
FESCA 2009

Parameter Dependencies
for Component Reliability Specifications

Heiko Koziolek1

ABB Corporate Research
68526 Ladenburg, Germany

Franz Brosch2

Forschungszentrum Informatik (FZI) Karlsruhe
76137 Karlsruhe, Germany

Abstract

Predicting the reliability of a software system at an architectural level during early design stages can
help to make systems more dependable and avoid costs for fixing the implementation. Existing reliability
prediction methods for component-based systems use Markov models and assume that the software architect
can provide the transition probabilities between individual components. This is however not possible if
the components are black boxes, only at the design stage, or not available for testing. We propose a new
modelling formalism that includes parameter dependencies into software component reliability specifications.
It allows the software architect to only model a system-level usage profile, which a tool then propagates
to individual components to determine the transition probabilities of the Markov model. We demonstrate
the applicability of our approach by modelling the reliability of a retail management system and conduct
reliability predictions.

Keywords: CBSE, Reliability, Prediction, Usage Profile, Parameter Dependencies

1 Introduction

Formal techniques for analysing the properties of software design and software sys-
tems are useful not only for functional properties (e.g., correctness), but also for
extra-functional properties (e.g., performance, reliability, security, safety, etc.). Pre-
dicting extra-functional properties of a system based on design models can help to
avoid implementing software architectures that do not fulfil user requirements for
timeliness and dependability. With this method, developers can save substantial
costs for fixing an implementation based on a poor component-based software ar-
chitecture.

For reliability predictions (i.e., probability of failure on demand (POFOD)) of
a component-based system, software architects combine component specifications
with failure probabilities given by (possibly third-party) component developers.
However, component reliability – and particularly component interaction – depends
on the usage profile assumed by the software architect. For example, unreliable but

1 Email: heiko.koziolek@de.abb.com
2 Email: brosch@fzi.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:heiko.koziolek@de.abb.com
mailto:brosch@fzi.de

Koziolek, Brosch

seldom used component services have little effect on the overall system reliability.
The propagation of calls from one component to another may depend on the in-
put parameter a certain service is called with. Therefore, component developers
need to make the dependency between input parameters and the propagation of
calls explicit in their component reliability specification, as they should not make
assumptions about the users and the deployment environment of their components
to keep them widely reusable.

Existing solutions for component-based reliability prediction (e.g.,
[3,6,5,19,15,2]) model the control flow in a component-based software archi-
tecture using Markov chains. They assume that the software architect constructing
such a model can provide the transition probabilities in the Markov chains, which
model the control flow propagation between individual components. This is not
possible, if the software architect builds the prediction based only on component
interface specifications or on implemented components viewed as a black box alone.
From the component specification, the software architect does not know which
required service a provided service calls upon invocation and how many calls are
made.

We present a novel approach where component developers supply component
reliability specifications based on so-called stochastic regular expressions (SRE),
which extend regular expressions with probabilistic attributes. An SRE describes
the call propagation through a component service in dependency to input parame-
ter values. Software architects can compose these parametrised specifications using
tools and add their application specific system-level usage profile. A transformation
tool then solves the parameter dependencies inside the component reliability speci-
fications and thereby deduces the component transition probabilities based on the
system-level usage profile. With our approach, the software architect does not need
to estimate transition probabilities inside the architecture model making reliability
predictions more accurate.

We demonstrate the applicability of our approach by modelling the reliability
of the component services of a retail management system supported by tools for
the Palladio Component Model (PCM) [1]. We make predictions with varying
system-level usage profiles and show the sensitivity of the overall system reliability
to individual component failure probabilities and usage profile parameters.

The contribution of this paper is a modelling formalism to specify parameter de-
pendencies in software component reliability specifications. Our approach of mod-
elling parameter dependencies can potentially be added to any existing component-
based reliability prediction approach relying on the same assumptions thereby mak-
ing it more accurate and flexible. Furthermore, our approach can be used for other
compositional quality attributes (e.g., performance [9]).

The paper is organised as follows. Section 2 surveys related work. Section 3 de-
scribes the steps of our method and explains the involved developer roles. Section 4
defines our formalism on stochastic regular expressions and shows the transforma-
tion algorithm to derive Markov model from the formalism. Section 5 demonstrates
our approach in a case study, followed by a discussion of assumptions in Section 6.
Section 7 concludes the paper.

2

Koziolek, Brosch

2 Related Work

The field of reliability prediction for component-based software architectures has
been surveyed in [5,4,7]. The approach presented in this paper is in the class of
state-based methods, which assume that the control flow between the components
of a software architecture can be modelled using a Markov chain. Goseva et al. [5]
state that most approaches rely on estimations of the transition probabilities be-
tween components. In our approach, no estimation is necessary, as each component
specifies its call propagation in dependency to its own usage profile.

One of the first approaches for architecture-based reliability modelling was pre-
sented by Cheung in 1980 [3]. He emphasised the fact that a system is more reliable
if the unreliable parts are rarely used. He introduced a Markov model to describe the
control flow through a component-based software architecture. Cheung computes
system reliability by analysing the Markov chain and incorporating the transition
probabilities between different components, so that seldom used components only
marginally contribute to system reliability.

Recently, several models based on Cheung’s work have been introduced
(e.g., [19,15]). Wang et al. [19] add special constructs to express architectural styles,
while Sharma et al. [15] broaden the scope of architectural analysis and also analyse
performance and security with a Markov model. None of the approaches provides
special methods to determine the transition probabilities between individual com-
ponents. Instead, they rely on testing data, which is not available for early design,
or the software architect’s intuition.

Hamlet et al. [6] specify reliabilities and call propagations for each individual
component. Thus, the resulting models for each component shall be reusable across
different architectures and system-level usage profiles. However, the approach re-
quires the software architect to execute each component against the desired usage
profile, which essentially reduces the approach to testing. The dependency of tran-
sition probabilities and input parameters is not made explicit in this approach.

Reussner et al. [14] took over the concept of parametrised contracts for software
components to architecture-based reliability modelling. Each component specifies
probabilities of calling required services. Therefore, an architecture model can be
constructed by combining these individual specifications. The approach assumes
fixed transition probabilities and the models therefore have the usage profile implic-
itly encoded.

Cheung et al. [2] incorporate failure states into state-based models for individ-
ual components. They use information from requirements documents, simulation,
and domain knowledge to train a hidden Markov model (HMM), which eventually
delivers transition probabilities to failure states. However, the approach does not
include the probability of control flow propagation to other components in relation
to the usage profile.

3 Component Specification and Reliability Prediction

This section sketches the process model underlying our approach and describes the
responsibilities for the involved developer roles.

3

Koziolek, Brosch

A software component is a unit of composition with contractually specified in-
terfaces and explicit context dependencies only [18]. A component specification
consists of the provided and required interfaces of the component. This informa-
tion is sufficient to assemble components and check their interoperability. However,
additional information about each component is required to enable reasoning on
extra-functional properties of a component-based architecture, such as performance,
reliability, or availability.

To create a specification language that captures the additionally required infor-
mation, it is necessary to consider the involved developer roles. In component-based
software engineering (CBSE), there is a strict separation between component devel-
opers and software architects. Component developers implement components and
provide functional and extra-functional specifications (i.e., models) for them. Soft-
ware architects use these specifications to reason about planned architectures and
later assemble the actual component implementations.

The component specifications for extra-functional properties provided by com-
ponent developers need to describe how provided services of a component call re-
quired services in terms of probabilities, frequencies, and parameter values. This
enables software architects to create a model of the control and data flow through
the whole architecture by simply composing these specifications and not referring to
component internals. In Section 4, we introduce a specification language based on
stochastic regular expressions that lets component developers specify how provided
services of a component call its required services via so-called external calls.

The propagation of calls from provided to required interfaces may depend on pa-
rameter values used as input to provided interface calls. For example, a component
service could call a required service as many times as the length of a list supplied
to it as an input parameter value. If, as in many existing component reliability
specifications, the component specification does not reflect such dependencies, pre-
dictions based on the model are always fixed to a specific usage profile (i.e., a set
of parameter values) assumed by the component developer. This is not desirable as
software components should be reusable under varying usage profiles. The specifi-
cation language introduced in Section 4 allows to express parameter dependencies
for the propagation of calls to required services. Therefore the system model can
be adapted by different software architects to different usage profiles.

Fig. 1 depicts the process model underlying our approach. Each component de-
veloper provides a component specification, which includes extra-functional proper-
ties (i.e. in our case failure probabilities, etc.), call propagations to required services,
and parameter dependencies of each provided service of the component. Methods
to determine failure rates (e.g., [2]) are out of scope for this paper. If the compo-
nent is already implemented, the component developers may use static code analysis
techniques (e.g., in [8]) or dynamic monitoring (e.g., in [11]) to derive call propaga-
tions and parameter dependencies from their source code. Component specifications
reside in public repositories, where software architects can obtain them.

Each software architect assembles the component specifications isomorphically
to the desired application architecture. Additionally, each software architect pro-
vides a usage profile for the complete system (i.e., having direct interaction with the
user or other systems). Based on this information, a tool traverses the architectural

4

Koziolek, Brosch

Fig. 1. Model-based Reliability Prediction for Component-Based Architectures

model and resolves the parameter dependencies in the component specifications.
For example, if the usage profile states that the length of a list supplied as

an input parameter is always 10, and the component specification states that the
called component calls 2 required services for each list item, the transformation tool
determines that this component makes 20 calls to required services. As depicted in
Fig. 1, another software architect could parametrise the model differently (e.g., list
length 20) to get a different architecture model (i.e., 40 calls).

This method works recursively, as each component specification includes the
(parametrised) usage profile for calling its required services. Therefore, with our
specification language, it is possible to propagate requests at the system level to
individual components and describe the control and data flow throughout the whole
architecture. This is not possible with other approaches for reliability prediction
(e.g., [3,14]), which rely on the software architect to model the control flow based
on provided and required interfaces only.

With the parameter dependencies resolved, the resulting model can be trans-
formed into a discrete-time Markov chain (DTMC). Using existing techniques (e.g.,
[14]), the software architect can determine the probability of reaching the failure
state of the Markov chain to get a reliability prediction (i.e., POFOD) for each com-
ponent service at the system boundaries based on the failure probabilities of the
components inside the architecture. This enables the software architect to assess
the feasibility of reliability requirements.

If the predictions show that given reliability goals cannot be met, there are
several options. The software architect can revise the architecture model for example
by introducing redundancy or trying different architectural configurations. The
software architect can also check the effect of using other functional equivalent
components with different reliability properties. If possible, the modelled usage
profile may need to be adapted or the reliability goals have to be changed. This
method of model-based reasoning is supposed to be significantly more cost-efficient
than building prototypes or relying on personal experience with similar systems
only.

5

Koziolek, Brosch

4 Parameter Dependencies in Component Reliability
Specifications

This section describes our model for component reliability specification (Sec-
tion 4.1), and system modelling (Section 4.2). Afterwards it explains the necessary
transformation steps to deduce a Markov model from the specification (Section 4.3),
and shows how to solve the Markov model to get a reliability prediction (Section 4.4).

4.1 Stochastic Regular Expressions for Component Specification

Our approach requires component developers to describe the reliability and control
and data flow propagation of each provided service of a component using a stochastic
regular expression (SRE). SREs consist of internal actions, external calls, a return
value, and control flow statements as explained in the following. Additionally they
use a language for arithmetic and boolean expressions. An example will be provided
further below.

• Internal Actions: Let I = {1, ..., n}, n ∈ N be an index set and IA =
{ia1, ..., ian} be a set of terminal symbols. iai refers to an internal action of
the provided service modelled by the SRE. Let fp : IA → [0, 1] be a function,
which assigns a failure probability to each internal action. Failure probabilities
can be derived using statistical testing [12,2].

• Expression Language: Let L be a language for boolean and arithmetic expres-
sions defined by the grammar in Appendix A. Let S ⊂ L be the set of all strings
in L, B ⊂ L be the set of all boolean expressions in L, and A ⊂ L the set of all
arithmetic expressions in L. Let π ∈ B be a boolean expression and υ ∈ A be an
arithmetic expression. Notice that L allows the specification of numbers as well
as probability mass functions (PMF) to model values in a stochastic manner.

• External Calls: Let J = {1, ...,m},m ∈ N be an index set and EC =
{E1, ..., Em} be a set of non-terminal symbols. Ej refers to an external call to a
required service. Ej is a non-terminal symbol and can only be substituted by the
SRE of the referenced required service after its composition to other components
is fixed. We assume a call and return semantic (i.e., synchronous communication,
the caller blocks until receiving an answer).

Let ei : EC → (S × A) and eo : EC → (S × A) be two functions that
assign parametric input and output expressions to an external call. For example
ei(E1) = (a, x+ 1) means that the SRE calls the required service where the value
x+ 1 is assigned to the variable named a.

• Return Value: Let rv ∈ N denote a return value, which models the output
produced by the modelled service, which is send back to the caller.

Let P be a non-terminal symbol. Then, the syntax of SREs in our approach is
as follows:

P := iai | Ej | P · P | P +π P | P υ

The semantic of the above syntax is:

• P · P denotes a sequence of two symbols. The dot can be omitted.

6

Koziolek, Brosch

• P +π P denotes a branch of two symbols. π represents a branch condition
(e.g. π := y < 0, y ∈ N, y denoting a variable) defined as a boolean expression of
the language L.

• P υ denotes a loop. υ represents a parametric loop count (e.g., υ := 3 + z, z ∈
N, z denoting a variable). Infinite loops are not allowed by SREs, the loop count
is always bound.

Example: The following example shows a complete stochastic regular expression:

P := ia1 · (E1 +π E2), fp(ia1) = 0.001, ei(E1) = (x, 2− x), eo(E1) = ∅

ei(E2) = (y, 27 ∗ x+ 3), eo(E2) = (z, x+ 1), π := y > 5, rv := 0

It specifies that the service first executes some internal code (ia1) with the failure
probability 0.001 and then either executes an external calls E1 or E2 depending on
the value of the input parameter y.
Rationale: Notice that an SRE is an abstraction of a component service’s be-
haviour. It includes control flow constructs only if they influence external calls.
Internal control flow of the service not changing the behaviour visible from outside
are abstracted within internal actions. A single internal action may represent thou-
sands of lines of code with a single failure probability. This abstraction focuses on
necessary properties for a component-based reliability prediction (i.e., failure prob-
abilities and call propagations) and makes the analysis of even complex components
mathematically tractable.

The included parameter dependencies for branch conditions and loop counts
allow software architects to use varying usage profiles (i.e., the value assignments
for the included variables). We restrict the values of parameters to integer values
in this paper for clarity. This is not a general restriction. The formalism can be
easily extended to other data types as shown in [9]. Using SREs instead of Markov
models allows for structured control flow with clearly defined loop entry and exit
points (also see [10]).

4.2 System Model

Usually, a whole use case spanning multiple SREs is the subject of a reliability
prediction. Thus a complete system model consists of a set of SREs, with an initial
usage profile.

Let K = {1, ..., r}, r ∈ N be an index set and Services = {P1, · · · , Pr} be a set
of connected SREs realising the functionality of one use case. The included SREs
reference each other via their external calls. Let P1 be the service called at the
system boundaries.

Let T = {1, ..., t}, t ∈ N be an index set, Let V = {v1, · · · , vt} ⊂ S be the set of
strings denoting the variable names specified in P1, and let N = {n1, · · · , nt} ⊂ L be
a set numbers or probability mass functions from L defining the initial values for the
variables at the system boundaries. Then UsageProfile = {(v1, n1), · · · , (vt, nt)}
denotes the system-level usage profile for the modelled use case.

7

Koziolek, Brosch

Then, the system model is defined as: SystemModel =
{UsageProfile, Services}.

4.3 Transformation

Once a software architect has assembled a set of SREs from a repository to realise
a use case, and specified the usage profile to form a SystemModel, an automatic
transformation (implemented as an Eclipse plugin) substitutes the variables in the
first SRE with the values from the usage profile and propagates them through all
connected SREs. The transformation algorithm in Listing 1 traverses the abstract
syntax trees of the SREs of all participating component services.

Listing 1: Transformation Algorithm
Input : P (SRE to trans form)

U (usage p r o f i l e , i . e . , a s e t o f v a r i a b l e s with va lue s a s s i gned)
Z (po in t e r to the cur rent s t a t e in the Markov model)

Output : Z (po in t e r to the cur rent s t a t e in the Markov model)

S ide E f f e c t Input : MM (i n i t i a l empty markov model)
SS ∈ MM (s t a r t s t a t e in the markov model)
FS ∈ MM (f a i l u r e s t a t e in the markov model

S ide E f f e c t Output : MM (modi f i ed markov model cons t ruc ted in p a r a l l e l)

po in t e r trans form (P, U, Z) {
// t r a v e r s e a b s t r a c t syntax t r e e o f SRE P top−down

switch (currentNode) {
case sequence with leftSRE , rightSRE :

Z <− trans form (leftSRE , U, Z) ;
Z <− trans form (rightSRE , U, Z) ;
break ;

case branch with leftSRE , rightSRE , π as branch cond i t i on
U1 <− e v a l u a t e S t o c h a s t i c a l l y (U,π) ; //new usage p r o f i l e eva lua t ed under

the cond i t i on tha t π i s t rue
U2 <− e v a l u a t e S t o c h a s t i c a l l y (U, not π) ; //new usage p r o f i l e eva lua t ed

under the cond i t i on tha t π i s f a l s e
π <− searchAndReplace (π , U) ; // rep l ace v a r i a b l e s in π with current

va lue s from usage p r o f i l e
bp <− so l veExpre s s i on (π) ; // compute the branch p r o b a b i l i t y

S1 <− newState () ; // i n i t i a l s t a t e f o r the l e f t branch
S2 <− newState () ; // i n i t i a l s t a t e f o r the r i g h t branch
S3 <− newState () ; // s t a t e to j o in the branches again
T1 <− newTransit ion (Z ,S1 ,bp) ;
T2 <− newTransit ion (Z ,S2 ,1− bp) ;

Z <− trans form (leftSRE , U1 , S1) ; // transform l e f t branch
T3 <− newTransit ion (Z ,S3 , 1 . 0) ; // jo in branch
Z <− trans form (rightSRE , U2 , S2) ; // transform r i g h t branch
T4 <− newTransit ion (Z ,S3 , 1 . 0) ; // jo in branch

MM <− MM ∪S1 ∪ S2 ∪ S3 ∪ T1 ∪ T2 ∪ T3 ∪ T4 ;
Z <− S3 ;
break ;

case loop with body bodySRE , υ as parametr ic loop count
υ <− searchAndReplace (υ , U) ; // rep l ace v a r i a b l e s in υ with current

va lue s from usage p r o f i l e
nl <− so l veExpre s s i on (υ) ; //compute number o f i t e r a t i o n s
for i=1 to max(n l) do

Z <− trans form (bodySRE , U, Z) ; // un ro l l l oops
break ;

case ia with f a i l u r e p r o b a b i l i t y fp(ia) :
S1 <− newState () ;
T1 <− newTransit ion (Z ,S1 ,1− fp(ia)) ;
T2 <− newTransit ion (Z , FS , fp(ia)) ; // connect to f a i l u r e s t a t e
MM <− MM ∪S1 ∪ T1 ∪ T2 ;
Z <− S1 ;
break ;

8

Koziolek, Brosch

case E with SRE as the c a l l e d s e r v i c e and rv as the return value o f SRE:
input <− searchAndReplace (ei(E) , U) ;
U1 <− so l veExpre s s i on (input) ; //add e x t e rna l c a l l inpu t s to new usage

p r o f i l e
Z <− trans form (SRE, U1 , Z) ;
output <− searchAndReplace (eo(E) , U ∪ rv) ;
U <− U ∪ so lv eExpre s s i on (output) ; // add outputs to usage p r o f i l e
break ;

}
return Z ;

}

The algorithm creates a Markov model as a side effect while traversing the
abstract syntax trees of the SREs. This Markov model contains a failure state,
which is taken if an internal action fails. Therefore, the transition probability from
a state representing an internal action iai to the failure state is its failure probability
fp(iai).

The Markov model contains a sequence of states for subsequent internal actions
and transitions for branches. Additionally, the algorithm unrolls the loops within
the SREs in the Markov model (i.e., it creates the states for the symbols inside a
loop body for each loop count).

After substituting a variable name with its current value from the usage profile,
the algorithm solves the resulting expression. For example, for a boolean expression
x < 0 as a branch condition and a usage profile containing P (x ≥ 0) = 0.7, the
algorithm resolves a branch probability bp = 1 − P (x ≥ 0) = 0.3 and uses it in
the Markov model as the transition probability. Analogously, for an arithmetic
expression 3+x as a parametric loop count and a usage profile x = 5, the algorithm
resolves a loop count lc = 8 and uses it to unroll the states in the Markov model.

Upon traversing an external call Ej , the algorithm creates a new usage profile
for the called SRE. It first resolves the parameter dependencies on the inputs of the
call defined by the function ei(Ej). Then it uses these values as new usage profile.
After traversing the called SRE, the algorithm resolves parameter dependencies on
the outputs of the call defined by the function eo(Ej). The parametric dependencies
of these output values may refer to the return value rv of the called SRE.

For the first invocation, the SRE P1 of a SystemModel is given as input param-
eter as well as the UsageProfile of the SystemModel.
Example: As an example, we use the SRE P from Section 4.1 and connect its
external calls E1 and E2 to the following two SREs P2 and P3 to form a set of
Services.

P2 := (ia1)υ, fp(ia1) = 0.001, υ = x+ 2, rv = 0

P3 := ia1, fp(ia1) = 0.002 rv = 0

Together with the UsageProfile = {(x, 1), (P (y = −2) = 0.3), (P (y = 4) =
0.7)}, we form the SystemModel = {UsageProfile, {P1, P2, P3}}. Running the
transformation algorithm in Listing 1 initiates the traversal of the abstract syntax
trees of the SREs depicted on the left hand side of Fig. 2. By solving the parameter
dependencies for the branch condition y < 0 and the parameteric loop count x+ 2
with the given UsageProfile the algorithm calculates a branch probability of 0.3
to call E1 and a loop count of 3.

9

Koziolek, Brosch

Fig. 2. Transformation Example: SRE Traversal (left), Resulting Markov Model (right)

After termination, the algorithm has created the Markov model on the right
hand side of Fig. 2. It includes a start state, a failure state, and a success state.

4.4 Reliability Prediction

With the Markov model created by the transformation, we can now compute the
reliability of the overall system model (i.e., for the modelled use case). In our
approach we define the reliability as R := 1 − POFOD, where POFOD is the
probability of failure on demand. It can be computed from the Markov model by
calculating the probability of reaching the success state from the start state [17].
Example: The transition matrix for the Markov chain generated in the former
example is

P =



0 0.999 0 0 0 0 0 0 0 0.001

0 0 0.3 0.7 0 0 0 0 0 0

0 0 0 0 0.9999 0 0 0 0 0.0001

0 0 0 0 0 0 0 0.9998 0 0.0002

0 0 0 0 0 0.9999 0 0 0 0.0001

0 0 0 0 0 0 0.9999 0 0 0.0001

0 0 0 0 0 0 0 0 1.0 0

0 0 0 0 0 0 0 0 1.0 0

0 0 0 0 0 0 0 0 1.0 0

0 0 0 0 0 0 0 0 0 1.0


where the second to last column refers to transition probabilities to the success

state and the last column refers to transition probabilities to the failure state. As
this is an absorbing Markov chain, we can compute the probability bi,j that the
chain will be absorbed in the absorbing state sj if it starts in the transient state
si (cf. [17]). Let N = (I − Q)−1 be the fundamental matrix computed from the
identity matrix I and the upper left transition matrix Q. Let R be the upper right
transition matrix from the canonical form of P . Then, the absorption probabilities
are determined by the matrix B with the entries bi,j , which is given by:

B = NR = (I −Q)
−1

R =

10

Koziolek, Brosch



1 0.999 0.2997 0.6993 0.29967 0.29964 0.29961 0.69916

0 1 0.3 0.7 0.29997 0.29994 0.29991 0.69986

0 0 1 0 0.9999 0.9998 0.9997 0

0 0 0 1 0 0 0 0.9998

0 0 0 0 1 0.9999 0.9998 0

0 0 0 0 0 1 0.9999 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





0 0.001

0 0

0 0.0001

0 0.0002

0 0.0001

0 0.0001

1.0 0

1.0 0


=



0.99877 0.001229761

0.99977 0.000229991

0.9997 0.00029997

0.9998 0.0002

0.9998 0.0002

0.999 0.0001

1.0 0

1.0 0



Thus, the reliability (i.e., the probability of reaching the success state) of the ex-
ample under the given usage profile is R = b0,0 = 0.99877.

5 Case Study

To illustrate our approach, we take a retail management system as an example,
which has been designed in a service-oriented way. It is taken from the SLA@SOI
research project [16] and based on the Common Component Modelling Example [13].
The system enables a retail chain to handle its sales and manage its inventory data.
Fig. 3 shows parts of the system architecture.

Fig. 3. System Architecture of the Service-oriented Retail Management System (excerpt)

The retail chain takes the role of the service customer. It operates several stores,
each of which contains multiple cash desk lines. At each cash desk line, a dedicated
retail solution client handles the individual sales processes. The service provider
offers a range of services to the retail solution clients, such as a payment service to
handle payments by cash or by credit card, and an inventory service to update stock
information in the inventory. The service provider in turn uses services of external
providers. Fig. 3 shows a bank service used by the payment service as an example.

We focus on the service operation bookSale() that belongs to the inventory
service. The retail solution clients invoke this operation at the end of each sales
process in order to update the stock information. The stochastic regular expression
which corresponds to the bookSale() execution looks as follows:

11

Koziolek, Brosch

P1 = PbookSale := E2(ia1+γ(E3+πE4))υE5, υ := x, γ := (y = 0), π := (z = 0)

P2 := ia2, P3 := ia3, P4 := ia4, P5 := ia5

The operation takes a list of all sold items as an input parameter, and contains
a loop to iterate through this list. The iteration number υ of the loop equals the
number x of items in the list. Within the loop, stock information is updated by
external calls E3 and E4 to the inventory component service operations P3 and P4.
Additionally, two external calls E2 and E5 to service operations P2 and P5 (to set
up and to commit the database transaction) surround the loop over all sold items.
All inventory component service operations are modelled through single internal
actions ia2, ia3, ia4 and ia5.

The control flow of the bookSale() operation distinguishes several cases. First,
an item may be rated as small goods that do not have to be declared in the inventory.
A branch located in the loop body reflects this fact. If an item is small goods (which
corresponds to y having value 0), there is no need for stock information update.
Rather, some internal calculations ia1 are done. The probability P (y = 0) is part
of the usage profile. Second, an item can be identified by a number or by a name,
which results in two different types of database queries P3 and P4. Again, the usage
profile determines the probabilities of both alternatives through P (z = 0).

Our method allows assigning failure probabilities to internal actions. For exam-
ple, a call to an inventory component service operation might fail - the underlying
database might be temporarily unavailable, overloaded, or the request sent to the
database might be lost. Our approach includes the propagation of the usage pro-
file from the inventory service component to the inventory component: calling the
bookSale() operation with a list of x items results in an expected call sequence of
P (y 6= 0) ∗ P (z = 0) ∗ x and P (y 6= 0) ∗ P (z 6= 0) ∗ x calls to the two stock update
operations, surrounded by one call for transaction setup and one call for transaction
commit.

●

●

●

●

●

●

0 20 40 60 80 100

0.99985

0.99990

0.99995

1.00000

number of items

re
lia

bi
lit

y

●

fp = 0.0
fp = 1.0E−6
fp = 2.0E−6

●

●

●

●

●
●

●
● ● ●

0 20 40 60 80 100

2e−06

4e−06

6e−06

8e−06

1e−05

number of items

fa
ilu

re
 p

ro
ba

bi
lit

y

●

reliability = 0.9997
reliability = 0.9998
reliability = 0.9999

Fig. 4. Reliability of the bookSale() operation

In our case study, we are interested in analysing the relation between the usage
profile of the bookSale() operation and its reliability. We assume the failure proba-
bilities of the internal actions involved to be 10−6, except the failure probabilities of

12

Koziolek, Brosch

stock information update (fp(ia3), fp(ia4)), which we vary between 0 and 2 ∗ 10−6.
We set small goods to 5% and items identified by name to 20%.

For our reliability calculation, we have modelled the retail management system
using tools of the Palladio Component Model [1]. We have implemented an ad-
ditional algorithm for Markov Chain generation and calculation of the resulting
reliability.

The left hand side of Fig. 4 shows the results. Evidently, the reliability decreases
with a growing number of items. A longer list of items results in a higher number
of loop iterations, leading to more stock update operations. Only in the theoretical
case that the stock update cannot fail at all, the reliability is nearly independent of
the number of items. In that case, it is determined only by the potential failure of
transaction setup and commit, as well as the internal calculation ia1.

If we set a goal of 99.99% for the bookSale() reliability, the figure shows that
this goal is reached with a stock update failure probability of 10−6 and at most 98
items. If the failure probability rises to 2 ∗ 10−6, the goal is only reached with a
number of items smaller than 50.

The right hand side of Fig. 4 shows the relation between the number of items and
the failure probability of database queries for varying reliability goals. Generally,
the acceptable failure probability decreases for higher reliability goals and for a
higher number of sold items. If, for instance, 60 items are sold, a failure probability
of 2 ∗ 10−6 would be acceptable to reach 99.98% reliability, but it would violate a
reliability goal of 99.99%.

6 Assumptions and Limitations

In this section, we discuss assumptions and limitations of our approach. Presumably,
the most critical assumption lies in the determination of failure probabilities for
internal actions. The predicted reliability can only be as close to reality as the failure
probabilities given as an input to the method. Cheung et al. [2] propose estimating
these probabilities through domain experts. Lyu et al. [12] suggest using statistical
testing. If probabilities of failure are only roughly estimated, the approach can
still be valuable in comparing architectural alternatives, or determining acceptable
ranges for failure probability.

Besides individual failure probabilities, the parametric dependencies of the con-
trol flow also need to be given as an input to reliability prediction. The specification
of the internal behaviour of components given by the component developer or deter-
mined through a reverse engineering process can serve as a source of information [8].
If no specification exists and the source code is not available, it might be still possible
to reconstruct the parametric dependencies by monitoring the inputs and outputs
of the component by running it as a black box in a test-bed [11].

Our method abstracts from the concrete faults that may cause a failure. A ser-
vice execution may alter the state of a component, such as the values of variables
owned by the component, in an invalid way. The faulty component state might not
immediately result in a failure, but at a later point in time. Such coherences cannot
be explicitly expressed by our approach. The same is true for the probability of
failure due to usage of certain resources or message loss over a certain communica-

13

Koziolek, Brosch

tion link. Also, failures caused by concurrency are not explicitly captured by the
SREs. Our approach aggregates the distinct causes of failure into one probability
value, which tends to decrease accuracy of prediction.

If an internal action fails, we assume that the corresponding service call is also
rated as being failed. We do not consider the possibility that the system handles
the failure and might successfully finish service execution even though the failure
happened. Furthermore, we assume the failure probabilities of internal actions to
be stochastically independent. Currently the failure probability values are fixed
constants. They cannot be adapted to take factors like system or component state
at run-time, previous service calls or the control flow of the current call into account.
Such considerations are left as a topic for future work.

7 Conclusions

We presented a novel formalism to model software component reliability specifica-
tions. The formalisms allows to specify the control flow propagation of a software
component from provided to required services in dependency to input parameter
values. Software architects compose these specifications from individual compo-
nent developers, use a tool to transform the specification into a Markov model
parametrised for their specific usage profile, and can then conduct reliability pre-
dictions for their design.

Our approach helps component developers by providing a language to specify
component reliability. It helps software architects, who can quickly assemble com-
ponent reliability specification, and parametrise them for different usage profiles
without knowing the internals of the components. Similar existing component re-
liability prediction approaches can adopt our method of modelling to make their
prediction more accurate and more flexible. By assessing the reliability of a sys-
tem design during early development stages, potentially high costs for late life-cycle
fixings of a system can be avoided.

Our approach is still in an initial stage. We plan to add information about the
underlying hardware resources to our model to allow to make more refined pre-
dictions. Furthermore, we will add reliability models for network connections and
connectors between components. Another important direction is the determination
of valid failure probabilities. We plan to incorporate existing approaches for deter-
mining failure probabilities into our own method and validate it on a large real-life
case study.

References

[1] Becker, S., H. Koziolek and R. Reussner, The Palladio Component Model for Model-Driven
Performance Prediction, Journal of Systems and Software 82 (2009), pp. 3–22.

[2] Cheung, L., R. Roshandel, N. Medvidovic and L. Golubchik, Early prediction of software component
reliability, in: ICSE ’08: Proceedings of the 30th international conference on Software engineering
(2008), pp. 111–120.

[3] Cheung, R. C., A user-oriented software reliability model, IEEE Trans. Softw. Eng. 6 (1980), pp. 118–
125.

[4] Gokhale, S. S., Architecture-based software reliability analysis: Overview and limitations, IEEE Trans.
on Dependable and Secure Computing 4 (2007), pp. 32–40.

14

Koziolek, Brosch

[5] Goseva-Popstojanova, K. and K. S. Trivedi, Architecture-based approaches to software reliability
prediction, Computers & Mathematics with Applications 46 (2003), pp. 1023–1036.

[6] Hamlet, D., D. Mason and D. Woit, Theory of software reliability based on components, in: Proc. 23rd
Int. Conf. on Software Engineering (ICSE ’01) (2001), pp. 361–370.

[7] Immonen, A. and E. Niemel, Survey of reliability and availability prediction methods from the viewpoint
of software architecture, Journal on Softw. Syst. Model. 7 (2008), pp. 49–65.

[8] Kappler, T., H. Koziolek, K. Krogmann and R. Reussner, Towards Automatic Construction of Reusable
Prediction Models for Component-Based Performance Engineering, in: Proc. Software Engineering
2008 (SE’08), LNI 121 (2008), pp. 140–154.

[9] Koziolek, H., “Parameter Dependencies for Reusable Performance Specifications of Software
Components,” Ph.D. thesis, Department of Computing Science, University of Oldenburg, Germany
(2008).

[10] Koziolek, H. and V. Firus, Parametric Performance Contracts: Non-Markovian Loop Modelling and
an Experimental Evaluation, in: J. Kuester-Filipe, I. H. Poernomo and R. Reussner, editors, Proc. 3rd
International Workshop on Formal Foundations of Embedded Software and Component-Based Software
Architectures (FESCA’06), ENTCS 176 (2006), pp. 69–87.

[11] Kuperberg, M., K. Krogmann and R. Reussner, Performance Prediction for Black-Box Components
using Reengineered Parametric Behaviour Models, in: Proceedings of the 11th International Symposium
on Component Based Software Engineering (CBSE 2008), Karlsruhe, Germany, 14th-17th October
2008, LNCS 5282 (2008), pp. 48–63.

[12] Lyu, M. R., Software reliability engineering: A roadmap, in: FOSE ’07: 2007 Future of Software
Engineering (2007), pp. 153–170.

[13] Rausch, A., R. Reussner, R. Mirandola and F. Plášil, editors, “The Common Component Modeling
Example: Comparing Software Component Models,” LNCS 5153, Springer, 2008.

[14] Reussner, R. H., H. W. Schmidt and I. H. Poernomo, Reliability prediction for component-based software
architectures, J. Syst. Softw. 66 (2003), pp. 241–252.

[15] Sharma, V. S. and K. S. Trivedi, Quantifying software performance, reliability and security: An
architecture-based approach, Journal of Systems and Software 80 (2007), pp. 493–509.

[16] SLA@SOI, Empowering the Service Economy with SLA-aware Infrastructures, ICT: FP7-216556
(2008), http://www.sla-at-soi.eu/.

[17] Stewart, W., “Introduction to the Numerical Solution of Markov Chains,” Princeton University Press,
1994.

[18] Szyperski, C., “Component Software: Beyond Object-Oriented Programming,” Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[19] Wang, W.-L., D. Pan and M.-H. Chen, Architecture-based software reliability modeling, Journal of
Systems and Software 79 (2006), pp. 132–146.

A Stochastic Expression Language

The following depicts the EBNF of the stochastic expression language:

< expression > ::=< compare− expr >

< compare− expr > ::=< sum− expr >|< sum− expr >< compare− op >< sum− expr >

< compare− op > ::= ” < ” | ” > ” | ” ≤ ” | ” ≥ ” | ” = ” | ” 6= ”

< sum− expr > ::=< prod− expr >|< prod− expr >< sum− op >< prod− expr >

< sum− op > ::= ” + ” | ”− ”

< prod− expr > ::=< atom >|< atom >< prod− op >< atom >

< prod− op > ::= ” ∗ ” | ”/”

< atom > ::=< number >|< string >|< id >|< pmf >| ”(” < compare− expr > ”)”

< pmf > ::= ”PMF [” < samples > ”]”

< samples > ::=< sample > | < sample >< samples >

< sample > ::= ”(” < number > ”; ” < number > ”)”

< number > ::=< digit >|< digit >< number >

< digit > ::= ”0” | ... | ”9”′

< string > ::=< char >|< char >< string >

< char > ::= ”a” | ... | ”z”
′

< id > ::=< ucchar >|< ucchar >< id >

< ucchar > ::= ”A” | ... | ”Z”
′

15

	Introduction
	Related Work
	Component Specification and Reliability Prediction
	Parameter Dependencies in Component Reliability Specifications
	Stochastic Regular Expressions for Component Specification
	System Model
	Transformation
	Reliability Prediction

	Case Study
	Assumptions and Limitations
	Conclusions
	References
	Stochastic Expression Language

