
Evolving Industrial Software Architectures
into a Software Product Line: A Case Study

Heiko Koziolek, Roland Weiss, and Jens Doppelhamer

ABB Corporate Research, Industrial Software Systems,
Wallstadter Str. 59, 68526 Ladenburg, Germany,

{heiko.koziolek | roland.weiss | jens.doppelhamer }@de.abb.com

Abstract. Industrial software applications have high requirements on
performance, availability, and maintainability. Additionally, diverse ap-
plication landscapes of large corporate companies require systematic
planning for reuse, which can be fostered by a software product-line
approach. Analyses at the software architecture level can help improving
the structure of the systems to account for extra-functional requirements
and reuse. This paper reports a case study of product-line development
for ABB’s robotics PC software. We analysed the software architectures
of three existing robotics applications and identified their core assets.
As a result, we designed a new product-line architecture, which targets
at fulfilling various extra-functional requirements. This paper describes
experiences and lessons learned during the project.

1 Introduction

The high requirements for extra-functional properties, such as performance,
availability, and maintainability, in industrial software applications demand care-
fully designed software architectures. Industrial software applications control
complex machines and have to respond to user requests or other external stim-
uli within strict time constraints to avoid failures and harm to human beings.
They have to exhibit a high availability with very limited down-time to provide
maximal benefit for customers. Internally, they should be structured to allow
for efficient maintenance and long-term evolution. All these features should be
enforced by the underlying software architecture.

Large corporate companies, which serve multiple application domains, have
to deal with diverse software application landscapes that complicate fulfilling
all extra-functional requirements. In our context, we analyzed the situation for
the robotics software at ABB. There are more than 100 software applications in
the robotics domain from ABB. These applications have been developed by dis-
tributed development teams with limited centralized planning and coordination.
This situation has accounted for a high functional overlap in the applications,
which has lead to high and unnecessary development and maintenance costs.

A common solution for this problem is the introduction of a software product-
line [1], which systematically targets at bundling common assets and building
customized applications from reusable software components. Many companies,

such as Nokia, Philips, and Bosch have successfully introduced software product
lines. While several studies have been reported (e.g. [2–4]), which aim at de-
riving product-line architecture from existing software application, no cookbook
solution can be applied for industrial software applications so far.

In this paper, we report our experiences from 3 year running project at
ABB Research reconstructing and evolving the software architectures of three
robotics PC applications from ABB. We analyzed the different applications for
their shared functionalities and special advantages. We identified core assets and
bundled common functionality into reusable software components. We designed
new interfaces and ultimately developed a software product-line architecture
to systematize reuse among the applications. During the course of the project,
we learned several lessons, which could be interesting both for other software
architects and researchers.

The contribution of this paper is a case study on architecture evolution and
software product-line design in the industrial application domain. The case study
includes experiences and findings, which could stimulate further research. We
used and assessed different methods from research for the benefits in our domain.

This paper is organized as follows: Section 2 reports on a survey of ABB
robotics software, which revealed a significant functional overlap and little reuse.
The application domain and the three applications we analyzed are described in
more detail in Section 3. Section 4 elaborates on the three phases of our architec-
ture evolution and product-line development project. Section 5 summarizes our
lessons learned, and Section 6 surveys related work. Finally, Section 7 concludes
the paper and sketches future work.

2 The Challenge: Functional Overlap

A comprehensive survey on ABB’s robotics software was conducted in 2006 and
motivated our project. The software application landscape within ABB Robotics
is diverse and scattered with over 120 applications developed in 8 different coun-
tries (mainly Sweden and Norway) by 10 different organizations. The software
supports a large number of robot application domains, such as arc welding, spot
welding, press automation, painting, sealing, material handling, etc.

The used programming languages include C, C++, C#, VB, and JavaScript.
Furthermore, a Pascal-like imperative language called RAPID is used by many
applications for implementing robot programming logic for ABB’s main robot
controller called IRC5. Several applications target the Windows operating sys-
tem, while other applications run directly on robot controllers using the VxWorks
real-time operating system. The code complexity of the applications ranges from
small tools with 1 KLOC to large applications with more than 600 KLOC.

The survey analysed 58 ABB robotics applications in detail. Fig. 1 shows a
high-level overview of the application landscape. The 58 applications depend on
13 base elements, which provide functionality for example for remote communica-
tion and graphical user interfaces. The applications themselves provide different
extension interfaces to allow user-specific customization. However, apart from

the base elements there is very few reuse among the applications as depicted by
the low number of dependencies between the applications in Fig. 1.

Fig. 1. Application Landscape of ABB’s
Robotics Software (schematic view,
anonymised)

Therefore, the survey broke down
the functionalities of the applications
in detail and categorized them into
30 different functions. Each applica-
tion developer group was asked what
functionality their tool implemented.
Fig. 2 shows a condensed view of the
results. The left-hand side depicts the
number of applications implementing
the same function. For example, func-
tion 1 was implemented repeatedly in
11 different applications.

It could be argued that the low
amount of reuse results from the
distinct robot application domains,
where software applications are imple-
mented without regard of other appli-
cation domains. Therefore, the right-
hand side of Fig. 2 shows the num-
ber of functions, which where imple-
mented multiple times within a sin-
gle application domain. For example,
in domain 1 developers have imple-
mented 161 functions multiple times
in different applications.

The low level of reuse among the
applications contributes to the high
maintenance costs for the applica-
tions, which the survey found to be
in the range of several million US-
dollars per year. As expected, the
most complex applications have the
highest maintenance costs. However,
the survey also identified some out-
lier applications with unproportion-
ally high maintenance costs despite a
small amount of code.

There are several reasons for the undesirable functional overlap within ABB
Robotics applications. The organisational structure of the software development
units has no central unit coordinating and organizing systematic reuse. Several
company acquisitions into the corporate body have contributed to the situation.
The software is created by a large number of development teams, sometimes

Fig. 2. Functional Overlap in ABB Robotics Software

consisting only of 2-3 developers. The communication among the teams is limited
within and across application domains and organizational units.

Because of the large size of the application landscape, no developer can follow
which applications are developed in other units and where reuse potential might
be high. Some applications are small and tailored for very specific functions
and thus exhibit limited reuse potential. Other applications are large, but their
software architecture is documented only in a limited way, so that it is not easy
to isolate certain functions in the code.

The amount of functional overlap bears high potential for sharing code (i.e.,
reusable components) among the applications. To decrease maintenance costs
and time-to-market, the survey suggests to bundle more common functional-
ity into reusable software components (e.g., COM components or .NET com-
ponents). More communication among the development units is needed and a
central organization for planning systematic reuse would be desirable.

Notice that the survey did not involve all ABB robotics software, therefore
the potential for reuse might be even higher. We believe that this situation
of functional overlap is not specific to ABB, but common for large corporate
companies, which serve different applications domains and rely on distributed
development teams. More research should be devoted to documenting, analysing,
and redesigning complex application landscapes (cf. [5]).

3 Systems under Study:

With the challenge of functional overlap in mind, we started an architecture re-
design project in 2006 focussing on ABB robotics PC applications. Applications
running on embedded devices were out of scope for our project. This section
first briefly describes the robotics PC application domain (Section 3.1) to let the
reader understand the extra-functional requirements for these systems. Then,

it sketches the high-level software architectures of three PC applications, which
were the basis for our project (Section 3.2), and lists the extra functional re-
quirements (Section 3.3).

3.1 Application Domain

Fig. 3 depicts a typical industrial robot system. It may involve a single robot
for a specific task or a whole robot line consisting of several robots arranged in
subsequent order.

One or several robot controllers handle movements of the robot arms. This
involves path planning and robot axis control. Mustapic et al. [6] have detailed
on the open platform architecture of ABB’s robot controller. It is an embedded
system consisting of ca. 2500 KLOC in C divided into 400-500 classes. The
controller kernel provides special support for implementing application specific
extensions. The robot controller has an attached teach pendant, a small handheld
device for manual control and supervision of a robot. The robot controller and
its extensions typically run on a embedded operating system such as VxWorks
or Windows CE.

Fig. 3. Exemplary Industrial Robotics System for Packaging: Overview

The robot system can include a number of external sensors, such as cameras
for scanning items to be processed or automatic scales for weighting items. Mul-
tiple conveyor belts may feed the robots with items and forward the processed
items. In larger robot systems, operators supervise the whole process supported
by an arbitrary number of PC workstations, which for example visualize scanned
items or allow manipulating robot configurations.

The following coarse functionalities are carried out by PC applications in
such a robot system:

– Engineering: deals with offline robot programming on an office PC, which is
decoupled from robot production. It allows configuring and preparing robot

programs in advance without interfering with robot production. Modern
robot engineering tools offer 3D visualizations of robots systems to assist
path planning.

– Simulation: allows testing the robot installations and programs (i.e., RAPID
code) created during engineering. This functionality is similar to program de-
bugging, as it allows to set break points and execute the programs step-by-
step. It targets identifying robot collisions and analysing robot reachability.

– Supervision: lets operators monitor and control the robot system. This
includes consolidating logs from different robot controllers and visualizing
the data collected from different robot controllers.

– Job Control: manages a job queue and controls the execution of jobs from
the queue. A job captures a task the robot system shall execute, for example
painting a car or picking and placing a certain amount of goods. Control-
ling the job queue may involve simply executing RAPID code on the robot
controllers, or, in more complex cases, collecting and analysing data from
external sensors and distributing item coordinates to different robot con-
trollers.

– Job Coordination: coordinates jobs running on multiple job controllers
during production. Job coordination for example allows synchronizing dif-
ferent jobs in a robot system, so that subsequent jobs execute with minimal
delay, or switching jobs on multiple controllers in a coordinated way (e.g., a
new color for painting the next car has been chosen and all involved robots
have to adjust accordingly).

Additionally, attached programmable logic controllers (PLC) are used for
coordinating the robot system within the context of superordinated systems.
For example, information from ERP systems or other production systems can
be used to direct robot execution.

3.2 Initial Architectures

We analyzed three different PC applications, each one targeting a specific ap-
plication domain. These applications were chosen because of their considerable
value to ABB business and their perceived similarities. The picking/packing ap-
plication supports high speed packing of small goods. The painting application
for the automotive industry supports colouring cars. The palletizing applica-
tion supports piling and unpiling goods onto pallets. The three applications
have been implemented by different development teams and only exhibit limited
reuse among each other.

Fig. 4 shows the high-level software architectures of the three applications
in a component-and-connector view. The functionalities described in Section 3.1
have been implemented differently in the the different applications.

The picking/packing application combines engineering, supervision, and job
control in a single software tool. In this case, the job control functions involve
scanning captured camera images for item positions and distributing the item po-
sitions to different robot controllers. The tool is a typical Win32 application with

Fig. 4. High-Level Software Architecture for three ABB Robotics PC Applications

a graphical user interface. It communicates with plant interaction controllers via
a remote interface and with the robot controllers via the controller API. For this
application, the robot controller features a special picking extension. Simulation
is not supported for this type of application.

The painting application includes two distinct tools for supervision and en-
gineering/simulation. It does not have additional job control functionality. The
engineering and simulation tool has an attached painting plug-in, which tailors
the tools for the application domain. The supervision tool communicates with
the plant interaction controller via OPC DA (OLE for Process Control Data
Access). The supervision tool features a rich and customizable graphical user
interface. Additionally, there is a controller extension with special support for
painting applications.

The palletizing application mainly provides engineering functionality to set
up palletizing jobs. Supervision has to be carried out using the teach pendants
or programming the plant interaction controller. There is also no additional job
control or simulation functionality. However, there is a robot controller extension
specifically for the palletizing domain.

3.3 Extra-functional Requirements

Designing a quality software architecture for robotics PC applications is chal-
lenging because of the high extra-functional requirements:

– Availability: Usually, a robot line is part of a larger production process, where
a failure of the robots can result in substantial costs. As a particular example,
for the picking/packaging application, the job controller functionality must

run without interruption. Otherwise, no more targets for the robot controller
might be available, which stops the whole production process.

– Scalability: Robot systems are sold to a large variety of customers. Some
customers operate small robot cells with single controllers and robots, while
other customers run large distributed robot lines with dozens of robots. The
architecture must support adapting the application for different installation
sizes.

– Maintainability: High maintenance costs should be avoided to keep the ap-
plications profitable. Redundant maintenance effort for functionality imple-
mented in multiple applications should be avoided at any costs.

– Time-to-Market: The applications should be adaptable so that new appli-
cation domains can be supported in a short amount of time. Therefore, re-
usability of existing assets for new application domains is highly desirable.

– Sustainability: As the robot systems have an expected operation time of
more than 10 years, the applications should be ready to cope with technology
changes in the future.

– Security: Remotely accessible robot systems need user authentications to
avoid being compromised.

– Performance: Once in production, the picking/packing application has to
deliver the coordinate batches to the robot controller in time. If the im-
age analysis takes too long, the conveyor tracking mechanism skips item
coordinates, which means that items get not processed. Distributing the co-
ordinate batches onto multiple robots and controllers also happens in real
time. Static and dynamic load balancing mechanisms must not slow down
the robot controllers so that it cannot handle the timing constraints.

– Usability: A common look-and-feel for all ABB Robotics PC applications is
desirable so that users can quickly orient themselves when using tools from
different application domains.

4 The Solution: Step-wise Evolution

Our project consisted of three phases: reconstructing and documenting the de-
tailed architecture of the picking/placing application (Section 4.1), designing a
new remote interface for communication within the architecture (Section 4.2),
and finally, designing a new product-line architecture based on identified reusable
components from the architecture reconstruction and also including the new re-
mote interface (Section 4.3).

4.1 Architecture Reconstruction and Documentation

As already indicated in Fig. 4, the picking/placing application was perceived as
bundling much functionality with limited separation of concerns, which ham-
pered introducing reuse. Therefore, we analysed the architecture of this applica-
tion in detail in the first phase. Initially, there was no architectural documenta-
tion and only limited design documents. First, we reconstructed the architecture,
then we documented it, and finally we made suggestions for improvements.

For architecture reconstruction, we looked at the application both externally
(running different test cases) and internally (analysing the source code). We
browsed the code manually to find out how the coarse functionalities listed in
Section 3.1 were spread among the code. Furthermore, we used source code
analysis tools, such as SourceMonitor [7], Doxygen [8], and SISSy [9] to visualize
the static structure and to derive code metrics.

As a result, we recovered a layered architecture as depicted on a high ab-
straction level in Fig. 5. There are engineering user interfaces and logic as well
as runtime user interfaces and logic, the latter including both supervision and
and job control functionality. All modules rely on a common object model, which
is based on several elementary data types and supports persistency via XML se-
rialization. In total, the application consists of more than 300 KLOC in more
than 600 files. Technologically, it is a Win32 application written in C++ with
dependencies to Microsoft’s Foundation Classes (MFC) and several third-party
components.

Fig. 5. Picking/Packing Application - Layered Architecture and Code Metrics

While the tools we applied for source code analysis are useful to derive lay-
ered structures and bad smells in the code, they provide only limited support
for identifying reusable components. Up to now, this is still mainly a manual
tasks. Similar tools in this area are Dali, Lattix, or Sotograph. While they can
analyse package structures and class dependencies, it is still difficult to locate
common functionality spread among multiple packages with these tools. Reverse
engineering tools require a more strict software component definition with pro-
vided and required interfaces, which are distinct from classes or modules. This
way higher level structures could be identified to make components replaceable.
A preliminary example for analysing Java code has been presented in [10].

For architecture documentation, we used annotated UML diagrams as well as
textual descriptions. We used component and package diagrams for a static view
on the architecture, as well as sequence diagrams for a dynamic view. Besides
the high-level architecture depicted in Fig. 5, we also documented the structure

and behaviour on lower levels (e.g., we decomposed included composite com-
ponents into smaller structures). Our UML models do not directly map to the
code structure, but instead visualize higher level structures. In our application
domain, UML models are still only used for documentation, not for code gener-
ation or analysis of extra-functional properties.

Our suggestions for architectural improvements mainly targeted the extra
functional requirements modifiability and sustainability. Modifiability requires
isolating separated concerns, so that parts of the application become replaceable.
It is an important prerequisite for introducing a software product-line approach.
Sustainability is especially critical for industrial software application with life-
times often longer than typical IT technology life-times.

To improve modifiability and maintainability, we suggested to enforce the
layered structure of the architecture more on the code-level. Modifiability tac-
tics [11], such as localizing modifications by maintaining semantic coherence in
the different components and layers were presented. We suggested to factor out
more base types from the object model, to restructure the central system pack-
age from the source code to adhere to the layered structure, and to isolate UI
functionality from the object model, which was not fully decoupled from the
higher layers. Additionally, the SISSy tool revealed several problem patterns on
the design and implementation level, such as dead imports, cyclic dependencies,
god classes, permissive visibility of attributes or methods, or violation of data
encapsulation.

To improve sustainability, we suggested a step-wise migration of the code-
base to the .NET framework. Such a technology change shall result in higher
developer productivity due to the higher level APIs of the framework and a mod-
ern programming language with C#. The application could reuse .NET platform
features, such as the frameworks for user interfaces and persistency. Reliability
and security shall be improved via type safe code and a new user authentication
mechanism. Besides using newer technologies, this change also prepares the ap-
plication to incorporate third party components off-the-shelf (COTS), as third
party vendors are migrating or have already migrated to the new platform.
Therefore, we suggested to replace the number of dependencies to the MFC
framework with dependencies to the .NET framework to make the application
more portable.

4.2 Extending a Remote Interface

The goal of the second phase of the project was to extend the remote interface
of the picking/placing application to allow for more application level services,
such as tuning sensor parameters during runtime and remote robot control. The
existing remoting interface (called RIS) of the application was mainly used by
low-level devices, such as PLCs. The new version of the interface should support
higher-level systems such as distributed control systems or customer HMIs. Fur-
thermore, it was required that the interface was compliant to interface standards
such as OPC, and regulations by the Organization for Machine Automation and
Control (OMAC), which for example requires user authentication.

To formulate the functionality provided by the extended interface, we used
UML use cases with textual descriptions. Additionally, we used quality attribute
scenarios [11] to specify the extra-functional requirements, such as performance,
reliability, and security for the extended interface. They describe the source of a
scenario, a stimulus initiating the scenario, the artifact touched by the scenario,
environmental conditions, as well as expected responses and response measures.
Fig. 6 shows an example for a security scenario of the interface.

Fig. 6. Security Scenario for the new Remote Interface

We soon realized that we could not incorporate access by low-level devices
and high-level systems into a single interface. Therefore, we subsumed the high-
level application services in a new interface called Remote Production Services
(RPS), and left the old remote interface intact. The new interface was imple-
mented as a web service based on the Windows Communication Framework
(WCF). Additionally, it can be provided as an OPC interface. It allows various
functionalities, such as controller management, job management, robot man-
agement, user management, logging, and parameter hot tuning. The remoting
capabilities of RPS allow external clients to access and control the robot sys-
tem with an interface at the application level, beyond a generic robot controller
interface.

The quality attribute scenarios were helpful in discussions with the stake-
holder. We got a better understanding of the application domain because of
the quality attribute scenarios. Furthermore, the scenarios helped to define the
priorities of the stakeholders, as it was discovered that certain extra-functional
properties were only secondary to them. As a result, quality attribute scenarios
are currently also used for the specification of a new software architecture.

Later, the new remote interface was an important part of the newly designed
product-line architecture.

4.3 Designing a Product-Line Architecture

The goal of the third phase of our project was to design a sustainable software
product line architecture based on the applications described in Section 3.2. The
design incorporated both the architectural documentation of the picking/placing
application from phase 1 and the the newly designed remote interface RPS from
phase 2. The main requirements for the product-line were separating different
concerns in the applications, increasing reuse, providing a common look-and-feel,
and improving maintainability. Additionally the extra-functional requirements
stated in Section 3.3 had to be addressed.

Fig. 7 depicts a high-level static view of the new product-line software archi-
tecture incorporating all identified core assets. The three existing applications
can be deduced as instances from this product-line. New applications for dif-
ferent domains shall be deducible with limited effort. Common functionality
has been bundled. For example, there is a single engineering tool with attached
application-specific plugins providing a common look-and-feel for engineering.
Furthermore, all applications use the same tool for supervision. The extensions
for the robot controller have been left untouched. The architecture enables sim-
ulation functionality to become available for different domain-specific applica-
tions.

Fig. 7. Product-Line Architecture

For sensor data analysis and item position generation of picking/placing tasks
an additional GUI-less job controller component has been extracted from the for-

mer picking/placing application. It is an optional component not present in the
instances for painting and palletizing applications. We had to align and compare
concepts present in the existing applications. For example one application called
a configured and running robot application a ”project”, another one called it
a ”job” with slightly different properties. Harmonizing the concepts allowed for
more reuse and a common look-and-feel of the applications.

The architecture features a new job coordinator component based on .NET
technology. It allows coordinating multiple, possibly concurrently running jobs
during production. For some custom robot system installations, this functional-
ity had been implemented using PLCs. Opposed to that, the new job coordinator
component is based on .NET technology and shall run on Windows nodes. With
a special extension API and the .NET framework, it allows users to easily im-
plement customized coordination logic.

Bundling common functionality into reusable components was enabled by the
architecture reconstruction and documentation from phase 1. The engineering
layer was replaced by the Engineering/Simulation tools based on .NET tech-
nology, while the supervision layer was replaced by the Supervision tool. We
incorporated the new high-level remote interface RPS from phase 2 into the ar-
chitecture. It provides a new way of accessing the robot controller with high-level
services instead of former low-level commands.

The architecture addresses the extra-functional requirements listed in Sec-
tion 3.3 as follows:

– Availability: For picking/placing applications, the architecture allows for
multiple job controllers to analyse sensor data and produce item positions for
the robot controller. Formerly, this was a single point-of-failure, as a whole
robot line had to stop production once the job controller functionality failed.

– Scalability: The architecture can be flexibly adapted for small and large cus-
tomers. Small systems might not incorporate the optional job coordinator
for synchronizing different jobs. Large systems may additionally attach cus-
tomer HMIs, which can make use of the RPS interface. They may also use
multiple job controllers or even run combined picking/placing and palletizing
robot lines.

– Maintainability: As common functionality has been bundled into reusable
components, the future maintenance effort for the application should de-
crease. It is no more necessary to test the same functionality multiple times.
Critical functionality, such as the picking/placing job controller has been iso-
lated, so that it can be tested more thoroughly. Using common programming
languages and frameworks in the architecture is beneficial to distribute the
maintenance tasks to different teams.

– Time-to-market: The product-line architecture features an engineering tool
and robot controller, which can be quickly adapted to new application do-
mains via plug-ins. New applications do not have to reprogram basic func-
tionality provided by both platforms (e.g., basic user interfaces and robot
control logic).

– Sustainability: The product-line architecture features new components based
on the .NET framework, which is expected to ease the impact on technology
changes over the course of the robot system life-cycle.

– Security: The RPS interface provides services for user authentication to pre-
vent unwanted remote accesses to a robot system.

– Performance: In case of the picking/placing application, concepts for dis-
tributing the sensor data analysis and item position generation to multiple
job controller instances have been discussed. This should allow to balance the
workload on the available hardware better and enable very large robot lines
with vast amounts of sensor data, which were formerly difficult to handle.

– Usability: Through the common engineering tool and the common supervi-
sion tool, the look-and-feel of the robotics PC applications for engineers and
operators is similar across application domains. With the aligned concepts
of the different applications, users can quickly learn the new applications.
Furthermore, developers are provided with a common remote interface and
several extension APIs, which enable user-customizations with limited de-
velopment effort.

5 Lessons Learned

While the design of the architecture is specific for the robotics domain and
ABB, we have learned some general lessons during the course of the projects.
These lessons could stimulate further research from the software architecture
community and are thus reported in the following.

On the technical side, we learned that in our case no common low-level
interfaces both for PLC and PC applications could be provided with reasonable
effort. Therefore we split the remote interface for the robot applications to a
low-level interface (RIS) to be accessed by controllers and a high-level interface
(RPS) with different services on the application level to be accessed by DCSs or
ERPs.

Reverse engineering techniques to analyse legacy source code could be im-
proved to better identify common functionality spread within the code of a
object-oriented application. While existing source code analysis tools are helpful
in capturing the structure of a system, they are limited for identifying reusable
functionality to be isolated and bundled into components, if this had not been
intended by the architecture beforehand.

Unifying some concepts within the different products (e.g., job and robot
line concepts) by introducing small changes gave all stakeholders a better un-
derstanding of the different application domains. We found that such a step is an
important prerequisite when designing a product-line from legacy applications.

From a methodological view point, we found quality attribute scenario and
attribute-driven design helpful in determining priorities for different extra-func-
tional properties together with the customers. Both methods helped finding focus
when designing the RPS interface and the product-line architecture. Further-
more, we found through a business analysis that the benefits from the architec-

ture investigation in terms of saved future development and maintenance costs
largely outweigh its costs.

Some social aspects could also be learned from the project. During the design
of the product-line architecture, we worked closely with the three development
teams of the applications. The existing products and known customer installa-
tions had a major impact on our PLA design. The stakeholders of the architec-
ture desired to incorporate all relevant product set-ups into the PLA. A survey
of existing products and user customizations was essential to ensure stakeholder
support in the PLA.

The development teams were initially hesitant towards the redesign of their
applications into a PLA. The emotional bindings towards their established prod-
ucts was an obstacle to get their commitment. We resolved their reluctance by
getting the different teams into dialogue and emphasizing their individual bene-
fits from the PLA approach (e.g., more focus on core functionality, less mainte-
nance effort).

Development of a PLA should be aligned with the future plans and de-
velopment cycles of the individual development teams to ensure their support
and make the architecture sustainable. With multiple stakeholders having equal
rights to the project, the proposal for the architectural design needed more ar-
gumentation and an iterative approach. A champion advocating the benefits of
a PLA can speed-up the design process.

6 Related Work

Basic literature on software product-line development has been provided by
Clements and Northop [1]. Bass et al. [11] described foundations on software
architectures in practise with a special focus on extra-functional requirements.
Many industrial case studies as in this paper have been included in the book.
Another book on software product-lines has been published by Pohl et al. [12].

In the context of ABB, Mustapic et al. [6] described the software product
line architecture of ABB’s robotics controller. As described in this paper, it is
an open platform, which allows to extend the controller with application specific
functionality. The architectural design accounts for fault tolerance and there are
methods and tools to assess the real-time properties of different instances of
the architecture. Furthermore, Kettu et al. [13] from ABB proposed a holistic
approach for architectural analysis of complex industrial software systems, which
relies on static and dynamic analysis as well as incorporating documentation,
developer interviews, and configuration management data.

In the area of software product line engineering Stoermer et al. [2] pre-
sented the MAP approach for mining legacy architecture to derive product lines.
O’Brien et al. [3] reports on a case study in this direction using the Dali work-
bench and reverse engineering techniques to identify components for a product
line. Smith et al. [4] describe a method with systematic, architecture-centric
means for mining existing components for a product-line.

Numerous software product-lines from the industry have been reported and
incorporated into SEI’s product-line hall of fame [14]. It includes for exam-
ple product lines from Bosch for a gasoline system [15] or from Philips for a
telecommunication switching system [16]. Hetrick et al. [17] reported on the the
incremental return on investment for the transition to a software product-line
for Engenio’s embedded RAID controller firmware. Deelstra et al. [18] pointed
out that deriving individual products from shared software assets in more time-
consuming and expensive than expected.

7 Conclusions

Motivated by a survey on ABB robotics software, which found high functional
overlap and maintenance costs, we have documented in this paper how we
evolved three existing robotics PC applications into a software product line archi-
tecture. The PLA addresses various extra-functional properties, such as avail-
ability, scalability, performance, and maintainability. The paper has reported
several lessons learned from the project, which could stimulate further research.

As next steps, we plan to model the product-line in a formal way and conduct
model-driven predictions for extra-functional properties, such as performance,
reliability, and maintainability. Creating such models suitable for extrapolating
the extra-functional properties to answer sizing and capacity question requires
static as well as dynamic analyses techniques. We will assess whether we can
predict the impact of system updates or changes based on the models without
implementing these changes. These activities shall be conducted in context of
the EU FP7 project Q-IMPRESS [19].

Acknowledgements: We thank Peter Weber from ABB Corporate Research
for kindly providing us details about the ABB robotics applications survey. Fur-
thermore, we thank all members of the I1 group at ABB Corporate Research
Ladenburg for their valuable review comments, which help improving the quality
of this paper.

References

1. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison-Wesley (August 2001)

2. Stoermer, C., O’Brien, L.: MAP - mining architectures for product line evalua-
tions. In: Proceedings of the First Working IEEE/IFIP Conference on Software
Architecture (WICSA’01), Amsterdam, Netherlands (August 2001) 35–44

3. O’Brien, L.: Architecture reconstruction to support a product line effort: Case
study. Technical Report CMU/SEI-2001-TN-015, Software Engineering Institute
(SEI), Carnegie Mellon University (CMU) (July 2001)

4. Smith, D.B., Brien, L.O., Bergey, J.: Using the options analysis for reengineering
(oar) method for mining components for a product line. In: SPLC 2: Proceedings

of the Second International Conference on Software Product Lines, London, UK,
Springer-Verlag (2002) 316–327

5. Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.P.: Quasar
Enterprise: Anwendungslandschaften service-orientiert gestalten. dpunkt-Verlag
(2008)

6. Mustapic, G., Andersson, J., Norstroem, C., Wall, A.: A dependable open platform
for industrial robotics - a case study. In: Architecting Dependable Systems II.
Volume 3069 of LNCS., Springer (2004) 307–329

7. Campwood Software: SourceMonitor. http://www.campwoodsw.com (Jan 2009)
8. van Heesch, D.: Doxygen: Source code documentation generator tool.

http://www.stack.nl/ dimitri/doxygen/
9. Forschungszentrum Informatik (FZI), Karlsruhe: SISSy: Structural Investigation

of Software Systems. http://sissy.fzi.de (Jan 2009)
10. Chouambe, L., Klatt, B., Krogmann, K.: Reverse Engineering Software-Models

of Component-Based Systems. In Kontogiannis, K., Tjortjis, C., Winter, A., eds.:
12th European Conference on Software Maintenance and Reengineering, Athens,
Greece, IEEE Computer Society (April 1–4 2008) 93–102

11. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice (2nd Edi-
tion). SEI Series in Software Engineering. Addison-Wesley (2003)

12. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2005)

13. Kettu, T., Kruse, E., Larsson, M., Mustapic, G.: Using architecture analysis to
evolve complex industrial systems. In de Lemos, R., Giandomenico, F.D., Gacek,
C., Muccini, H., Vieira, M., eds.: Architecting Dependable Systems V: Proceedings
of the Workshop on Software Architectures for Dependable Systems (WADS’07).
Volume 5135 of LNCS., Springer (2007) 326–341

14. Software Engineering Institute: Product Line Hall of Fame.
http://www.sei.cmu.edu/productlines/plp hof.html (Jan 2009)

15. Steger, M., Tischer, C., Boss, B., Mller, A., Pertler, O., Stolz, W., Ferber, S.:
Introducing pla at bosch gasoline systems: Experiences and practices. In: Proc.
3rd Int. Software Product Line Conference (SPLC’04). (2004)

16. Wijnstra, J.G.: Critical factors for a successful platform-based product family
approach. In: SPLC 2: Proceedings of the Second International Conference on
Software Product Lines, London, UK, Springer-Verlag (2002) 68–89

17. Hetrick, W.A., Krueger, C.W., Moore, J.G.: Incremental return on incremental
investment: Engenio’s transition to software product line practice. In: OOPSLA
’06: Companion to the 21st ACM SIGPLAN symposium on Object-oriented pro-
gramming systems, languages, and applications, New York, NY, USA, ACM (2006)
798–804

18. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product fam-
ilies: a case study. J. Syst. Softw. 74(2) (2005) 173–194

19. Q-Impress Consortium: Q-Impress Project Website. http://www.q-impress.eu

