
Modeling and Predicting Performance Impacts

in a Service-oriented, Industrial Software System

from the Automation Domain
1

Heiko Koziolek, Roland Weiss, Jens Doppelhamer

Industrial Software Technologies

ABB Corporate Research, Forschungszentrum Deutschland

Wallstadter Str. 59

68526 Ladenburg

heiko.koziolek@de.abb.com

roland.weiss@de.abb.com

jens.doppelhamer@de.abb.com

Abstract: Industrial software systems today have reached sizes and complexity

such that introducing changes like adding new features or fixing bugs requires

significant investments. How these changes affect system qualities like

performance or maintainability is typically not know a priori and therefore increase

the risks for the investment. In this work we show how based on architecture

models early estimations of performance become possible. We present an

industrial demonstrator from the automation domain for model based performance

prediction. First, the architecture models of a service in a service-oriented

automation system are manually created and annotated with performance

parameters. After that, we compare performance predictions with actual

measurements. The used analysis tools allow performance estimates of

implementation, usage, or deployment changes to the system, relying on the

created architecture models. The results of the initial demonstrator incarnation look

promising, as the deviation of the performance estimations are below 10%.

1 This work is supported by the European Union under the ICT priority of the Seventh

Research Framework Program contract FP7-215013.

1 Introduction

The increasing use of model-driven methods in software development [SVC06] creates

the desire to use the designed models not only for code generation, but also for analyzing

the expected non-functional properties of a system [BDI04, Gok07]. For example,

performance-annotated design models can help developers to predict the response times,

throughput, and resource utilizations of their systems. These predictions can be used to

evaluate architectural design alternatives during system development and maintenance

activities, thus reducing the risks for the required investments of the development

project.

While this approach is highly beneficial during early development stages to rule out

designs with poor non-functional properties, it is also applicable after system

implementation. With reverse engineered models from a running system, it is possible to

predict the impact of system changes to the non-functional properties on the model level

before actually implementing them. The models are on a higher abstraction level than the

code, and are therefore helpful in reducing the complexity of the analyses.

Existing, classical performance models based on queuing networks (e.g., [SW02]),

stochastic Petri nets (e.g., [LTK02]), or stochastic process algebras [HHK02] are not

directly applicable on today’s service-oriented software systems. First, their basic

modeling elements are not aligned with elements from service-oriented systems and are

therefore difficult to understand and create. Second, there are hardly any approaches for

creating such models automatically based on reverse engineering methods.

Special performance models for component-based and service-oriented software systems

(e.g., KLAPER [GMS07], PALLADIO [BKR09]) use classical performance models

internally, but model systems more aligned with typical software modeling languages

(e.g., UML), which makes them easier to understand and enables the use of reverse

engineering methods. However, their industrial applicability is still unknown.

We report on current ongoing work in the EU project Q-ImPrESS (Quality Impact

Prediction for Evolving Service-oriented Systems)
2
. In the course of the project a new

modeling language for performance, reliability, and maintainability of service oriented-

systems is being created. It shall combine the advantages of different existing methods.

To assess the applicability and benefits of the model-driven quality analysis method, the

industry partners in the project build multiple demonstrators.

2 http://www.q-impress.eu

This paper reports on the initial implementation of a demonstrator for analyzing the

performance impacts of different change scenarios in a service-oriented system from the

automation domain. As a first step, we have manually created performance models by

instrumenting the code of the system and executing different test cases. In a second,

future step, the models shall be created by reverse engineering tools. The performance

models can be used to predict the response times and resource utilizations of the system

for different usage profiles and deployment scenarios.

The remainder of the paper is organized as follows: Section 2 provides a quick overview

of the Q-ImPReSS project. Section 3 describes the demonstrator implementation and

measurement studies, which were used to construct a service-oriented performance

model. Section 4 presents some initial prediction results, before Section 5 concludes the

paper.

2 Overview of the Q-ImPrESS project

The EU FP7 STREP project Q-ImPrESS has four academic partners (Charles University

Prague, Politecnico di Milano, Forschungszentrum für Information Karlsruhe (FZI), and

Mälardalen University Västerås) and four industrial partners (ABB, Itemis, Ericsson

Nikola Tesla, Softeco).

The overall goal of the project is to define a new service engineering method to create

and evolve service-oriented software with predictable end-to-end quality. The key

constituents for reaching this goal are:

 Support for the evolution of service-oriented software through what-if analyses

by predicting the impact of design decisions on performance, reliability and

maintainability based on architecture models,

 Highlight trade-offs between these quality attributes for alternative architectures

such that conscious decisions are made traceable back to the priorities of the

quality attributes,

 Facilitate the reengineering of legacy code to service-oriented architectures by

iterative model abstractions form implementation to architecture models.

LQN EQN-Sim...

(T3.3)

QN
Model

Checker...

(T3.3)

LQN
Markov

Chain...

(T3.3)

Automata
Model

Checker...

(T3.3)

Common Service Architecture Meta-Model

Static

Structure

Behaviour

Quality

Annotations

Usage Model

Deployment

(T3.2) (T3.2)

Legend

Prediction Formalism

<Prediction Model>

M2M-Transformation

New Meta-Model

Code Code

Java C/C++

R
e

v
e

rs
e

E
n

g
in

e
e

ri
n

g
/

M
o

n
it
o

ri
n

g

(T2.2 & T2.3) Reverse Engineering

(T2.4) Monitoring

C
o

n
s
is

te
n

c
y(T5.1)

T2M-Transformation

Check Transformation

(generated)

Model Editors

(T4.1)

(T2.1)

Analyses

Results
<<annotate>>

(T5.2)

<<System Architect>>

<SOFA><PalladioCM>
<KLAPER>

<ProCom>

Tools for

Maintainability

Analysis

(T3.1)

(T3.1)

Meta-Model Part

Figure 1: Q-ImPrESS Overview, planned Models and integrated tools

At the core of the Q-ImPrESS methodology is a new service architecture meta model

(SAMM), see Figure 1. The meta model consists of five different submodels according

to parts of the system that can be built by separated developers:

1. A usage model for call frequencies and input parameters

2. A behavior model for control flow within and between services

3. A static structure model for services, components, and connectors

4. A deployment model for the hardware resource and the mapping of services to

hardware resources

5. A quality annotation model for execution times, failure probabilities, and costs

There are two main means to create instances of architecture models according to this

meta model. On the one hand, they can be created and edited with graphical modeling

tools. This works well for new development projects and allows early reasoning about

design decisions at the architectural level. On the other hand, models can be obtained by

reverse engineering legacy code (Java, C++, Delphi) through a semiautomatic process. A

GAST representation is extracted from the source code, abstracting behavior within

components. The SoMoX software model extractor then mines for components on this

representation iteratively, taking input from users to guide the clustering and component

identification.

The complete model is transformed into existing meta models, i.e. to KLAPER for

performance and reliability, to Palladio for performance, reliability, and maintainability,

to ProCom for real-time performance, and to SOFA for protocol correctness checking.

The model can omit some data if not all analysis capabilities in Q-ImPrESS are relevant,

e.g. information from the deployment model is not required for protocol checking.

At the moment, the user has to run the analysis tools consecutively to predict the impact

on different quality attributes. It is planned to support tradeoff analyses with a dedicated

tool to assess the interdependencies between performance/reliability/maintainability with

respect to different design alternatives.

3 Demonstrator Implementation

The goal of our demonstrator implementation is to validate the accuracy of the quality

predictions of the Q-ImPrESS method and tools on an industrial-sized system as well as

the applicability in terms of the required effort to achieve accurate predictions. With the

final demonstrator, we want to assess the quality impact of different change scenarios

with respect to performance, reliability, and maintainability, and perform trade-off

analyses for different design alternatives on the model level.

As the reverse engineering tools from the academic partners are still under development,

we opted to create a demonstrator model manually in a first iteration of the validation

phase. This helps us to evaluate the involved meta-models for their modeling

expressiveness and to initially assess the possibilities for getting the necessary data from

a running system.

We chose a service-oriented, distributed control system from ABB as the system under

study for our demonstrator implementation. The system consists of controllers with

embedded real-time software, as well as PC software implemented in C/C++ running on

a general purpose operating system.

Figure 2: Demonstrator Static Structure Model (left), Behavior Model (right)

While the whole system consists of several million lines of code, we focused our

analysis on a service called ‘Log Aggregator’ with ca. 30 KLOC. This service runs in the

so-called ‘Data Integration Layer’ and manages logs of recorded signal data from an

industrial production process. Clients (e.g. HMIs for plant operators) can request an

arbitrary number of data values (items) from the data integration server, process the

logged data, and generate trend charts via the service.

Fig. 2 (left) shows part of the static structure model of the Log Aggregator. The data

integration server is connected via a standardized protocol (OPC DA) to a number of

controllers, which may send thousands of items per second to the server. Fig. 2 (right)

shows part of the behavior model of clients of Log Aggregator. The clients first perform

marshalling, and then acquire a synchronization lock, before sending their requests to the

server. After receiving the response from the server, they release the lock and unmarshal

the data.

We instrumented the code of the ‘Log Aggregator’ and inserted numerous measurement

points into the implementation. As a behavioral model of the service was not available,

we first had to reconstruct it. We used high precision counters from Windows for

generating timestamps. After some tests, we found that the execution time of the system

can be abstracted into three distinctive resource demands: client CPU demand before

sending a request, server CPU demand, and client CPU demand after getting a response.

Fig. 3 shows the measurement results for the three different resource demands in relation

to the number of requested items. We repeated the test cases multiple times to derive

reliable results for the average execution times. The results indicate that the dependency

between the number of requested items and the execution times is linear. We used this

data to construct a performance model with the SAMM.

Figure 3: Demonstrator Measurement Results

4 Prediction Results

For the performance predictions, we relied on the Palladio component model [BKR09]

(PCM) and its built-in extended queuing network simulator. The PCM is connected to

the SAMM of Q-ImPrESS via a model transformation as depicted in Figure 1. We

simulated the performance model with the same number of clients and number of

requested items as in our measurement study. Then, we compared the mean response

times predicted by the simulation and the mean response times measured (Table 1). The

deviation is below 10 percent in all cases and therefore we deem the model sufficiently

accurate for extrapolation.

Table 1: Prediction vs. Measurement for the Initial System

Number of

Items

Predicted Mean

Response Time

Actual Mean

Response Time

Error Error (%)

1000 0,0089 0,009441 0,000541 5,73

2000 0,0137 0,014676 0,000976 6,64

4000 0,0233 0,024475 0,001175 4,80

8000 0,0425 0,040395 -0,0021 5,20

In the following, we report on quality impact predictions for different evolution

scenarios involving (i) changing the implementation, (ii) changing the client workload,

and (iii) changing the resource environment:

Changing the Implementation: After analyzing the code of the LogAggregator it is

expected that the processing overhead per item can be reduced by 50 percent from

0.0022 seconds to 0.0011 seconds by optimizing the involved algorithms. Using our

performance model, we can predict the impact of this change to the overall response

time perceived by the clients before actually implementing the change. After adapting

the model to the new resource demand for the server component, the predicted mean

response time for requesting 8000 items is 0.040 seconds instead of 0.042 seconds in the

original system. The result indicates that this optimization yields only a small overall

impact on the performance.

Changing the Client Workload: Because of the evolution of the underlying industrial

system in terms of sensors and throughput, it is expected that the number of requested

items will increase beyond 8000 items per requests. Using our model, we found that the

mean client response time will be 0.079 seconds for 16000 requested items and 0.154

seconds for 32000 requested items. Additionally, it is expected to have clients with

multithreaded access to the LogAggregator in the future to update multiple trend charts

in parallel. Our model predicts that clients initiating two threads at a time for 8000 items

will receive a mean response time of 0.060 seconds, while clients initiating four threads

at a time would receive their responses after 0.130 seconds.

Changing the Resource Environment: Both the Operator Workplace Client and the Log

Aggregator run on Intel Core 2 Duo PCs with 2.66 GHz initially. Our model can predict

the performance impact of using faster hardware when evolving the system. If the server

PC is changed to an Intel Core 2 Duo PC with 3.33 GHz, the overall mean response time

for requesting 8000 items will decrease from 0.042 seconds to 0.040 seconds. If the

client PC is changed in the same way the response time will decrease to 0.036 seconds,

because of its higher processing load. If both PC are changed to the faster processors, the

response time will be 0.034 seconds. Additionally the impact for saving hardware can be

predicted. If both the Operator Workplace Client and the Log Aggregator are deployed

on the same PC (2.66 GHz) the response time stays the same for single-threaded access,

but increases to 0.090 seconds for 2 parallel threads or 0.170 seconds for 4 parallel

threads.

5 Conclusions

We have presented a demonstrator implementation for a model-driven approach called

Q-ImPrESS for predicting quality impacts in service-oriented systems. The involved

performance models have been created with the newly introduced service architecture

meta-model. As a first step, we have shown how to construct an instance of the model

manually and what can be achieved with such a model when being applied on a realistic,

industrial system.

The approach shall help service developers to specify the performance properties of their

services and software architects to assess the performance of a service-oriented design

before implementation or after applying changes to an existing implementation. This

paper serves as a first proof-of-concept case study, demonstrating that the envisioned

approach is in principle applicable in practice, even on large-scale systems.

Our models for the industrial system are still limited in their expressiveness and shall be

extended in future work. We will incorporate more hardware resources (e.g., storage

devices) into the model, and model the performance properties of other services in the

system. So far, we have built the models manually, but for a next iteration we will apply

reverse engineering tools provided by the academic partners to decrease the time for

creating the models from legacy systems. Furthermore, besides performance, also the

reliability and maintainability of the demonstrator system shall be analysed with similar

Q-ImPrESS tools.

Literaturverzeichnis

[BKR09] Becker, S.; Koziolek, H.; Reusser, R.: The Palladio Component Model for Model-Based

Performance Prediction. In Elsevier Journal on Systems and Software, Vol 82, No. 1, pp.

3-22, January 2009

[BDI04] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-Based Performance

Prediction inSoftware Development: A Survey. IEEE Transactions on Software

Engineering, 30(5):295-310, May 2004.

[SVC06] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Development:

Technology, Engineering, Management. John Wiley & Sons, 2006

[SW02] C. U. Smith and L. G. Williams. Performance Solutions: A Practical Guide to Creating

Responsive,cScalable Software. Addison-Wesley, 2002.

[LTK02] C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and O.P. Waldhorst.

Performance analysis of time-enhanced uml diagrams based on stochastic processes. In

ACM Proceedings of the International Workshop on Software an Performance, pages

25–34, 2002

[HHK02] H. Hermanns, U. Herzog, and J.P. Katoen. Process algebra for performance evaluation.

Theoretical Computer Science, 274(1-2):43–87, 2002.

[Gok07] S. S. Gokhale: Architecture-based software reliability analysis: Overview and

limitations,” IEEE Trans. on Dependable and Secure Computing, vol. 4, no. 1, pp. 32–

40, January-March 2007.

[GMS07] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. Filling the gap between

design and performance/reliability models of component-based systems: A model-driven

approach. Journal on Systems and Software, 80(4):528–558, 2007.

	Modeling and Predicting Performance Impacts in a Service-oriented, Industrial Software System from the Automation Domain
	Heiko Koziolek, Roland Weiss, Jens Doppelhamer
	Industrial Software Technologies ABB Corporate Research, Forschungszentrum Deutschland Wallstadter Str. 59 68526 Ladenburg heiko.koziolek@de.abb.com roland.weiss@de.abb.com jens.doppelhamer@de.abb.com
	1 Introduction
	2 Overview of the Q-ImPrESS project
	3 Demonstrator Implementation
	4 Prediction Results
	5 Conclusions
	Literaturverzeichnis

