tools can compute information for functional and extra-functional analysis out of the
specifications provided by the different developer roles in the formerly described man-
ually specified context model. This information depends on a component instance’s



assembly context, allocation context, and usage context. As the domain expert has spec-
ified the usage at the system boundaries, component developers have specified SEFFs,
and the software architect has specified the component assembly, parameter values from
the usage model can be propagated through the architecture. With the allocation con-
texts provided by the system deployer, the execution times for component services can
be computed out of the parametrised resource demands specified by the component
developers.
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The PCM supports three different types of computed contexts as depicted in Fig. 5,
which allow interoperability checking as well as performance or reliability predictions
for component-based architectures. We have implemented tools to compute these con-
text models given a fully specified PCM instance [9].

The ComputedAssemblyContext enables interoperability checks between com-
ponents [20]. PCM components allow adapting their provided or required interfaces
depending on their AssemblyContext. If certain provided services of a component
are not used in a given context, the component can restrict its required interfaces. Then,
it only requires interfaces, which are actually used by the called provided interfaces.
This is expressed as the reference to RequiredRole in Fig. 5.

The restriction of interfaces also works into the opposite direction. If certain re-
quired interfaces are not provided within a specific environment, the component can
restrict its provided interfaces to those interfaces for which all required services are
available. Thus, the component is still usable in a restricted way, although not all re-
quired services are available. This concept is known as parametric contracts [21]. The
according adaptation of component protocols is currently not implemented in the PCM.

The ComputedUsageContext refers to branch probabilities, loop iterations num-
ber, and input/output parameter specifications for PCM SEFFs in a specific context.
These values are necessary for example for performance and reliability prediction. PCM
SEFFs allow component developers to specify these values in dependency to parameter
values [3]. Thus, the specifications can be computed for different usages.



Because SEFFs include the number of requests to required services, and the Com-
putedUsageContext additionally specifies the input parameters for calls to re-
quired services, tools can use these two models to propagate the parameter values spec-
ified in the UsageModel by the domain expert through the whole architecture. Details
about this solving of dependencies can be found in [9]. As an example, it is possible to
adjust the branch probabilities and loop iterations number for the abstract behavioural
specification of the Monitoring component in Fig. 1 according to the parameter val-
ues with which the WebForm components have been called.

The ComputedAllocationContext contains the ResourceDemands of a
component in a specific AllocationContext. A resource demand is the amount of
time the component requests from a hardware resource, such as a CPU or hard disk. It is
needed for performance and reliability prediction. The actual processing time depends
on the hardware the component is allocated on. Thus, component developers specify
only ParametricResourceDemands for their components, for which the actual
resource demand can be computed once the system deployer has specified the speed of
the hardware resources in the ResourceEnvironment.

Once tools have computed all contexts given a fully specified PCM instance, dif-
ferent analysis tools can process the resulting model for different analysis purposes.
For example, we have implemented a discrete-event simulation for PCM instances for
performance predictions [3]. There is also a model transformation for PCM instances
with computed contexts to Layered Queueing Networks (LQN) for performance pre-
diction [10]. Prototypical tools for interoperability checks [20] and reliability predic-
tion [22] have been implemented using earlier version of the PCM meta-model.

4 Related Work

We compare the component type hierarchy and component context model proposed
in this paper with common definitions of software components (i.e., [24, 5, 12]), to
different realisations of component definitions in current software component models
(e.g., EJB, CCM, Fractal, and also UML), and to Architecture Description Languages
(ADL) [14].

Common Component Definitions: Szyperski’s well-known definition of software com-
ponents [24] does not explicitly distinguish between component type and implementa-
tion. It mainly defines how a component should be specified with provided and required
interfaces (i.e., the complete component type), but does not refer to the whole life-cycle
of a software component. The runtime stage of a component is explicitly excluded (”no
persistent state”). The definition calls for only explicit context dependencies of com-
ponent specifications, which is supported by our component model. However, we have
added an explicit context model necessary for QoS-predictions, which is not mentioned
in Szyperski’s definition.

Cheesman et al. [5] distiguish four different stages in the component life-cycle:
component specification, component implementation, installed component, and com-
ponent object. Our component type-hierarchy and context model support modelling



components and reasoning on their properties in the first three of these stages (i.e., with
complete component types, basic components, and assembly contexts). So far, our con-
text model does not support the runtime stage of components (for modelling component
objects). In addition to their viewpoint, we distinguish between different stages of com-
ponent specification and explicitly model component allocation to hardware resources
and usage.

Lau et al. [12] distinguish between component design, deployment, and runtime as
the stages of component life-cycle. Except for the runtime stage, our model supports
reasoning on the design and deployment level. In addition to Lau’s view, the PCM
allows reasoning for mixed architectures of software components modelled at the design
or implementation stage. At the deployment stage, we also consider the allocation to
hardware resources as opposed to solely the component’s assembly.

Software Component Models: Lau et al. [12] have also classified existing software
component models according to their support for the different life-cycle stages, which
serves as a basis to analyse the component type concept and specification of contextual
information in these models. The following briefly analyses UML, industrial component
models, such as EJB, COM, and CCM, and component models from research, such as
FRACTAL, SOFA, and ROBOCOP.

The UML [16] supports modelling software components with component diagrams.
With additional UML profiles (e.g., UML SPT [15]), designers may also specify QoS
attributes to reason about extra-functional properties. However, the UML does not ex-
plicitly support modelling different life-cycle stages of a software component. While
it is in principle possible to model multiple component instances of the same type in
a single component diagram, there are no analysis tools known to us supporting this
situation. Furthermore, UML always involves monolithic models specified by a sin-
gle developer role, as there is no separation of the language into role-specific parts and
most UML tools have no support for inter-model references. The UML with SPT allows
modelling component allocation but not resource demands depending on parameters de-
fined in component interfaces, which complicates the specification of component QoS
properties.

Component models used in industry, such as EJB [7], COM [6], and CCM [17],
target the implementation of component-based systems, and do not explicitly support
early reasoning about component-based designs. None of these models allows vertical
component composition (i.e., composite components). Component allocation and usage
is only implicit in these models. Additionally, it is not mandatory to explicitly specify
required interfaces. EJB and COM rely on UML diagrams as component specifications
and themselves only support component implementation. EJB deployment descriptors
contain similar information as the assembly contexts proposed in this paper, and Enter-
prise Java also targets a separation of different developer roles. COM does not explicitly
deal with different developer roles, but it is possible for developers to use components
from other developers.

Fractal [18] is a component model targeting the runtime stage of software compo-
nents. It allows horizontal and vertical component composition as well as multiple in-
stances per component type. However, Fractal does not include information about com-



ponent allocation to hardware resources or component usage. There is no type hierarchy
for Fractal components, as it is assumed that an implementation of each component is
available.

SOFA [19] does not distinguish between different design stages, but does support
horizontal and vertical composition. Composite components in SOFA directly link to
component types, which is problematic if two instances of the same component type are
used in one composite component. Without further measures like unique IDs, compo-
nent connectors inside the composite component cannot refer to the different instances
unambiguously. As Fractal, SOFA does not support modelling component allocation.
It is possible to model component usage in SOFA using a protocol specification at the
system level, which however does not take parameter values into consideration.

ROBOCOP [4] targets performance prediction for embedded, component-based
software architectures. It does not include an explicit context model, but allows speci-
fying the allocation and usage of software components within a single model. ROBO-
COP does not support vertical component compositions, and the meta model does not
explicitly account for different developer roles. There are no different design stages for
software components in ROBOCOP. ROBOCOP components reference their QoS an-
notations, therefore it is necessary to change the component specification if the context
changes. Opposed to this, the PCM computes the QoS annotations such as resource
demands given separated component and context specifications.

Architecture Description Languages: Medividovic and Taylor have provided a classifi-
cation and comparison framework for ADLs [14]. While all ADLs differentiate between
component types and component instances, only a few of them provide facilities for re-
fining component specifications according to their life-cycle. For example, Aesop [8]
allows component subtypes and enforces preservation of component behaviour. C2 [13]
supports different subtyping relationships for interfaces, behaviours and implementa-
tions. However, these approaches are tied to object-oriented inheritance relationships
and do not explicitly distinguish between discrete component life-cycle stages.

Modelling extra-functional properties as well as properties of the allocation or usage
context is mostly neglected in ADLs [14]. While some ADLs allow annotating compo-
nents with extra-functional properties, these annotations are not parametrised and have
to be changed manually if the context of a component changes. Classical ADLs usually
do not specify deployment relationships between components and hardware resources.
Furthermore, they offer limited support for separated modelling by different developer
roles.

5 Conclusions

We have proposed a refined modelling of component types during different develop-
ment stages and an explicit context model for software components to improve early
analysis of functional and extra-functional properties. During component design, we
distinguish between (i) provides component types with optional required interfaces, (ii)
complete component types with restricted required interfaces, and (iii) implementation



component types with compulsory required interfaces that have to be called in a speci-
fied way. During component deployment, we support modelling contextual information
for each component instance by different developer roles (software architect, system de-
ployer, domain expert). We have implemented the proposed component type hierarchy
and context model as part of the Palladio Component Model.

The new modelling method improves the possibilities for analysing component-
based designs as it is well-aligned with the component-based development process.
The different component type levels allow reasoning on the properties of software ar-
chitectures with already implemented and only designed components. This reflects the
typically mixed (top-down and bottom-up) development process of component-based
systems. The splitting of the modelling task to different developer roles during compo-
nent deployment allows these roles to work independently from each other and focus
on their viewpoint of the system.

For the future, we plan to validate our developer role concept in an industrial set-
ting that involves distributed modelling by different developers. The proposed context
model is a first, initial attempt to model different kinds of contextual information neces-
sary for various reasoning techniques. We plan to enhance the allocation context model
to reflect more features of the middleware, which are for example important for QoS
predictions. The context model so far does not support the runtime stage of the compo-
nent life-cycle. A component runtime context model would include information about
component internal state and concurrently running processes and is subject to future
research.
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