
Performance Evaluation of Component-based Software Systems: A Survey

Heiko Koziolek,a

aABB Corporate Research, Industrial Software Systems, Wallstadter Str. 59, 68526 Ladenburg, Germany

Abstract

Performance prediction and measurement approaches for component-based software systems help software architects to evaluate
their systems based on component performance specifications created by component developers. Integrating classical performance
models such as queueing networks, stochastic Petri nets, or stochastic process algebras, these approaches additionally exploit
benefits of component-based software engineering, such as reuse and division of work. Although researchers have proposed many
approaches into this direction during the last decade, none of them has attained widespread industrial use. On this behalf, we
have conducted a comprehensive state-of-the-art survey of more than 20 of these approaches assessing their applicability. We
classified the approaches according to the expressiveness of their component performance modelling languages. Our survey helps
practitioners to select an appropriate approach and scientists to identify interesting topics for future research.

Key words: Performance, Software Component, CBSE, Prediction, Modelling, Measurement, Survey, Classification

1. Introduction

During the last ten years, researchers have proposed many
approaches for evaluating the performance (i.e., response time,
throughput, resource utilisation) of component-based software
systems. These approaches deal with both performance pre-
diction and performance measurement. The former ones anal-
yse the expected performance of a component-based software
design to avoid performance problems in the system imple-
mentation, which can lead to substantial costs for re-designing
the component-based software architecture. The latter ones
analyse the observable performance of implemented and run-
ning component-based systems to understand their perfor-
mance properties, to determine their maximum capacity, iden-
tify performance-critical components, and to remove perfor-
mance bottlenecks.

Component-based software engineering (CBSE) is the suc-
cessor of object-oriented software development [85, 41] and has
been supported by commercial component frameworks such as
Microsoft’s COM, Sun’s EJB, or CORBA CCM. Software com-
ponents are units of composition with explicitly defined pro-
vided and required interfaces [85]. Software architects com-
pose software components based on specifications from com-
ponent developers. While classical performance models such
as queueing networks [57], stochastic Petri nets [3], or stochas-
tic process algebras [42] can be used to model and analyse
component-based systems, specialised component performance
models are required to support the component-based software
development process and to exploit the benefits of the compo-
nent paradigm, such as reuse and division of work. The chal-
lenge for component performance models is that the perfor-
mance of a software component in a running system depends

Email address: heiko.koziolek@de.abb.com (Heiko Koziolek)

on the context it is deployed into and its usage profile, which
is usually unknown to the component developer creating the
model of an individual component.

The goal of this paper is to classify the performance predic-
tion and measurement approaches for component-based soft-
ware systems proposed during the last ten years. Beyond
tuning guides for commercial component frameworks (e.g.,
[86, 100, 17]), which are currently used in practise, these ap-
proaches introduce specialised modelling languages for the per-
formance of software components and aim at an understanding
of the performance of a designed architecture instead of code-
centric performance fixes. In the future, software architects
shall predict the performance of application designs based on
the component performance specifications by component de-
velopers. This approach is more cost-effective than fixing late
life-cycle performance problems [91].

Although many approaches have been proposed, they use
different component notions (e.g., EJB, mathematical func-
tions, etc.), aim at different life-cycle stages (e.g., design, main-
tenance, etc.), target different technical domains (e.g., embed-
ded systems, distributed systems, etc.), and offer different de-
grees of tool support (e.g., textual modelling, graphical mod-
elling, automated performance simulation). None of the ap-
proaches has gained widespread industrial use due to the still
immature component performance models, limited tool sup-
port, and missing large-scale case-study reports. Many soft-
ware companies still rely on personal experience and hands-on
approaches to deal with performance problems instead of using
engineering methods [94]. Therefore, this paper presents a sur-
vey and critical evaluation of the proposed approaches to help
selecting an appropriate approach for a given scenario.

Our survey is more detailed and up-to-date compared to
existing survey papers and has a special focus on component-
based performance evaluation methods. Balsamo et al. [1] re-

Performance Evaluation May 8, 2009



viewed model-based performance prediction methods for gen-
eral systems, but did not analyse the special requirements for
component-based systems. Putrycz et al. [75] analysed dif-
ferent techniques for performance evaluation of COTS sys-
tems, such as layered queueing, curve-fitting, or simulation, but
did not give an assessment of component performance mod-
elling languages. Becker et al. [5] provided an overview of
component-based performance modelling and measurements
methods and coarsely evaluated them for different properties.
Woodside et al. [94] designed a roadmap for future research
in the domain of software performance engineering and rec-
ommended to exploit techniques from Model-Driven Develop-
ment [84] for performance evaluation of component-based sys-
tems.

The contributions of this paper are (i) a classification
scheme for performance evaluation methods based on the ex-
pressiveness of their component performance modelling lan-
guage, (ii) a critical evaluation of existing approaches for their
benefits and drawbacks, and (iii) an analysis of future re-
search directions. We exclude qualitative architectural evalu-
ation methods, such as ATAM [50] and SAAM [49] from our
survey, because they do not provide quantitative measures. We
also exclude approaches without tool support or case studies
(e.g., [22, 30]). Furthermore, we exclude performance mod-
elling and measurement approaches, where monolithic mod-
elling techniques have been used to assess the performance of
component-based systems (e.g., [40, 52]).

This paper is structured as follows. Section 2 lays the foun-
dations and elaborates on the special characteristics of perfor-
mance evaluation methods for component-based systems. Sec-
tion 3 summarises the most important methods in this area. Sec-
tion 4 discusses general features of the approaches and clas-
sifies and evaluates them. Section 5 points out directions for
future research. Section 6 concludes the paper.

2. Software Component Performance

This section introduces the most important terms and no-
tions to understand the challenge of performance evaluation
methods for component-based systems. Section 2.1 clarifies the
notion of a software component, before Section 2.2 lists the dif-
ferent influence factors on the performance of a software com-
ponent. Section 2.3 distinguishes between several life-cycle
stages of a software component and breaks down which influ-
ence factors are known at which life-cycle stages. Based on
this, Section 2.4 derives the requirements for a component per-
formance modelling language, which are expressed through a
feature model. Finally, Section 2.5 shows a generic process
model for performance evaluation of component-based system,
which defines the scope of the surveyed methods.

2.1. Software Components
McIlroy [61] coined the term ’software component’ already

at the 1968 NATO conference on software engineering. How-
ever, the concept of reusable software components did not get
widespread attention until the mid-nineties, when the founda-
tions became more clear [85, 41] and commercial component

frameworks, such as Microsoft’s COM [16], Sun’s EJB [24]
and OMG’s CCM [69] appeared. Lau and Wang have surveyed
a large number of component system models [56]. Szyperski
defines a software component as follows [85]:

”A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties.”

Software components manifest the principles of informa-
tion hiding and separation of concerns. They foster reuse and
prepare systems for change of individual parts. Moreover,
they enable a division of work between component develop-
ers and software architects, therefore lowering the complexity
of the overall development task. Black-box components only
reveal their provided and required interfaces to clients, whereas
white-box components allow viewing and modifying the source
code of the component implementation. Composite compo-
nents bundle several components into larger units.

2.2. Factors influencing Component Performance

Specifying the performance of reusable software compo-
nents is difficult, because the provided performance depends
not only on the component implementation, but also on the con-
text the component is deployed into. Factors influencing the
performance of software components are (Fig. 1, also see [7]):

Usage 

Profile

Component 

Implementation

Required 

Services

Resource Contention

Deployment Platform

Figure 1: Factors influencing Component Performance

• Component Implementation: Component developers
can implement the functionality specified by an interface
in different ways. Two components can provide the same
service functionally, but exhibit different execution times
running on the same resources and given the same inputs.

• Required Services: When a component service A in-
vokes required services B, the execution time of B adds
up to the execution time of A. Therefore, the overall ex-
ecution time of a component service depends on the exe-
cution time of required services.

• Deployment Platform: Different software architects de-
ploy a software component to different platforms. A de-
ployment platform may include several software layers
(e.g., component container, virtual machine, operating

2



system, etc.) and hardware (e.g., processor, storage de-
vice, network, etc.).

• Usage Profile: Clients can invoke component services
with different input parameters. The execution time of a
service can change depending on the values of the input
parameters. Besides input parameters of provided ser-
vices, components may also receive parameters as the
result of calls to required services. The values of these
parameters can also influence the execution time of a ser-
vice. Furthermore, components can have an internal state
from initialisation or former executions, which changes
execution times.

• Resource Contention: A software component typically
does not execute as a single process in isolation on a
given platform. The induced waiting times for access-
ing limited resources add up to the execution time of a
software component.

2.3. Component Life-Cycle

The influence factors on the performance of a software
component become known at different stages of its life-cycle.
A performance evaluation requires all influence factors to be
available. If a software architect wants to analyse a running
system, these factors can be measured using tools. If a soft-
ware architect wants to make a performance prediction of a
component-based system at an early life-cycle stage, the influ-
ence factors fixed in later life cycle stages have to be estimated
and modelled.

To clarify the notion of component life-cycle, Figure 2
shows four stages of the idealised component life-cycle by
Cheesman and Daniels [14]. It refers to component specifica-
tion, implementation, deployment, and runtime. We will distin-
guish between functional models for implementation and inter-
operability checking and performance models for performance
requirements checking and performance prediction of a soft-
ware component at each life-cycle stage.

A specified component is described via its provided and re-
quired interfaces. Notations for such a description are for exam-
ple an interface definition language (IDL) or UML interfaces.
At this stage there is still no implementation of the component.
A functional model may include protocols for valid call se-
quences. A performance model for a specified component can
only include performance requirements for the specified pro-
vided services (e.g., maximum 20 ms response time), since the
implementation, deployment, and runtime information for the
component is missing.

An implemented component realises a component specifi-
cation by providing the functionality specified by the provided
interfaces using only the specified required interfaces. A func-
tional model can now include information on how the provided
services of the implementation call the required interfaces (i.e.,
a so-called service effect specification [79]). A performance
model of an implemented but not deployed and used compo-
nent can now also include information about the behaviour and

the resource demands of the component, however parametrised
over the concrete platform and input parameters.

A deployed component results from assembling an imple-
mented component to other components and allocating it onto
a hardware node. At this stage, the component consists of the
implementation and deployment information (e.g., an EJB or
BPEL deployment descriptor). The functional model now in-
cludes information about which provided services can actu-
ally be offered, because it is now known which required ser-
vices are available [79]. The performance model can now in-
clude information about the component container, operating
system, and hardware. Therefore the platform-independent re-
source demands (e.g., processor cycles) can be transformed into
platform-dependent resource demands (e.g., timing values) still
parametrised for the input parameters.

Finally, a runtime component is instantiated and may serve
client requests. Such a component is for example an object
in memory. At runtime, components can have an internal
state, which now can be included into the functional model
to check the violation of valid protocol states. For the perfor-
mance model, at this stage the workload (i.e., the number of
clients calling the component), the input parameters, and the
performance-relevant internal state can be added. Furthermore,
the overall performance model for the system may include in-
formation about concurrently running processes also involved
in resource contention.

Many approaches for performance evaluation target a per-
formance prediction for a component-based system already at
the specification stage (level 0 in Fig. 2). At this stage, the
software architect has to make assumptions about the informa-
tion from level 1-3. For level 1, current state-of-the art requires
component developers to provide a performance model of their
component implementation parametrised over deployment plat-
form, required services, and usage profile to the software archi-
tect. For level 2, some methods use a benchmark application to
measure the performance of basic services of the deployment
platform. Using this information, the former parametrisation
for the deployment platform can be solved. For level 3, current
approaches rely on estimations of the workload, input parame-
ters, and concurrent processes from the software architect based
on former experience and customer requirements.

2.4. Requirements for a Component Performance Modelling
Language

Software components and component performance models
are provided by the component developer. During specification
of a component, the component developer has no information
about components connected to its required interfaces, its de-
ployment platform, or parameter values passed to its provided
services by clients. Because of this, the component developer
has to provide a parametrised specification (i.e., a function over
the different factors), which makes the influences by these ex-
ternal factors explicit.

For each provided service of a component, the component
developer must provide a service performance specification,
which should include (Fig. 3):

3



0..*

1

0..*

1

0..*

1

Specified 

Component

Implemented 

Component

Deployed 

Component

Runtime 

Component

Provided / 

Required 

Services

Service Effect 

Specification

Actually Provided / 

Required Services

Internal State

Performance 

Requirements

Abstract Behaviour, 

Platform-Independent 

Resource Demands 

Platform-Dependent 

Resource Demands, 

Resource Demands of 

Required Services

Workload, Input Parameters, 

Internal State, 

Concurrent Processes/Threads

Level 0

Level 1

Level 2

Level 3

Functional Model Performance ModelLife-cycle Stage

Figure 2: Software Component Life-Cycle

• Schedulable Resource Demands: During execution, a
component service can access different active resources,
such as a processor or a storage device. Each of these
resources can become the bottleneck of the system due to
contention effects. To find such bottlenecks, it is neces-
sary that each component service specifies resource de-
mands to be scheduled on each active resource. Such a
demand can be specified as a constant or a distribution
function. The latter is especially useful for large soft-
ware components, which cannot be modelled in detail.
The unit of scheduled resource demands may be either
a platform-dependent timing value (e.g., seconds) or a
platform-independent value (e.g., CPU cycles). The lat-
ter realises the parametrisation for different deployment
platforms.

• Limited Resource Demands: Besides active resources,
a component service might also acquire and release lim-
ited resources, such as semaphores, threads from a pool,
memory buffers, etc., which might lead to waiting delays
due to contention with other concurrently executed ser-
vices.

• Control Flow: The order of accessing resources or call-
ing required services (e.g., in sequences, alternatives,
loops or forks) by a component service might change
the resource contention in a component-based system and
should therefore be included.

• Required Service Calls: The component developer must
make calls to required services explicit in the service per-
formance specification, so that their contribution to the

overall execution time can be taken into account by the
software architect. Required service calls can be syn-
chronous (i.e., the caller blocks until receiving an answer)
or asynchronous (i.e., the caller continues execution im-
mediately after the call).

• Parameter Dependencies: The values of service param-
eters can change the execution time or memory consump-
tion of a service, its accesses to active or passive re-
sources, the number of calls to required services, and the
control flow. Because the actual parameter values used
by clients are unknown during component specification,
component developers need to specify properties such as
execution time or memory consumption in dependency
to service parameter values.

• Internal State: A software component can have a global
state (equal for all clients) or a local state (different for
each client), which should be modelled abstractly if it
influences the performance.

Service performance specifications potentially have to ab-
stract from the actual performance behaviour of a component,
to remain analysable in an acceptable amount of time. The com-
ponent developer creating a service performance specification
must make a trade-off between the accuracy of the specification
and its analysability.

Service performance specifications should not refer to net-
work devices nor threading levels. Network communication in
component-based systems should only happen between com-
ponents when calling required services, but not inside compo-
nents. Otherwise, if a software component would require mul-

4



Component 

Performance Model

Schedulable 

Resource Demands

Limited 

Resource Demands

Constants

Required Service 

Calls
Control Flow

Alternative Loop

Fork

Internal State

UnitValue

Distribution 

Functions

Platform Dependent 

(Timing Value)

Platform Independent

(Resource specific)

Synch Asynch

Sequence

Parameter 

Dependencies

Parametrized 

Control Flow

Parametrized

Resource 

Demand

Parametrized 

Required 

Service Calls

Semaphores Memory

Loop 

Count

Alternative 

Condition

Param.

Fork

Legend

Inclusive OR

Exclusive OR

Mandatory Feature

Optional Feature

Figure 3: Feature Diagram for Component Performance Models

tiple servers connected by network devices, it would not be a
unit of deployment as stated by Szyperski’s definition [85]. The
maximum number of threads concurrently executing a compo-
nent is a major influence factor on the performance of a soft-
ware component, but depends on the configuration of the mid-
dleware and not the component itself.

2.5. A Life-Cycle Process Model for Component-based Soft-
ware System Performance Engineering

Performance evaluation of a component-based system in-
volves information from the component developer and software
architect. It may span from performance predictions at early
design stages to performance measurements on the running ap-
plication. Fig. 4 shows a generic process model for applying
the methods and tools surveyed in this paper. It shows how
the different approaches and models presented in the next Sec-
tion interact and what processes are involved in the performance
evaluation activities.

The component developer is responsible for supplying
parametrised performance models of software components. To
get parametrised component performance models, the compo-
nent developer can start from component specifications and
estimate the missing values, such as resource demands and
parameter dependencies (upper left in Fig. 4). The software
performance engineering (SPE) methodology by Smith and
Williams [83] gives many hints on how to estimate these val-
ues before implementation. The component developer can also
start from an implemented component (lower left in Fig. 4),
which can then be analysed with static code analysis methods
(preliminary work in [48]) or executed in a testbed (more in
Section 3.2.1).

The component developer puts the component performance
models into a repository. Such a repository might be pub-
licly accessible via the web or company internal. Besides the

component performance models, it can for example also in-
clude component specifications, implementations, documenta-
tion, etc. The component developer might also use components
from such a repository to build new composite components.

The software architect assembles component performance
models from the repository for a planned architecture. This
includes specifying the wiring of the components (assembly
model), specifics of the component platform and hardware (de-
ployment model), and the usage information, such as work-
load, input parameters, and internal state (runtime model). Sec-
tion 3.1.3 lists approaches for benchmarking middleware plat-
forms. The output of these approaches provides useful infor-
mation for the deployment model. Section 3.1.1 and 3.1.2 list
different approaches, which allow the specification of such ar-
chitectural models.

A model transformation can then transform a complete ar-
chitecture model (i.e., assembly, deployment, runtime) into a
classical system-wide performance model. Notations for such
performance models include (extended) queueing networks,
stochastic Petri nets, and stochastic process algebras [1]. The
models enable deriving performance metrics, such as response
time, throughput, and resource utilisation. The software archi-
tect can compare these values to the performance requirements
of the planned system.

If the prediction results show that the requirements cannot
be fulfilled with the given design, the architecture model needs
improvement in a design-space exploration step (top middle of
Fig. 4). Smith et al. [83] list several common performance prin-
ciples, patterns, and anti-patterns, which are useful to improve
the design. The software architect can also use models of other
components or alter the performance requirements, which how-
ever means renegotiation with the customer. Afterwards, the
updated architecture model can again be transformed and its
performance be predicted.

If the prediction results show that the design can fulfil the

5



Component 

Performance Model

Component 

Performance Model

Component 

Performance Models

(Sections 3.1.1 – 3.1.4)

Specified 

Component

Implemented 

Component

Component 

Repository

Assembly Model 

(Wiring of 

Components)

Deployment Model 

(Container, OS, 

Hardware)

Runtime Model 

(Workload,Inputs, 

Internal State)

Performance 

Model 

(QN, SPN, etc.)
Model 

Transformation

Analysis/

Simulation

Performance Metrics 

(Response Time, 

Throughput, etc)

Design-Space 

Exploration 

(Performance 

Patterns etc.)

Performance 

Requirements 

fulfilled?

Platform Benchmark 

Results

(Section 3.1.3)

Provisioning

Assembly

Test, 

Capacity Planning

(Section 3.1.4)

Release

Architecture Model 

(Section 3.1, 3.2.2)

Estimation

Measurement 

in Testbed

(Section 3.2.1)

Software 

Architect

Component 

Developer

YesNo

Figure 4: Process Model

requirements, the implementation of the system can start. Dur-
ing the provisioning phase, the software architect makes build
or buy decisions for the components specified in the architec-
ture model. Once all components are bought or implemented,
the software architect can assemble them and then test the
whole system. Besides testing functionality, the software archi-
tect can also measure the performance of the system to perform
capacity planning (i.e., determining the maximal workload).
Section 3.1.5 lists approaches for this task. Finally the software
architect releases the complete system to the customers.

3. Performance Evaluation Methods

In the following, we provide short summaries of the perfor-
mance evaluation methods for component-based software sys-
tems in the scope of this survey. We have grouped the ap-
proaches as depicted in Fig. 5

Performance Evaluation Approaches for Component-based Software Systems

Main Approaches Supplemental Approaches

Prediction Approaches 

based on UML

Prediction Approaches 

based on proprietary Meta-Models

Monitoring Approaches 

for Component Implementations

Prediction Approaches 

for Component Connectors

Prediction Approaches 

focussing on Middleware

Formal Performance Specification 

Approaches

Monitoring Approaches 

for System Implementations

CB-SPE

CBML

PECT

COMQUAD

KLAPER

ROBOCOP

PALLADIO

NICTA

RESOLVE

HAMLET

COMPAS

TESTEJB

AQUA

PAD

RefCAM

COMAERA

BYCOUNTER

Verdickt

Grassi

Becker

Happe

Figure 5: Overview of the Methods

Main approaches provide full performance evaluation pro-
cesses, while supplemental approaches focus on specific as-
pects, such measuring individual components or modelling the
performance properties of component connectors (i.e., artefacts
binding components). The groups have been chosen based on
the similarity of the approaches. Approaches within one group
can be best compared against each other. There are groups
where only one approach has been included in this survey, al-
though there are multiple similar approaches reported in liter-
ature. We have excluded those approaches that do not exhibit
tool support or rely on obsolete technologies, as described fur-
ther below.

We do not strictly distinguish between model-based and
measurement-based approaches as former surveys (e.g., [7]).
Most methods built around UML or special meta-models in-
volve some kind of measurements to determine the perfor-
mance annotations in the models. On the other hand, most
methods measuring implemented component-based systems
feature some form of model (e.g., to predict changes or to anal-
yse the measurement results). Therefore it is not appropriate to
divide the approaches into model-based or measurement-based
approaches.

For each approach, we describe its goals and context, its
modelling language, available tools, documented case studies,
and extensions. We postpone an evaluation of the approaches
until Section 4.

3.1. Main Approaches

3.1.1. Prediction Approaches based on UML
Approaches in this group target performance predictions

during design time for component-based software systems
modelled with the Unified Modelling Language (UML) [73].
UML 2.0 has a notion of a software component as an extended

6



class. UML allows modelling component behaviour with se-
quence, activity, and collaboration diagrams. Component al-
location can be described with deployment diagrams. While
UML only supports functional specifications, its extensions
mechanism (profiles, consisting of stereotypes, constraints, and
tagged values) have been used by the OMG to allow modelling
performance attributes such as timing values and workload pa-
rameters. The UML SPT profile [68] for UML 1.4 from 2002
has recently been replaced by the UML MARTE profile [72]
for UML 2.1.

Early approaches in this group by Kähkipuro et al. [47] and
Gomaa et al. [30] were proposed before the introduction of the
UML SPT profile. They relied on proprietary extensions to
UML and are therefore outdated. The approach by DiMarco
et al. [22] uses the UML SPT profile, but has been excluded
from this survey, because it features neither divided developer
roles nor tool support.

(CB-SPE) [8]: The Component-Based Software Perfor-
mance Engineering (CB-SPE) approach by Bertolino and Mi-
randola uses UML extended with the SPT profile as design
model and queueing networks as analysis model. The mod-
elling approach is divided into a component layer and an ap-
plication layer. On the component layer, developers model the
schedulable resource demands of individual performance ser-
vices in dependence to environment parameters. There are no
guidelines on how to obtain these values. The parametrisation
does not involve service input or output parameters nor explicit
required service calls. There is no support for analysing mem-
ory consumptions.

In the application layer, software architects pre-select com-
ponents performance models and compose them into architec-
ture models. They model the control flow through the archi-
tecture using sequence diagrams and have to anticipate the ex-
pected flow through the components, because the component
specifications do not refer to component interaction. Workload
attributes (e.g., user population) is added to the sequence di-
agrams, while the deployment environment is modelled using
deployment diagrams.

The CB-SPE framework includes freely available mod-
elling tools (ArgoUML) and performance solvers (RAQS), and
includes a transformation tool to map the UML model to execu-
tion graphs and queueing networks. The solution of the queue-
ing networks is analytical (using the parametric decomposition
approach). An approach by Balsamo et al. [2] is planned as an
extension to the CB-SPE framework and allows computing the
upper bounds on throughput and response times before actually
solving a queuing network.

3.1.2. Prediction Approaches based on proprietary Meta-
Models

The approaches in this group aim at design time perfor-
mance predictions. Instead of using the UML as the mod-
elling language for component developers and software archi-
tects, these approaches feature proprietary meta-models.

(CBML) [96]: The Component-Based Modelling Lan-
guage (CBML) by Wu and Woodside is an extension to layered
queueing networks (LQN) [80]. LQNs model the behaviour and

resource demands of software entities with so-called ’tasks’.
Resource demands are specified as mean values of exponen-
tial distribution functions, but there is no support for memory
consumption.

CBML extends tasks to model reusable software compo-
nents. Therefore, it adds a so-called ”slot” to a task, which
contains a number of interfaces representing provided and re-
quired services of a component. Slots make CBML compo-
nents replaceable with other components conforming to the
same slot. Additionally they allow nesting components into
composite components.

CBML components include placeholders for resources to be
executed on and components to be connected to. Software ar-
chitects create CBML bindings to connect these placeholders to
other elements in their architectural LQN model. Bindings may
contain a set of parameter values (e.g., to model a thread pool
size or adjust resource demands). These do not refer to input
or output parameters in interfaces and also cannot modify the
control flow of the component. CBML supports synchronous
and asynchronous communication among components as well
as passive resources.

There is an XML schema to define CBML components, but
there are no graphical editors for CBML models. A complete
CBML specification of a software architecture can be directly
processed by the LQN solvers with numerical techniques or
simulation. The method has been customised for EJB systems
by Xu et al. [98].

(PECT) [45, 89, 44]: The Prediction Enabled Component
Technology (PECT) by Hissam, Wallnau, et al. features a rea-
soning framework for performance evaluation of component-
based software architectures. It consists of an analysis the-
ory (i.e., rate monotonic analysis for predicting schedulability
of real-time tasks), generation of theory-specific models (i.e.,
component composition language, CCL), and the evaluation of
the models.

CCL is used for architectural description. It supports syn-
chronous and asynchronous communication with required ser-
vices. CCL also allows to specify component behaviour with
statecharts. Resource demands, which can be constants or dis-
tribution functions are attached to the CCL components us-
ing annotations. CCL supports composite components but not
memory consumption. For analysis, tools transform CCL mod-
els into a so-called intermediate constructive model (ICM),
which focusses on parts relevant for performance analysis and
eases the implementation of further transformations.

PECT mainly targets analysing real-time properties of
component-based embedded systems. From the ICM, tools
generate models for rate monotonic analysis (RMA) or simu-
lation using the MAST tool. There is a graphical modelling and
analysis tool called PACC starter kit available [66]. The authors
report on a large scale industrial case study in [43].

(COMQUAD) The project ”Components with Quantitative
properties and Adaptivity” (COMQUAD) developed a compo-
nent container architecture capable of checking performance re-
quirements on software components at runtime [27]. Multiple
component implementations with different performance prop-
erties specified by so-called CQML+ descriptors shall be in-

7



stalled in the such a component container. The container then
checks the performance requirements of clients against the per-
formance specifications to select the components where to di-
rect the client requests. The approach aims at EJB and Corba
CCM systems and allows stream-based interfaces.

Meyerhöfer et al. [65] describe the component performance
modelling language targeted by the project in detail. The re-
sponse time of a component assembly is computed as the sum of
the response times of all components. The approach discusses
the issue of platform independent resource demands and sug-
gests to use lookup tables for different platforms. The language
introduces concepts to handle different kinds of required ser-
vice calls as well as internal state dependencies (also see [63].

Two prototypical container implementations are available,
one based on a C++ real-time container running on the real-
time operating system DROPS [27], and another one based on
a JBoss container running in a Java virtual machine. The ap-
proach targets checking performance properties at runtime and
does not involve model building to analyse contention effects.
No industrial case study has been reported so far.

(KLAPER) [32]: This method for performance prediction
of component-based software systems by Grassi et al. includes
a so-called kernel modelling language called KLAPER. The
language is implemented in MOF and aims at easing the im-
plementation of model transformations from different kinds of
component system models (e.g., UML, OWL-S) into differ-
ent kind of performance models (e.g., Markov chains, queue-
ing networks). With KLAPER, it shall be possible to combine
component performance models by different component devel-
opers based on different notations in a single prediction. It is
not the goal that component developers model their components
with KLAPER, but they shall implement model transformations
from their own proprietary notations into KLAPER.

Therefore, the authors defined the language to be a minimal
set of modelling constructs necessary for performance evalua-
tion. Hardware resources as well as software components are
modelled with the same constructs. There is no support for
composite components. The language includes scheduled and
limited resource demands as well as control flow. The authors
implemented QVT transformations from KLAPER to EQNs
and Markov chains. Because the language shall only be used by
model transformations, there are no graphical modelling tools.
The language is able to model dynamic software architectures
where the connectors between components can change at run-
time [34]. No industrial case study of KLAPER has been re-
ported.

(ROBOCOP) [12]: This method adds a performance pre-
diction framework on top of the ROBOCOP component system
model [28] aiming at analysing component-based, embedded
systems. ROBOCOP components have provided and required
interfaces with multiple service signatures. Composite compo-
nents are not supported. Additionally, ROBOCOP components
contain a resource specification and a behavioural specification
as well as the executable implementation of the component.

Component developers specify ROBOCOP components in
a parametrised way. Software architects compose these speci-
fications and instantiate parameters by the component develop-

ers. Scheduled resource demands of software components are
constants in ROBOCOP, which also allows limited resource de-
mands for semaphores and memory. The component specifica-
tion allows only limited control flow (i.e., sequence and loops).
There are no probabilistic attributes (e.g., transition probabili-
ties, random variables) in the specification.

The so-called Real-Time Integration Environment (RTIE),
which is implemented as a number of Eclipse plugins, sup-
ports the whole design and performance prediction process with
ROBOCOP. It includes a component repository to store compo-
nent specifications in XML and a graphical designer to model
component assemblies as well as deployment environments.
Using a preprocessor, RTIE transforms a complete architectural
model into a task tree, which can then be simulated with differ-
ent scheduling policies, such as rate monotonic scheduling. The
results are response times to detect missed deadlines and pro-
cessor utilisations to detect overloaded resources. The authors
report on a design space exploration tool for the approach and
an industrial case study involving a JPEG decoder [10].

(PALLADIO) [6]: This approach from the University of
Karlsruhe is based on the Palladio Component Model (PCM)
implemented with EMF. The approach enables component and
architecture modelling and targets performance predictions for
distributed systems. Component interfaces are first-class enti-
ties in the PCM and can be provided or required by multiple
components. The interface syntax is based on CORBA IDL.
The PCM supports building composite components.

The PCM is tailored for a strict separation of four devel-
oper roles, who participate in building model instances. Com-
ponent developers model the performance properties of com-
ponent services with annotated control flow graphs, which in-
clude resource demands and required service calls (so-called
resource demanding service effect specifications, RDSEFF).
They can parametrise RDSEFFs for input and output param-
eter values [53] as well as for the deployment platform [55].
Resource demands can be specified using general distribution
functions. Software architects compose these component per-
formance models into component assemblies. System deploy-
ers model the deployment environment as well as the allocation
of components to hardware resources. Finally, domain experts
model the usage profile (including workload, user flow, and in-
put parameters).

The so-called PCM-Bench tool (implemented as a set
of Eclipse plugins) allows independent graphical modelling
for all four developer roles. Model transformations weave
performance-relevant middleware features (e.g., connector pro-
tocols [4], message channel properties [39]) into the models.
Further model transformations map the whole model into per-
formance models (i.e., EQNs, LQNs), which are solved by sim-
ulation or numerical analysis. There is also support to generate
code stubs and performance prototypes from the models. So
far, the authors have reported no industrial case study.

3.1.3. Prediction Approaches with focus on Middleware
The following approaches emphasise the influence on the

middleware on the performance of a component-based system.

8



Consequently, they measure and model the performance prop-
erties of middleware platforms, such as CORBA, Java EE, and
.NET. The underlying assumptions of these approaches is that
the business logic of the components itself has little impact on
the overall performance of the system and thus does not require
fine-granular modelling.

An early approach by Llado et al. [59] created an EQN
model to describe the performance properties of an EJB 1.1
server. Cecchet et al. [13] benchmarked Java Enterprise ap-
plication servers with an auction application called RUBiS and
found that the most influencing factor on the performance for
this application was the middleware. Denaro et al. [20] gener-
ated a prototype for a component-based design of an EJB sys-
tem, but did not provide model building or tool support. Chen
et al. [15] built a simple model to determine optimal thread pool
sizes for Java application servers, which is part of the NICTA
approach.

(NICTA) [58]: This performance prediction approach from
a research group of NICTA (Gorton, Liu, et al.) targets server-
side component technologies, such as EJB, .NET, and CORBA.
It does not distinguish between a component developer and
software architect role and assumes that the middleware has a
significantly higher impact on performance than single software
components. The authors present a queueing network model for
component containers, which can be solved using Mean Value
Analysis (MVA) [77].

To determine the parameters of the QN model, the authors
analyse different architectural patterns for EJB applications.
They model application services with activity diagrams based
on patterns such as ”container-managed persistence” and ”find-
by-non-primary-key”. The activities in these diagrams refer to
generic container services, such as ”load from cache” or ”acti-
vate / passivate”.

The activity diagrams are further augmented with use-case
specific information, such as the number of times a certain pat-
tern is executed and the frequency of each transaction type.
The resulting model still contains placeholders for services pro-
vided by the component container, which are used as platform-
independent resource demands. To get these values, the authors
have implemented a benchmarking application, which they ex-
ecute on the target platform of a planned system. With this
information the QN can be used to analyse the performance of
the application under different workloads.

The authors report on a case study performed with a stock
broker application and show sufficiently accurate prediction re-
sults. So far, the approach is specific for EJB applications. The
approach does not include a seamless tool-chain, therefore the
software architect needs to build the benchmarks and the QN
manually. There are plans to build a capacity planning tool suite
called Revel8or based on the approach [102].

3.1.4. Formal Performance Specification Approaches
Formal performance specification approaches for software

components focus on describing the performance properties of
components in a sound manner. These approaches target a fun-
damental theory of performance specification and do not deal
with prediction or measurement frameworks.

(RESOLVE) [82]: Sitaraman et al. propose an extension
dialect to the RESOLVE specification and implementation lan-
guage for software components to express performance proper-
ties. The aim is to provide specifications of the execution time
and memory consumption of component services in a refined
big-O notation [51]. Assertions about the asymptotic form of
execution time and memory consumption shall later enable for-
mal verification. It is not intended to derive accurate response
times or resource utilisations.

RESOLVE specifies the functionality of a component with a
list of service signatures and a pre- and post-condition for each
service. The components of RESOLVE do not declare required
interfaces. The authors point out the limitations of classical
big-O notations for generic software components with poly-
morphic data types. Therefore, they augment the functional
RESOLVE specifications with an adapted big-O notation for
execution time and memory consumption. These specifications
are more refined, because they take the structure of input pa-
rameters into account. However, the specification does not dis-
tinguish between different processing resource (e.g., CPU and
hard disk), does not include calls to required services, and also
does not deal with passive resources.

The approach is not exhibited by tool support, but the au-
thors demonstrate the feasibility on a simple example compo-
nent.

(HAMLET) [36]: The approach by Hamlet et al. originates
from the area of software testing. It was first proposed for re-
liability prediction of component-based systems [38], and later
extended for performance prediction [35, 36]. The authors use
a restricted component definition to reduce the complexity for
creating a fundamental theory of software composition. A soft-
ware component is a mathematical function with single integer
value input. Component composition of two software compo-
nents means that the first component sends all its outputs to the
second component in a pipe-and-filter style. The method in-
volves component specification by component developers and
performance prediction by software architects.

Component developers specify subdomains for the input
domain of their components, which partition the input domain
into equivalence classes. They measure the execution time for
the component for each subdomain and store the results in a
repository. Software architects retrieve these specifications and
the components. By executing the components with their de-
sired usage profile, they can determine the call propagation of
each component (i.e., which outputs will fall into the subdo-
mains of connected components). With this information and the
execution times measured by the component developers they
can predict the performance of a complete system.

The approach does not consider concurrency, passive re-
sources, or scheduling. However, it considers the influence of
the internal state of components to performance in a restricted
form. The approach is accompanied by a computer-aided de-
sign tool (CAD) for testing components to create performance
specifications and calculating the overall performance from a
set of composed components and an input profile. As the ap-
proach assumes a very restricted class of components, there is
no validation on an industrial system.

9



3.1.5. Measurement Approaches for System Implementations
The following approaches assume that a complete

component-based system has been implemented and can be
tested. The goal is to find performance problems in the running
system, identify performance bottlenecks, and adapt the system
so that is able to fulfil certain performance requirements. An
early approach by Yacoub [99] described systematic measure-
ment of a component-based system, but provided no additional
tool support.

(COMPAS) [67]: The COMponent Performance Assur-
ance Solutions (COMPAS) framework by Mos et al. is a per-
formance monitoring approach for J2EE systems. Components
are EJBs in this approach. The approach consists of three parts:
monitoring, modelling, and prediction. For monitoring, the au-
thors use the Java Management Extensions (JMX) to augment a
complete EJB application with proxy components for each EJB,
which send timestamps for EJB life-cycle events (such as start-
up or invocation) to a central dispatcher. Running the applica-
tion yields performance measures from the proxy components,
which can be visualised with a proof-of-concept graphical tool.

The approach then uses a modelling technique by gener-
ating UML models with SPT annotations from the measured
performance indices. Users can then specify different work-
loads (e.g., number of simultaneous users, or inter-arrival rate)
in the models to assess various scenarios. For performance pre-
diction of the modelled scenarios, the approach suggests using
existing simulation techniques, which are not part of the ap-
proach. Besides detecting bottlenecks in the system, predic-
tion result should also be feed back into the instrumented ap-
plication to focus the collection of timestamps on performance
hotspot thereby reducing the overhead for monitoring.

(TestEJB) [65]: The TestEJB framework by Meyerhöfer
targets performance monitoring of J2EE systems. It imple-
ments a profiling technique, which is application independent
and more lightweight than available commercial J2EE profil-
ing tools. Besides the execution times of individual EJBs, the
framework can also determine call traces from single users
through a whole architecture. This technique also works in
the case of multiple concurrent users or multiple component
instances.

The approach is based on the interceptor patterns and im-
plemented as an extension to the JBoss application server. In-
terceptors log invocations of EJBs and augment calls with iden-
tifiers, so that it is possible to construct call graphs from execu-
tion traces. Measurement data from the interceptors is persisted
to files asynchronously. TestEJB uses a bytecode instrumen-
tation library to modify components at deployment time. The
instrumentation process is completely transparent for the users.
In a case study, TestEJB show a shows only a very small over-
head for profiling in the range of microseconds.

The authors have extended the framework in [64] to also
allow memory profiling of EJB applications. This approach re-
lies on the Java Virtual Machine Profiler Interface (JVMPI) and
records events for constructing and deconstructing EJBs. While
this method allows tracing back memory consumption to indi-
vidual components, it introduces a significant overhead in the

range of seconds and therefore should only be used in a testing
environment and not during production.

(AQUA) [21]: The automatic quality assurance (AQuA)
framework by Diaconescu et al. builds on the foundations of the
COMPAS framework but focusses on adapting a component-
based application at runtime if performance problems occur.
The main idea is that a system replaces a software component
with performance problems with a functional equivalent one
with different performance properties from a set of redundant
components. The approach comprises of system monitoring,
learning performance characteristics, anomaly detection, com-
ponent evaluation, adaptation decision, and component activa-
tion.

For system monitoring, the JBoss application server is mod-
ified to collect timestamps from the execution of individual
EJBs. All measurement data is stored to enable learning spe-
cific performance characteristics of each component. Further-
more, the approach involves monitoring the workload of a run-
ning application. Upon changing workloads, the approach may
detect a violation of a response time requirement. This leads
to evaluating redundant components for each software compo-
nent to determine a component most fitted for the new work-
load. The hot deployment facility of JBoss is then responsible
for swapping problematic component with other components.
The approach has been demonstrated on Duke’s bank account
application from the J2EE tutorial.

(PAD) [74]: This approach by Parson et al. targets auto-
matic detection of performance anti-patterns [83] in running
component-based systems. It builds on the COMPAS frame-
work and has implemented the performance anti-pattern de-
tection (PAD) tool. The approach targets EJB systems and
includes performance monitoring, reconstruction of a design
model, and anti-pattern detection.

The monitoring relies on proxies in front of each EJB to
collect timestamps and call sequences. The approach allows
determining run-time paths through the application even if mul-
tiple clients interact with the application simultaneously. To
overcome the needed redeployment of a running system, the
approach plans to implement a byte code instrumentation tool,
which shall dynamically instrument the application at runtime.

Recorded measurements and information from EJB deploy-
ment descriptors is used to reconstruct a design model. The re-
construction process involves clustering techniques and statisti-
cal analysis on the recorded run-time paths. The design model
is based on a proprietary meta-model, which features compo-
nents, methods, run-time paths, pools, and tracked objects.

Anti-pattern detection on the reconstructed design model
relies on rules implemented with the JESS rule engine. The
approach distinguishes between anti-patterns across or within
run-time paths, inter-component relationship anti-patterns, anti-
patterns related to component communication patterns, and data
tracking anti-patterns. The authors applied the approach and the
PAD tool on Duke’s bank account application (and found for
example not required stateful session beans) and IBM’s Work-
place application (and found for example simultaneous expo-
sure of local and remote interfaces of a bean).

10



3.2. Supplemental Approaches

3.2.1. Measurement Approaches for Component Implementa-
tions

The goal of measurement approaches for single software
component implementations is to derive parametrised perfor-
mance specifications via multiple measurements. They aim at
factoring out the usage profile, required service, and the deploy-
ment platform from the performance specification, so that it can
be used in different contexts. These approaches usually include
a testbed to execute the components and a statistical evaluation
framework to derive functions for the resource demands from
measurement data via regressions.

(RefCAM) [93]: Woodside et al. present an approach to de-
termine resource function for software components. Resource
functions express the resource demands (e.g., CPU demand,
memory demand) of a component in dependency to input pa-
rameter values and execution environments. RefCAM com-
prises of a test harness to run measurement experiments with
single software components and a statistical module to deter-
mine resource functions from the measurement data.

The test harness allows executing a software component
repetitively with a manually defined test plan, which defines
rules for varying the arguments of functions provided by the
component. This can include varying the size of messages sent
by the component, the number of calls to required services, and
changes in the execution environments. The framework also al-
lows to recompile software components to change variables in
the implementation.

RefCAM records CPU demands and applies function fitting
techniques, such as linear regression or multi-variate adaptive
regression splines to express the parametric dependencies of the
resource functions. The results are stored in a repository, which
shall support recording multiple resource functions of the same
component for different execution environments. RefCAM has
been implemented in the ObjectTime CASE tools.

The approach does not deal with the issue of providing the
required services of a software component to execute it. Instead
it assumes that the required services are available for testing.
Furthermore, it specifies CPU demand in seconds, therefore not
parametrising the resource functions for the underlying deploy-
ment platform.

(COMAERA) [63]: This approach by Meyerhöfer targets
the platform-independent measurement of Java components. It
assumes that the execution time of a software component can be
divided into a number of primitive elements (so-called atoms).
Measuring the number of executions of each atom yields a
platform-independent CPU demand specification for a software
components. Software architects shall combine these specifi-
cations with benchmarking results from the desired target plat-
form, which provide the execution time for each atom. The
combination leads to a prediction of the execution time of the
software component on the target platform without actually
running it on the platform.

The authors analyse different possibilities to choose the unit
for the atoms, ranging from individual bytecode instruction
to instruction groups. Instruction groups can for example be

based on homogeneous execution times of specific instructions
or even be specific for certain components.

Because the resolution of typical Java performance coun-
ters is too coarse to measure the execution time of individual
instructions, the approach uses an indirect method to deter-
mine their execution time. It first executes a number of mi-
crobenchmarks based on different algorithms with known exe-
cution numbers of instructions or instruction groups on the tar-
get platform and measures the overall execution time. Then, it
constructs a linear equation system based on the execution num-
bers and measured times and solves it for the execution times of
individual instructions. Because there is no general solution for
the equation system, the approach determines a heuristic solu-
tion minimising the error.

The authors present a case study with more than 20 test
programs and make performance predictions for different plat-
forms. The error of predictions versus measurements is in some
cases less than 10 percent, but in other cases (e.g., with included
native code) higher than 100 percent. The approach assumes
absence of just-in-time compilation. It furthermore does not
deal with calls to required services or different input parame-
ters.

(ByCounter) [55]: This approach by Kuperberg et al. aims
at constructing parametrised, behavioural performance models
from Java components, which can be used for performance
prediction for different usage profiles and execution environ-
ments. The approach comprises (i) reconstructing platform-
independent component performance models, (ii) running a
benchmark application on the desired target platform to deter-
mine platform dependent performance properties, and (iii) per-
formance prediction by combining the results from the first two
steps. Therefore, a newly designed component-based system
does not need to be tested on the target environment, instead a
more cost-efficient, model-based prediction can be made.

The approach uses the number of bytecode instructions ex-
ecuted by a component service as a platform-independent unit
for CPU demand. It distinguishes between multiple classes of
bytecode instructions as well as Java API calls. Using mon-
itored input parameters from running instances of a software
component, the approach executes a component repeatedly in
a testbed and records the execution times. It assumes that re-
quired services of a component are available for testing. Then
it runs genetic algorithms on the measurement data to determine
parametric dependencies and reconstruct a behavioural model.

The user has to run the benchmark application on the target
platform to determine the execution times for bytecode instruc-
tions and Java API calls. Multiplying the execution times from
the benchmark with the parametrised resource demands in the
reconstructed behavioural model yields the expected execution
time of a component service on the new target platform. The
authors report on a case study, where they predicted the perfor-
mance of file sharing application in different execution environ-
ments and for different usage profiles. The ByCounter approach
shall be ultimately integrated into the Palladio approach.

11



3.2.2. Prediction Approaches with focus on Component Con-
nectors

These approaches assume an existing component descrip-
tion language and focus on modelling and measuring the perfor-
mance impact of the connections between components. These
connections can be implemented with different middleware
techniques. They can for example include performance over-
heads for encryption or calling naming services in distributed
applications. These overheads can significantly alter the overall
performance of a component-based system, as the connections
might be realised with slow or overloaded network connections.
All of the following methods weave the performance overhead
of the middleware into a platform-specific model using model
transformations according to the MDA approach.

Verdickt2005 [88]: This approach introduces a model
transformation framework to include the performance over-
head of middleware layers into a component-based system
model. Following MDA guidelines, a model transformation
maps a platform-independent model based on UML activity, de-
ployment, and collaboration diagrams, into a platform-specific
model using a repository of middleware models also based on
UML. All UML models are annotated with performance esti-
mates using the UML SPT profile.

The approach then suggests to transform the resulting an-
notated UML model into an LQN, which can be analysed for
the desired performance metrics. In a case study, the authors
demonstrate how to include the performance impact of the
CORBA Object Request Broker (ORB) into the models. This
performance overhead results for example from naming or se-
curity services. In the case study, the performance annotations
for the middleware models have been determined via measure-
ments from a prototype application. These performance anno-
tations are not parametrised for different network connection
speeds or message sizes.

Grassi2006 [31]: The authors propose a connector re-
finement transformation from high-level UML 2.0 architecture
models into the KLAPER modelling language. KLAPER mod-
els can be transformed into Markov chains or queueing net-
works for performance analysis. The approach assumes the
availability of a UML stereotype to label component connec-
tors. For example, a connector could realise a static or dynamic
synchronous client/server interaction.

The authors propose to build a library of parametric connec-
tor behaviours models in KLAPER for each of the stereotypes.
The behaviour of the connectors may for example involve mar-
shalling functionality or calling naming services. For a specific
deployment platform, the parametrisation of these models can
be solved and they can be weaved into the KLAPER model
of the whole architecture replacing the component connectors.
The transformation is demonstrated through an example, which
relies on the QVT Relations [70] transformation language. Ulti-
mately, the refined KLAPER model is transformed in a queue-
ing network, which can then be used for performance evalua-
tion.

Becker2008 [4]: This approach presents a configurable
model transformation, which adds the performance overhead

of component connector realisations (e.g., SOAP or RMI) to a
component-based performance model. The underlying perfor-
mance description language is the Palladio Component Model
(PCM).

A software architect can parametrise the model transforma-
tion for different message sizes and choose multiple middle-
ware services, such as authentication and encryption, to make
the performance model even more accurate. The performance
annotations for the middleware model are determined using a
benchmark application on the desired target platform. They are
parametrised over different usage profiles, but dependent on a
specific hardware.

The author reports on a simple case study involving a client-
server system deployed on Sun’s Glassfish Java EE server. Pre-
dictions based on simulation of the resulting PCM model differ
less than 5 percent from measurements.

Happe2008 [39]: This approach proposes a model trans-
formation framework, which extends Palladio with the over-
head for using a Message-oriented Middleware (MOM). The
authors analyse the performance impact of different messaging
patterns, such as point-to-point or publish-subscriber channels
as well as different message or connection pool sizes.

The approach requires software architects to run a bench-
mark application on the target system. It determines
parametrised performance annotations for all MOM configu-
rations supported by the framework. The results are stored in
a repository. Different software architects can later configure
a model transformation to add specifically configured middle-
ware models (e.g., for a specific messaging pattern or a specific
message size) for the repository to their overall performance
model. The model transformation adds components to the per-
formance models, which exhibit the performance overhead of
the MOM.

In a case study involving the SPECjms2007 benchmark ap-
plication, the authors demonstrate a prediction error for re-
sponse times of the models below 20 percent for multiple con-
figurations of the transformation.

3.2.3. Miscellaneous Approaches
The following approaches provide interesting contributions

to the performance evaluation of component-based software
systems. They are, however, no complete prediction or mea-
surement approaches and have different goals than the ap-
proaches described so far.

Woodside et al. [95] introduced the concept of performance
completions. These are model elements, which are added to a
functional model of a software system to enable performance
evaluations. Such elements may include model annotations,
software components, environment infrastructure models, de-
ployment models, communication pattern models, or design
refinements. Developers shall store such model completions
into repositories, so that different software architects can ex-
tend their platform-independent design models to platform-
specific models. This concept is for example used by the per-
formance modelling approaches for component connectors in
Section 3.2.2.

12



Eskenazi et al. [25] extended the so-called APPEAR
method for performance prediction of component-based soft-
ware systems. The method involves creating a prediction model
for individual component operations, creating annotated control
flow graphs for single component services, and creating and
simulating a full application model, which may include concur-
rent execution of component services. However, the approach
neither features a meta-model nor tool support and is therefore
difficult to repeat.

Menasce et al. [62] propose the concept of QoS-aware soft-
ware components, which are able to negotiate performance
properties with their clients at runtime. Upon receiving a re-
quest for service with a certain QoS requirement, these compo-
nents build a QN model based on previously monitored perfor-
mance properties at runtime and evaluate whether they are able
to fulfil the request with the required QoS.

Reussner et al. [78] developed the concept of parametric
performance contracts for software components. This approach
features a parameterised performance specification of a soft-
ware component, which can be used to calculate the provided
performance of a component in case the performance of re-
quired services is known. The approach shall help software ar-
chitects at design time to identify components that deliver suit-
able performance properties given a specific deployment envi-
ronment.

4. Evaluation

This section first discusses the general features of the sur-
veyed main approaches (Section 4.1.1), before classifying them
according to the expressiveness of their modelling languages
(Section 4.1.2). The Sections 4.2.1- 4.2.5 additionally anal-
yse the benefits and drawbacks of the different groups of ap-
proaches surveyed in Section 3.

4.1. Feature Discussion

4.1.1. General Features
Table 1 summarises the general features of the surveyed

main approaches. The following elaborates on each of the fea-
tures.

The target domain of the methods is either generic (e.g., for
formal specification methods), embedded real-time systems, or
distributed systems. The domain of embedded systems involves
real-time operating systems with for example rate monotonic
scheduling. It is the goal of methods for embedded systems to
predict the violation of hard real-time deadlines or to evaluate
whether a given design is able to run on hardware devices with
limited processing power and memory. Software components
in this domain are typically small and their behaviour is easy to
describe. This is reflected in the component specification lan-
guages of the relevant approaches (i.e., PECT and ROBOCOP).

The domain of distributed systems involves general pur-
pose operating systems with sophisticated scheduling algo-
rithms running on multicore processors. Besides the operating
system, distributed systems may rely on middleware and virtual
machines, which all may impact the perceived performance of

a component-based system. Rather than assessing the possi-
ble violation of deadlines, it is the goal of performance predic-
tion methods for these systems to provide a probabilistic answer
whether a given design can be expected to fulfill certain service
level agreements. Violating these agreements is not as critical
as violating the deadlines of real-time systems. Thus, these ap-
proaches work with approximations and estimations. Software
components in this domain can be considerably large, so that
their behaviour cannot be described in detail and has to be ab-
stracted to construct an analysable model at all (cf. CBML,
PALLADIO).

While the target domains induce different viewpoints for the
performance prediction, the concept of a software component
described by provided and required interfaces is not different.
It should be possible to use the same description techniques for
embedded and distributed systems, which then can be analysed
with different prediction techniques.

Each approach uses a different component description lan-
guage, also analysed in detail in Section 4.1.2). Some ap-
proaches use annotated UML models (e.g., CB-SPE, NICTA),
other approaches use domain-specific meta-models (e.g.,
CBML, CCL, ROBOCOP, PALLADIO). For other approaches
(e.g., COMPAS, AQUA, NICTA, PAD) the component descrip-
tion is given by the specification of EJBs. No methods specific
for .NET or CORBA CCM specification are known. Lau [56]
surveys further software components models, which however
usually do not provide special support for performance predic-
tions. A standard notation for component performance specifi-
cation has not been achieved today, because the domain of per-
formance modelling is still not understood well enough [19].

The performance evaluation methods use model transfor-
mations to generate performance models from the component
system models with deployment and usage profile models. Be-
sides KLAPER, none of the methods uses a standardised model
transformation framework, such as QVT [71]. Existing trans-
formations are usually implemented in an ad-hoc manner using
C or Java code.

Most of the surveyed methods rely on (extended) queue-
ing networks as the performance model and incorporate exist-
ing performance solvers for numerical solution or simulation.
This is possible because the fully composed and annotated sys-
tem model of a component-based system can be treated like
a monolithic system for the actual performance analysis. Nu-
merical solutions for QNs are applicable only for a restricted
class of models, because they are based on assumptions such as
exponentially distributed execution times or missing synchroni-
sation mechanisms. Simulation techniques are able to handle a
larger class of models. However, they are usually more difficult
to construct and the execution of the simulation may require a
high amount of time if prediction results with high statistical
significance are desired [46].

Ideally, tools should feed back the prediction results into
the design model. This allows the software architect to work
without knowledge of the underlying performance theory. Ex-
cept for ROBOCOP and PAD none of the approaches offers
any automated support into this direction. Therefore, software
architects need to interpret the results by themselves. The per-

13



Name RESOLVE COMPAS HAMLET CB-SPE COMQUAD CBML PECT KLAPER ROBOCOP AQUA NICTA PALLADIO PAD

Target Domain Generic Distributed 

Systems

Generic Distributed 

Systems

Distributed 

Systems

Distributed 

Systems

Embedded 

Systems

Distributed 

Systems

Embedded 

Systems

Distributed 

Systems

Distributed 

Systems

Distributed 

Systems

Distributed 

Systems

Component 

Design Model

RESOLVE EJB 2.0 + 

annotated UML 

diagrams

Simple 

Mathematical 

Functions

Annotated UML 

diagrams (UML 

SPT)

CQML+ CBML CCL UML+SPT, OWL-

S, KLAPER

ROBOCOP EJB 2.0 EJB 2.0 + UML 

activity 

diagrams

PCM EJB 3.0 + 

RDMM

Model 

Transformation

n/a n/a n/a ad-hoc (C-code, 

XMI 

Input/Output)

n/a n/a ATL, ad-hoc QVT ad-hoc (RTIE 

tool)

n/a n/a ad-hoc (Java) n/a

Performance 

Model

n/a not specified Simple Algebra Execution 

Graph + QN

Execution 

Graphs

LQN RMA, QN, 

RTQT, MAST

Markov Chain, 

EQN

Task Tree n/a QN EQN, LQN RDMM

Performance 

Model Solver

n/a not specified Analytical Analytical 

(MVA)

Analytical (no 

queueing)

Analytical 

(approximative)

, Simulation

Analytical, 

Simulation

Simulation Simulation n/a Analytical 

(MVA)

Analytical + 

Simulation 

(LQN), 

Simulation 

(EQN)

JESS Rule 

Engine + PAD 

tool

Prediction 

Feedback into 

Design Model

n/a n/a n/a planned n/a n/a n/a planned Areas of 

Interests 

Visualizer

n/a n/a planned Anti-pattern 

detection from 

monitoring 

data

Automated Design 

Space Exploration

n/a n/a n/a n/a n/a yes 

(Performance 

Booster tool)

n/a n/a yes (incl. 

Pareto analysis 

performance 

vs. costs)

yes (exchanging 

components at 

runtime)

n/a planned n/a

Tool Support n/a Monitoring 

(COMPAS 

framework)

Modelling, 

Analysis (CAD 

tool)

Modelling, 

Analysis 

(CB-SPE Tool 

Suite )

Monitoring Modelling 

(Jlqndef), 

Analysis 

(LQNS), 

Simulation 

(LQSIM)

Modelling, 

Simulation 

(PACC Starter 

KIT)

Model Trans-

formation 

(KLAPER QVT) 

Modelling, 

Simluation 

(RTIE)

Monitoring, 

Adaptation 

(AQUA_J2EE)

Benchmarking 

(for J2EE app 

servers)

Modelling, 

Analysis, 

Simluation 

(PCM-Bench)

Monitoring, 

Anti-pattern 

detection (PAD 

tool)

Case Study n/a Sun Petstore, 

IBM Trade3

Artificial 

Components

Software 

Retrieval 

System

Xvid Video 

Codec (EJB), 

Generic EJB 

Application

Abstract 3-tier 

architecture

Large Real Time 

Control System

Generic 

Client/Server 

system

MPEG4 

decoder

Duke's Bank 

Account

Online Stock 

Broker based 

on EJB

Media Store 

system

Duke's Bank 

Account, IBM 

Workplace 

Application

Maturity and 

Applicability in 

Industry

Low (tools+case 

study missing)

Medium (case 

study exists, 

but tools 

outdated)

Low (tools 

prototypical, 

restricted 

component 

model)

Medium (case 

study exists, 

tools outdated)

Medium Medium (tools 

available, but 

improvable 

usability)

High (industrial 

case study 

available)

Medium (tools 

still work in 

progress)

High (matured 

tools + case 

study)

Low (tool 

unavailable)

Medium 

(industrial case 

study, but tools 

not finished)

High (matured 

tools based on 

up-to-date 

technology)

High (multiple 

case studies 

available)

Table 1: General Features of the Performance Evaluation Methods

formance annotations of the UML SPT and MARTE profile of-
fer support for displaying performance results in performance
models. However, this possibility has not been exploited by any
of the models.

Design space exploration deals with automatic generation
and evaluation of new design alternatives in case performance
problems are found in a design. Software architects shall get
hints on how to improve their design based on documented
performance patterns and anti-patterns [83]. CBML identifies
performance problems and suggests to improve specific hard-
ware resources or the execution time of specific software re-
sources [97]. ROBOCOP can evaluate a set of given design
alternatives and perform a Pareto analysis that compares costs
for each alternatives with the expected performance [10]. More
research is needed for example to let the approaches determine
appropriate middleware configurations and deal with black-box
component specifications.

The tool support of the approaches ranges from perfor-
mance profiling testbeds for individual components, graphical
modelling tools for architecture specification, model transfor-
mation, to performance analysis or simulation. However, with
few exceptions [43, 60], the tools have only been used by their
authors themselves. They are usually merely research proto-
types, which are sparsely tested and documented. Often they
are hardly robust against improper use and hard to use for non-
experts.

The case studies carried out to demonstrate the benefits
of the approaches usually involve small self-designed systems
(e.g., CBML, CB-SPE, PALLADIO) or rely on standard indus-

try examples (e.g., from the Java EE tutorials).

4.1.2. Language Expressiveness
Table 2 depicts the expressiveness of the component perfor-

mance specification languages employed by the surveyed ap-
proaches according to the feature diagram in Section 2.4. The
following discusses these features in detail.

For specifying scheduled resource demands most methods
simply use platform dependent timing values. They could be
adapted to different platform by multiplying them with a fac-
tor for a slower or faster resource (e.g., proposed by CBML and
CB-SPE). However, the feasibility of this approach has not been
demonstrated by any of the methods. Methods with platform
independent scheduled resource demands are still under devel-
opment. An extension to PALLADIO [55] proposes using in-
dividual Java bytecode instructions as platform independent re-
source demand. COMQUAD suggests using different bytecode
instruction classes [63]. These approaches are however limited
if native code is embedded in a component. A demonstration
of such a platform-independent specification for a large-scale
component-based system is still missing.

Several methods allow distribution functions to specify re-
source demands. This is especially useful for large software
components, where it is hard to describe the resource demand
as a constant value. General distribution functions usually re-
quired simulation techniques to evaluate the models, however
the results are more expressive than constant values or expo-
nential distributions. For embedded systems there is addition-
ally special interest in best-case, average-case, and worst-case

14



Name RESOLVE COMPAS HAMLET CB-SPE COMQUAD CBML PECT KLAPER ROBOCOP AQUA NICTA PALLADIO PAD

Scheduled Resource 

Demands

Extended 

Landau 

Notation

Timing Value, 

Constant

Timing Value, 

Constant

Timing Value, 

Constant

CPU demand in 

bytecode instr., 

distributions

Timing Value, 

Distribution 

Functions

Timing Value, 

Distribution 

Function

Timing Values, 

Constant

Timing Values, 

Constant

Timing Value, 

Constant

Timing Values, 

Constant

Timing Values, 

Distribution 

Functions

Timing Values, 

Constant

Limited Resource 

Demands

n/a n/a n/a n/a (only 

specification, 

no analysis)

n/a Semaphores Semaphores Semaphores Memory n/a n/a Semaphores Memory, Pools

Required Service Calls n/a Synch Synch Synch, Asynch, 

(specified by 

SA)

Sync, Asynch Synch, Asynch Synch, Asynch Synch, Asynch Synch, Asynch Synch Synch Synch Synch

Behaviour n/a n/a (Control 

flow specified 

by SA)

n/a (Control 

flow specified 

by SA)

n/a (Control 

flow specified 

by SA)

Sequence, 

Alternative, 

Loop

Sequence, 

Alternative, 

Loop, Fork

Sequence, 

Alternative, 

Loop, Fork

Sequence, 

Alternative, 

Loop, Fork

Sequence, Loop unknown Sequence, 

Alternative, 

Loop

Sequence, 

Alternative, 

Loop, Fork

Sequence, 

Alternative, 

Loop

Parametric 

Dependencies

Res. Demand n/a Loop, 

Alternative, 

Res. Demand

n/a (not for 

service 

parameters)

Res. Demand n/a (not for 

service 

parameters)

n/a informal Loop, Res. 

Demand, Req. 

Serv. Call

unknown n/a (not for 

service 

parameters)

Loop, 

Alternative, 

Res. Demand, 

Req. Serv. Call

n/a

Internal State n/a n/a yes (treated as 

additional 

input)

n/a yes (Petri-nets) n/a yes (using 

statecharts, 

perf. impact 

unknown)

n/a n/a (Comp. 

Parameter)

unknown n/a n/a (Comp. 

Parameter)

n/a

Table 2: Component Performance Model Expressiveness Comparison

performance metrics. For individual components these values
can be determined using methods and tools surveyed in [90].

Limited resource demands (e.g., for acquiring/releasing
semaphores or thread pool instances) are often critical for the
performance of component-based systems. Several methods al-
low modelling the acquisition and release of semaphores. Chen
et al. [15] specifically deal with determining appropriate thread
pool sizes for EJB application servers. Only a few approaches
allow the analysis of memory consumption, which is an impor-
tant performance metric if the system will be deployed on small
embedded devices or if garbage collection may impact perfor-
mance significantly.

Most of the methods support analysing synchronous as well
as asynchronous calls to required services. Building perfor-
mance models for component connectors, which might involve
modelling network connections and protocols, is described in
Section 3.2.2.

Control flow differs across the surveyed methods. RE-
SOLVE does not model any control flow in the component per-
formance specification and assumes components, which do not
require other components. COMPAS, HAMLET, and CB-SPE
force the software architect to model the control flow through
the architecture and do not provide component internal be-
haviour specifications. This approach might be infeasible, if a
software architect assembles black-box components, for which
the control flow propagation is not known.

PECT and ROBOCOP model control flow on a detailed
level, however ROBOCOP allows no alternatives or forks.
PALLADIO proposes to include only control into the com-
ponent performance specification if required services are in-
volved. The control flow between two subsequent required ser-
vice calls is abstracted, and a single resource demand models
the behaviour between the calls. This grey-box view can be ex-
tracted from black-box components via measurements. In gen-
eral, different abstraction levels for component behaviour are
required for different systems. For small components in em-
bedded systems it might be appropriate to express the behaviour
of every statement with a single resource demand, while large

components in distributed systems may require abstractions to
keep the model analysable.

Parameter dependencies can be attached to behavioural
nodes (e.g., loop counts, branch conditions), to required service
calls (e.g., the input parameter for such calls), or on resource
demands (e.g., CPU demand depending on input parameter
value). ROBOCOP and PALLADIO allow parameter depen-
dencies for behaviour, required service calls, and resource de-
mands (cf. [11, 54]). ROBOPCOP uses constants to specify pa-
rameter values, whereas PALLADIO additionally supports ran-
dom variables to specify parameter values for large user groups.
Some methods (e.g., CB-SPE, CBML, NICTA) include param-
eter dependencies in their specification, which are not directly
linked to parameters declared in component interfaces. CBML
for example allows to change the capacity of limited resources
and the number of replications of a component using variables.

Only a few methods deal with modelling the internal state
of a component at runtime, although state can cause sever
changes to a component’s performance. COMQUAD sug-
gests using Petri nets to model internal state, whereas PECT
uses UML state charts. HAMLET suggests a restricted model,
where the internal state of a component consists of a single
floating point value. More research is needed to adequately
model the internal state for performance prediction.

4.2. Critical Reflection

The following section provides a critical view on the sur-
veyed approaches (also see Tab. 3).

4.2.1. Prediction Approaches based on UML
Early approaches in this group ([47, 30]) relied on propri-

etary UML extensions, while all later approaches use the UML
SPT profile for model annotation introduced in 2002. Future
approaches in this group will likely make use of UML MARTE
profile from 2008, which succeeds the SPT profile. There
are many more UML performance prediction approaches [1],
which target object-oriented or monolithic systems instead of
component-based systems. Thus, these approaches are out of

15



Benefits Drawbacks

Prediction Methods 

based on UML

- based on standards

- developer friendly 

notation

-bad tool support

-conversion of existing 

models needed

Prediction Methods with 

proprietary Meta Model

- good tool support

- sound component 

notions

-proprietary notations

Prediction Methods 

focussing on Middleware

- accurate predictions

- close to existing 

systems

- test system required 

for measurements

- tool support still 

limited

Formal Specification 

Methods

- sound component 

notions

- limited analysis and 

prediction frameworks

Measurement Methods 

for System 

Implementations

- accurate performance 

analysis

- easy to apply

- not applicable during 

design

Table 3: Evaluation of the Methods

scope for this paper. While it is possible to describe and analyse
component-based systems with these approaches, it would re-
quire special mechanisms and high developer discipline to cre-
ate reusable (i.e., parametrised) models independently by com-
ponent developer and software architects.

The main benefit of UML-based approaches is their com-
pliance to OMG standards, which could enable using any ex-
isting UML CASE tools to specify the models. Bridging the
semantic gap between design models familiar to developers
and performance models with sometimes complicated mathe-
matical solution techniques, is highly beneficial to make per-
formance analysis more practitioner friendly. Hiding the com-
plexity of the performance models by using model transforma-
tions and results feedback could increase the acceptance of per-
formance analysis techniques in regular software development
processes. Furthermore, UML-based approaches enable devel-
opers to reuse existing UML models, thereby lowering the ef-
fort for performance analysis.

However, several drawbacks have limited UML-based ap-
proaches for performance evaluation of component-based sys-
tems. The concept of reusable software component has only
subsequently been introduced into UML 2.0 and is still subject
to discussion. It is hardly possible for component developers
and software architects to work independently of each other us-
ing UML.

Existing UML performance profiles do not include special
concepts to parametrise component performance specifications
for different usage profiles or resource environments. While
the SPT profile allows variable specifications in performance
annotations, these usually refer to global variables in the model
defined in a configuration file. Their link to input or output
parameters of a component interface would only be implicit,
which hinders different component developers and software ar-
chitects to communicate with each other. The UML SPT profile
allows parametrisation to different execution environments by
specifying processing rates of individual hardware nodes. Such
a model does not account for aspects of the middleware under-
lying a component-based system.

The tool support for the existing methods in this group is
still weak, as there are at most sparsely tested research pro-
totypes. A reason for this might be the difficulty to imple-
ment model transformations with UML as the source model,
because of the ambiguities of this semi-formal language. A
second factor are the missing transformation frameworks, as
the QVT standard [71] for UML model transformation has only
been adopted recently.

So far there is low interest from industry in these methods.
There are hardly any industrial case studies reported. Many
companies use UML only as a documentation tool. It would re-
quire a major effort to adjust existing models so that they have
the necessary formality to be processed by model transforma-
tion tools. The complexity of the latest UML versions (more
than 1200 pages) and the UML performance profiles (more than
400 pages for the UML MARTE profile) induces a steep learn-
ing curve on the specification language demotivating regular
developers.

4.2.2. Prediction Methods based on proprietary Meta-Models
The methods in this category are based on their own meta-

models and do not rely on the UML. A recent trend is the use
of the Eclipse Modeling Framework to implement such meta
models. With the corresponding Graphical Editing Framework
(GEF) and the Graphical Modeling Framework (GMF), it is
possible to semi-automatically generate graphical editors for
these meta-models. This allows researchers to quickly build
modelling tools to assess their models and connect performance
solvers.

The benefit of these approaches is thus the often good tool
support with graphical editors, model transformations to known
performance models, numerical analysis tools, and simula-
tors. Proprietary meta-models allow researchers to create new
abstractions of component-based systems, which might cap-
ture the performance-critical properties more accurately than
a UML model. These models usually use a more strict com-
ponent concept than the UML, where a software component is
an extended form of a class. The semantics of the models are
often more formally defined than for UML. Because of their
special purpose character, such modelling languages are at the
same time more restricted than the UML and might be easier
to learn for developers. Languages such as ROBOCOP or PAL-
LADIO additionally feature a role concept, which provides spe-
cific models for component developers and software architects
and therefore enables these roles to work independently.

As a drawback, these methods are not standard-conforming,
which results in several challenges. Developers first have to
learn a new language and then re-formulate existing UML mod-
els in the proprietary language, which might not be straight-
forward, because of different abstraction levels. Existing com-
mercial CASE tools cannot be reused for modelling, because
they only support specific UML versions.

4.2.3. Prediction Methods with Focus on Middleware
The benefit of these methods is their high prediction accu-

racy and their easy applicability in industry. These methods
provide a good mixture of modelling techniques for component

16



business logic and measurement techniques for component in-
frastructure (e.g., middleware, operating system). For systems
where component middleware has a high influence on the over-
all performance, these methods are best suited. Because of their
focus to a specific middleware implementation, these methods
can be quickly applied by practitioners.

Unfortunately, these methods require set-up, running, and
benchmarking a specific middleware environment, which can
be costly. Their portability is often limited as they are usually
restricted for a very specific middleware version. They are often
outdated if a new version of a middleware appears. The compo-
nent specification language of such approaches is usually sim-
ple, as the middleware is assumed to be the determining factor
for performance. Therefore, these methods might be difficult
to apply on component-based systems with a complex business
logic. As another drawback, there is still limited tool support
for these methods, so that developers are forced to create their
own middleware benchmark test applications.

4.2.4. Formal Specification Methods
These methods are theoretically sound and do not aim at the

latest component technologies from industry. They focus on ac-
curate component specification languages with appropriate ab-
straction levels. They offer a good comprehension of compo-
nent and composition concepts. However, these methods still
have weak tool support, as there are hardly any model transfor-
mations and performance solvers implemented based on them.
A validation of the introduced concepts based on the analysis
of real, large-scale systems is missing. Industry applicability is
a long term goal for these methods.

4.2.5. Measurement Methods for System Implementations
These methods offer special measurement and analysis fa-

cilities for a completely implemented and running component-
based system. They provide more functionality than available
middleware profilers (e.g., [23]) and often help to understand
the influences on performance in a given system better than pure
measurement tools.

As a benefit, these methods can offer accurate measurement
results for a running system. These methods assist developers
in finding performance bottlenecks in a given system or to iden-
tify implemented performance anti-pattern. They are useful for
capacity planning and re-design of legacy systems.

As a drawback, these methods are only applicable after sys-
tem implementation and not during system design. They are
complimentary to the prediction methods and should be applied
to validate model-based predictions. Furthermore, these meth-
ods are usually tied to a specific middleware version and are not
portable to other middleware. The models produced by these
methods often only have a low degree of parametrisation (e.g.,
for different usage profiles). Thus, predictions based on these
models are less flexible (e.g., the required services cannot be
changed). Some of the methods (e.g., PAD) construct restricted
prediction model, which do not derive quantitative performance
metrics, such as overall response times or throughputs.

5. Future Directions

This survey has revealed many open issues and recom-
mendations for future work in performance evaluation of
component-based software systems:

Model Expressiveness: As shown by the survey and dis-
cussed in the former section, a common performance modelling
language for component-based systems has not been achieved
yet. Component performance can be modelled on different ab-
straction levels. The question is which detail to include into the
performance models because of its impact on timing and which
detail to abstract because of its limited impact. Too much de-
tail might make the models intractable for numerical analysis
models as well as for simulations.

The goal is to create an abstraction of a software com-
ponent, which allows accurate performance prediction results.
However, in some scenarios a specific parameter might have a
large performance impact, while in other scenarios it is negli-
gible. Thus, a common abstract performance model might not
be possible. Instead, for large software components it could
be beneficial to have multiple performance models from which
software architects can then select depending on the kind of
scenario they want to analyse.

As for the features of a performance modelling languages
described in Section 2.4 most existing methods do not sup-
port modelling internal state and parameter dependencies well.
More research and experiments into this direction are nec-
essary. To make the performance model of the middleware
more accurate, different model completions (i.e., model exten-
sions for specific aspects) [95] should be designed (examples in
[88, 4, 39]).

Runtime and Dynamic Architectures: The surveyed
methods support modelling the runtime life-cycle stage of soft-
ware components only in a limited way. They include the
workload and the usage profile of the component-based sys-
tem at runtime. However, nowadays distributed or grid-based
systems may involve dynamic reconfiguration of the architec-
ture at runtime [26]. There are only initial approaches sup-
porting performance prediction for dynamic architectures (e.g.,
KLAPER [33]).

Furthermore, online performance monitoring at runtime can
be combined with modelling techniques to react on changing
usage profiles and deployment environments. In this direction,
prediction techniques could help to identify the boundaries of
such changes, so that a component-based system can still work
according to certain service level agreements. Another inter-
esting direction is performance negotiation between different
components at runtime, which has been proposed by Menasce
et al. [62].

Domain-Specific Approaches: While some of the sur-
veyed approaches are tailored for a specific target system do-
main (i.e., embedded or distributed systems) or for a specific
technical domain (e.g., EJB systems), other domain-specific
methods and models could improve performance evaluation of
component-based systems. For certain business domains (e.g.,
accounting systems, retail systems, etc.), patterns for the soft-
ware components could be identified so that special domain-

17



specific modelling languages and prediction methods can be de-
signed. This would potentially enable rapid creation of predic-
tion models and therefore reduce the costs for a model-driven
performance analysis.

Support for Service-oriented Systems: The concepts de-
veloped for performance evaluation of component-based sys-
tems can potentially be applied also for service-oriented sys-
tems, which often rely on similar technologies. In fact, many
service-oriented systems are built from deployed software com-
ponents. Service providers procure the resource environment
for the components, therefore performance predictions do not
need to parametrise over the resource environment as it cannot
easily be altered by the software architect.

Performance prediction methods for component-based sys-
tems could be helpful in establishing service level agreements.
Due to the distributed nature of services, performance mod-
elling must put special emphasis on the performance of network
protocols, such as SOAP or REST. Future service-oriented sys-
tems (e.g., cloud computing applications) may be hosted in
large data centers introducing a high degree of scalability, but
also a high complexity for performance models and predictions.
New abstractions levels beyond component-based performance
modelling need to be created to deal with such systems.

Expressive Feedback: Both performance measurement
and prediction methods should give the software architect de-
tailed feedback on the expected performance of a system and
how to improve it. Most of the current approaches simply pro-
vide measured or predicted performance metrics, such as re-
sponse times, throughput, and resource utilisation. They require
the software architect to manually draw conclusions from these
metrics. This is especially difficult if the performance metrics
stem from a performance model (e.g., a QN or Petri net) and
cannot be directly linked to components and connectors in the
design model.

Some initial approaches for giving software architects more
sophisticated feedback from the performance prediction have
been reported [18, 97]. In the future, these approaches should
account for the characteristics of component-based systems,
where for example the internals of third-party components can-
not be changed. Prediction methods should assist software ar-
chitects in finding performance anti-patterns [83, 74] and im-
plementing performance patterns. Trade-off analysis methods
also with other QoS-attributes (e.g., reliability, availability, se-
curity, etc.) are required.

Feedback from performance prediction methods could also
be systematically collected into a performance knowledge ba-
sis [94]. This could allow identifying new performance anti-
patterns and help to create a set of common performance solu-
tions for reoccurring performance problems.

Hybrid Solution Techniques: Hybrid performance solvers
combine numerical analysis methods with simulation ap-
proaches. None of the surveyed methods makes use of a hybrid
performance solution techniques, although multiple methods
offer analytical as well as simulation solvers. Hybrid methods
could be a solution for the state-space explosion of large per-
formance models and allow efficient and accurate performance
analyses. How to exploit such techniques in a component-based

setting is still unknown. It could be possible to segment a large
model into smaller parts and solve individual parts using ana-
lytical techniques and using the results to create a simulation
model or vice versa. Verdickt et al. [87] integrate a network
simulator into an analytical performance solver for LQNs. Such
techniques could improve the accuracy of predictions for net-
work intensive component-based systems.

Reverse Engineering: While there are sophisticated meta-
models and performance prediction techniques available, in in-
dustry a crucial issue for performance analysis is often how
to build a performance model for a legacy system. With the
strict time-constraints in industry, an automated solution based
on static code analysis or profiling is desirable. In a component-
based setting, a software architect could be interested in the per-
formance of a legacy or third party component. Some methods
for component performance measurement have been surveyed
in Section 3.2.1, but still need more research to be usable in
industry.

For a test-bed for component implementations there are
three major challenges: (i) support for parametrising over dif-
ferent usage profiles, (ii) support for parametrising over re-
quired services, and (iii) support for parametrising over differ-
ent platforms.

For the first challenge, it is impossible for non-trivial soft-
ware component to profile them for their whole input domain.
Therefore, suitable abstractions for the input domain based on
equivalence classes need to be found [37, 63].

For the second challenge, it is necessary to generate stubs
for the required services of a component, so that it can be tested
independent from other components. However the return values
from required services also belong to the input domain of the
component. Therefore, as in (i) it is necessary to vary the return
values created by the generated stubs to cover the whole input
domain.

For the third challenge, it is necessary to find a suitable
platform-independent performance metric. For Java-based sys-
tems, counting the number of bytecode instructions of a com-
ponent implementation has been proposed [65, 55]. As an ex-
ample, Binder et al. [9] have implemented a profiler for Java
applications, which counts the number of bytecode instructions
computed and the number of objects allocated. For embedded
system components running on small devices without a compli-
cated middleware and operating system, it might be possible to
count the required CPU cycles [11]. More experience and case
studies involving industrial systems are needed in this direction.

The use of Kalman filters [101] to estimate model parame-
ters not directly measurable from black-box component imple-
mentations could be an interesting direction for future research.

Model Libraries: As software components, parametrised
component performance specifications shall be reused by mul-
tiple software architects, so that the extra effort for creating
a parametrised model pays off. Software architects shall use
model repositories or model libraries to retrieve existing per-
formance models to be included into their models as comple-
tions [95] and to store new performance models [94, 18].

Such repositories could also used to systematically store
measurement results so that performance degradation could be

18



reported or that initial models are later refined with more accu-
rate measurements. These measurements could also be bench-
marking results for certain middleware products, such applica-
tion servers. Although Internet-based component marketplaces
have not succeeded so far, company-internal component reposi-
tories enhanced with reusable performance models could allow
rapid performance predictions for software product lines.

Empirical Studies: While a high automation degree is
desired, most performance evaluation methods require man-
ual input by component developers and software architects.
This includes estimating specific performance properties, build-
ing models using graphical editing tools, performing statistical
analyses to get parametrised performance models, and inter-
preting the results of performance solvers. It is still unknown
what degree and what quality of human input is necessary to
achieve accurate performance evaluations.

Empirical studies are useful to analyse the human aspects
of performance evaluation methods. This includes comprehen-
sion of the proposed models and usage of the accompanying
tools. Experiments with multiple students can analyse whether
the necessary inputs can be provided by average developers
and whether the tools produce results suitable for non-experts.
While initial studies have been performed [60], replication and
analysis of other aspects is desirable.

Empirical studies involving cost-benefit analysis are still
missing. It is still unclear how much costs early design time per-
formance predictions save compared to late development cycle
performance fixing. Such studies require to execute the same
project twice with both approaches, which is very expensive.

Empirical studies are hard to design, require major effort
to conduct, and the results are often debatable [92]. However,
such studies have the important side effect that they require the
performance modelling and prediction tools to be used by third
parties. Thus, it is possible to reveal deficits of existing research
prototype tools and make the existing approaches more mature
and robust so that they become easier applicable in industrial
settings.

Increase Technology Transfer: Most of the presented
methods have not reached a level of industrial maturity. They
have often been tested on small example systems many times
designed by the authors themselves. Some approaches use ex-
ample implementations of middleware vendors, such as Duke’s
Bank Account from Sun to validate their approaches. However,
there are hardly attempts to build reusable component perfor-
mance models for these systems.

The Common Component Modelling Example (Co-
CoME) [76] is an effort by several research groups to design
a standard system for evaluation. A Java-based implementa-
tion of the system is available so that model-based performance
prediction from the design can be compared with actual mea-
surements. Nevertheless, the system is a research prototype.

Hissam et al. [43] reported on a large-scale case study,
where the authors applied the PECT method on an embedded
system with more than one million lines of code. Other methods
should also be applied on larger industrial system to check their
scalability and validate the chosen abstraction levels. Report of
such case studies would help practitioners to use the methods,

thereby avoiding performance firefighting [81].
Teaching the performance predictions methods to practi-

tioners is another important factor for increasing the technology
transfer from academia to industry. Matured methods should
not only report on real-life case studies, but also be accompa-
nied with consistent and up-to-date documentation and teach-
ing guides. Many methods are merely documented through re-
search papers or PhD thesis and lack extensive tool documen-
tation.

Performability There are many extra-functional properties
besides performance, such as reliability, availability, security,
safety, maintainability, usability etc. For component-based sys-
tems for example researchers have proposed many reliability
prediction approaches [29]. It is desirable to combine the eval-
uation methods for other extra-functional properties with per-
formance evaluation methods as some of these properties also
depend on execution times (e.g., energy consumption). Differ-
ent methods could benefit from each other, as they may pro-
pose behavioural abstraction levels suitable for multiple extra-
functional properties.

6. Conclusions

We have surveyed the state-of-the-art in research of perfor-
mance evaluation methods for component-based software sys-
tems. The survey classified the approaches according to the ex-
pressiveness of their performance modelling language and crit-
ically evaluated the benefits and drawbacks.

The area of performance evaluations for component-based
software engineering has significantly matured over the last
decade. Several issues have been understood as good engi-
neering practise and should influence the creation of new ap-
proaches. A mixed approach, where individual components as
well as the deployment platform are measured and the appli-
cation architecture and the usage profile are modelled, is ad-
vantageous to deal with the complexity of the deployment plat-
form while at the same time enabling early life-cycle perfor-
mance predictions. The necessary parametrised performance
modelling language for software components has become more
clear. Including benchmarking results for component connec-
tors and middleware features into application models using
model completions exploits the benefits of model-driven devel-
opment for performance evaluation.

Our survey benefits both researchers and practitioners. Re-
searchers can orient themselves with the proposed classification
scheme and assess new approaches in the future. The listed
future directions for research help identifying areas with open
issues. Practitioners gain an overview of the performance eval-
uation methods proposed in research. They can select methods
according to their specific situation and thus increase the tech-
nology transfer from research to practise.

A generic approach applicable on all kinds of component-
based systems may not be achievable. Instead, domain-specific
approaches could decrease the effort for creating performance
models.

19



Acknowledgements: The author would like to thank the mem-
bers of the SDQ research group at the University of Karlsruhe,
especially Anne Martens, Klaus Krogmann, Michael Kuper-
berg, Steffen Becker, Jens Happe, and Ralf Reussner for their
valuable review comments. This work is supported by the EU-
project Q-ImPrESS (grant FP7-215013).

References

[1] Simonetta Balsamo, Antinisca DiMarco, Paola Inverardi, and Marta
Simeoni. Model-based performance prediction in software development:
A survey. IEEE Trans. Softw. Eng., 30(5):295–310, May 2004.

[2] Simonetta Balsamo, Moreno Marzolla, and Raffaela Mirandola. Ef-
ficient performance models in component-based software engineering.
In EUROMICRO ’06: Proceedings of the 32nd EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, pages 64–71,
Washington, DC, USA, 2006. IEEE Computer Society.

[3] F. Bause and F. Kritzinger. Stochastic Petri Nets - An Introduction to the
Theory. Vieweg Verlag, 2nd edition, 2002.

[4] Steffen Becker. Coupled Model Transformations for QoS Enabled
Component-Based Software Design. PhD thesis, University of Olden-
burg, Germany, January 2008.

[5] Steffen Becker, Lars Grunske, Raffaela Mirandola, and Sven Over-
hage. Performance Prediction of Component-Based Systems: A Sur-
vey from an Engineering Perspective. In Ralf Reussner, Judith Stafford,
and Clemens Szyperski, editors, Architecting Systems with Trustworthy
Components, volume 3938 of LNCS, pages 169–192. Springer, 2006.

[6] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based per-
formance prediction with the palladio component model. In Proc. 6th
Int. Workshop on Software and Performance (WOSP’07), pages 54–65,
New York, NY, USA, 2007. ACM.

[7] Steffen Becker and Ralf Reussner. The Impact of Software Component
Adaptation on Quality of Service Properties. L’objet, 12(1):105–125,
2006.

[8] Antonia Bertolino and Raffaela Mirandola. Cb-spe tool: Putting
component-based performance engineering into practice. In Proc. 7th
Int. Symposium on Component-based Software Engineering (CBSE’04),
number 3054 in LNCS, pages 233–248. Springer, May 2004.

[9] Walter Binder, Jarle Hulaas, Philippe Moret, and Alex Villazon.
Platform-independent profiling in a virtual execution environment. Soft-
ware Practice and Experience, 39(1):47–79, January 2009.

[10] Egor Bondarev, Michel R. V. Chaudron, and Erwin A. de Kock. Explor-
ing performance trade-offs of a JPEG decoder using the deepcompass
framework. In Proc. of the 6th International Workshop on Software and
performance (WOSP ’07), pages 153–163, New York, NY, USA, 2007.
ACM.

[11] Egor Bondarev, Peter de With, Michel Chaudron, and Johan Musken.
Modelling of Input-Parameter Dependency for Performance Predictions
of Component-Based Embedded Systems. In Proc. of the 31th EU-
ROMICRO Conference (EUROMICRO’05), 2005.

[12] Egor Bondarev, Johan Muskens, Peter de With, Michel Chaudron, and
Johan Lukkien. Predicting Real-Time Properties of Component Assem-
blies: A Scenario-Simulation Approach. In Proc. 30th EUROMICRO
Conf. (EUROMICRO’04), pages 40–47, Washington, DC, USA, 2004.
IEEE Computer Society.

[13] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. Perfor-
mance and scalability of ejb applications. In Proc. 17th ACM SIGPLAN
Conf. on Object-oriented programming, systems, languages, and ap-
plications (OOPSLA’02), pages 246–261, New York, NY, USA, 2002.
ACM.

[14] J. Cheesman and J. Daniels. UML Components: A Simple Process for
Specifying Component-based Software Systems. Addison-Wesley, 2001.

[15] Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance pre-
diction of component-based applications. J. Syst. Softw., 74(1):35–43,
2005.

[16] Microsoft Corp. The COM homepage. http://www.microsoft.
com/com/. last retrieved 2008-01-13.

[17] Microsoft Corporation. Improving .NET Application Performance and
Scalability (Patterns & Practices). Microsoft Press, 2004.

[18] V. Cortellessa and L. Frittella. A framework for automated generation
of architectural feedback from software performance analysis. In Proc.
4th European Performance Engineering Workshop (EPEW’07), volume
4748 of LNCS, pages 171–185. Springer, September 2007.

[19] Vittorio Cortellessa. How far are we from the definition of a common
software performance ontology? In Proc. 5th International Workshop
on Software and Performance (WOSP ’05), pages 195–204, New York,
NY, USA, 2005. ACM Press.

[20] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early per-
formance testing of distributed software applications. In Proc. 4th Int.
Workshop on Software and Performance (WOSP’04), pages 94–103,
New York, NY, USA, 2004. ACM.

[21] Ada Diaconescu and John Murphy. Automating the performance man-
agement of component-based enterprise systems through the use of re-
dundancy. In Proc. 20th Int. Conf. on Automated Software Engineering
(ASE’05), pages 44–53, New York, NY, USA, 2005. ACM.

[22] Antinisca DiMarco and Paola Inverardi. Compositional generation of
software architecture performance qn models. In Proc. 4th Working
IEEE/IFIP Conference on Software Architecture (WISCA’04), pages 37–
46. IEEE, June 2004.

[23] ej technologies. JProfiler. http://www.ej-technologies.com,
2008. last retrieved 2009-01-07.

[24] Sun Microsystems Corp., The Enterprise Java Beans homepage. http:
//java.sun.com/products/ejb/, 2007. last retrieved 2008-01-
13.

[25] Evgeni Eskenazi, Alexandre Fioukov, and Dieter Hammer. Performance
Prediction for Component Compositions. In Proc. 7th International
Symposium on Component-based Software Engineering (CBSE’04), vol-
ume 3054 of LNCS. Springer, 2004.

[26] Rich Friedrich and Jerome Rolia. Next generation data centers: trends
and implications. In WOSP ’07: Proceedings of the 6th international
workshop on Software and performance, pages 1–2, New York, NY,
USA, 2007. ACM.

[27] Steffen Göbel, Christoph Pohl, Simone Rö;ttger, and Steffen Zschaler.
The comquad component model: enabling dynamic selection of imple-
mentations by weaving non-functional aspects. In AOSD ’04: Proceed-
ings of the 3rd international conference on Aspect-oriented software de-
velopment, pages 74–82, New York, NY, USA, 2004. ACM Press.

[28] Jean Gelissen. Robocop: Robust open component based software archi-
tecture. http://www.hitech-projects.com/euprojects/
robocop/deliverables.htm. last retrieved 2008-01-13.

[29] Swapna S. Gokhale. Architecture-based software reliability analysis:
Overview and limitations. IEEE Trans. on Dependable and Secure Com-
puting, 4(1):32–40, January-March 2007.

[30] Hassan Gomaa and Daniel A. Menasce. Performance engineering of
component-based distributed software systems. In Performance Engi-
neering, State of the Art and Current Trends, pages 40–55, London, UK,
2001. Springer-Verlag.

[31] V. Grassi, R. Mirandola, and A. Sabetta. A Model Transforma-
tion Approach for the Early Performance and Reliability Analysis of
Component-Based Systems. In Proc. 9th Int. Symposium on Component-
Based Software Engineering (CBSE’06), volume 4063 of LNCS, pages
270–284. Springer, June 2006.

[32] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. From de-
sign to analysis models: a kernel language for performance and relia-
bility analysis of component-based systems. In Proc. 5th International
Workshop on Software and Performance (WOSP ’05), pages 25–36, New
York, NY, USA, 2005. ACM Press.

[33] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. A Model-
Driven Approach to Performability Analysis of Dynamically Reconfig-
urable Component-Based Systems. In Proc. 6th Workshop on Software
and Performance (WOSP’07), February 2007.

[34] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. Filling the
gap between design and performance/reliability models of component-
based systems: A model-driven approach. Journal on Systems and Soft-
ware, 80(4):528–558, 2007.

[35] Dick Hamlet. Software component composition: subdomain-based
testing-theory foundation. Journal on Software Testing, Verification and
Reliability, 17:243–269, 2007.

[36] Dick Hamlet. Tools and Experiments Supporting a Testing-based The-
ory of Component Composition. ACM Trans. on Softw. Eng. Methodol-

20

http://www.microsoft.com/com/
http://www.microsoft.com/com/
http://www.ej-technologies.com
http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/
http://www.hitech-projects.com/euprojects/robocop/deliverables.htm
http://www.hitech-projects.com/euprojects/robocop/deliverables.htm


ogy, To Appear, 2009.
[37] Dick Hamlet, Dave Mason, and Denise Woit. Properties of Software Sys-

tems Synthesized from Components, volume 1 of Series on Component-
Based Software Development, chapter Component-Based Software De-
velopment: Case Studies, pages 129–159. World Scientific Publishing
Company, March 2004.

[38] Dick Hamlet, David Mason, and Denise Woit. Theory of software relia-
bility based on components. In Proc. 23rd International Conference on
Software Engeneering (ICSE’01), pages 361–370, Los Alamitos, Cali-
fornia, May12–19 2001. IEEE Computer Society.

[39] Jens Happe, Holger Friedrichs, Steffen Becker, and Ralf Reussner. A
Configurable Performance Completion for Message-Oriented Middle-
ware. In Proc. 7th International Workshop on Software and Performance
(WOSP’08). ACM Sigsoft, June 2008. To Appear.

[40] M. Harkema, B. M. M. Gijsen, R. D. van der Mei, and L. J. M. Nieuwen-
huis. Performance comparison of middleware threading strategies. In
Proc. of International Symposium on Performance Evaluation of Com-
puter and Communication Systems (SPECTS’04), 2004.

[41] George T. Heineman and William T. Councill, editors. Component-
based software engineering: putting the pieces together. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[42] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process al-
gebra for performance evaluation. Theor. Comput. Sci., 274(1-2):43–87,
2002.

[43] S. Hissam, G. Moreno, D. Plakosh, I. Savo, and M. Stemarczyk. Predict-
ing the behavior of a highly configurable component based real-time sys-
tem. In Proc. Euromicro Conf. on Real-Time Systems 2008 (ECRTS’08),
pages 57–68, July 2008.

[44] Scott Hissam, Mark Klein, John Lehoczky, Paulo Merson, Gabriel
Moreno, and Kurt Wallnau. Performance property theory for predictable
assembly from certifiable components (pacc). Technical report, Soft-
ware Engineering Institute, Carnegie Mellon University, 2004.

[45] Scott A. Hissam, Gabriel A. Moreno, Judith A. Stafford, and Kurt C.
Wallnau. Packaging Predictable Assembly. In Proc. IFIP/ACM Working
Conference on Component Deployment (CD’02), pages 108–124, Lon-
don, UK, 2002. Springer-Verlag.

[46] Raj Jain. The Art of Computer Systems Performance Analysis : Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing. Wiley, 1991.

[47] Pekka Kahkipuro. UML-Based Performance Modeling Framework for
Component-Based Distributed Systems. In Performance Engineering,
State of the Art and Current Trends, pages 167–184, London, UK, 2001.
Springer-Verlag.

[48] Thomas Kappler, Heiko Koziolek, Klaus Krogmann, and Ralf Reuss-
ner. Towards Automatic Construction of Reusable Prediction Models
for Component-Based Performance Engineering. In Proc. Software En-
gineering 2008 (SE’08), volume 121 of LNI. GI, February 2008.

[49] Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. SAAM:
a method for analyzing the properties of software architectures. In
Proc. 16th International Conference on Software Engineering (ICSE
’94), pages 81–90, Los Alamitos, CA, USA, 1994. IEEE Computer So-
ciety Press.

[50] Rick Kazman, M. Klein, and Paul Clements. ATAM: Method for Archi-
tecture Evaluation. Technical Report CMU/SEI-2000-TR-004, Carnegie
Mellon University, Software Engineering Institute, 2000.

[51] Donald E. Knuth. The Art of Computer Programming, volume Volume
1: Fundamental Algorithms. Addison-Wesley Professional, 3rd edition,
1997.

[52] Samuel Kounev. Performance Modeling and Evaluation of Distributed
Component-Based Systems Using Queueing Petri Nets. IEEE Trans.
Softw. Eng., 32(7):486–502, July 2006.

[53] Heiko Koziolek. Parameter Dependencies for Reusable Performance
Specifications of Software Components. PhD thesis, University of Old-
enburg, Germany, March 2008.

[54] Heiko Koziolek, Steffen Becker, and Jens Happe. Predicting the Perfor-
mance of Component-based Software Architectures with different Us-
age Profiles. In Proc. 3rd International Conference on the Quality of
Software Architectures (QoSA’07), volume 4880 of LNCS, pages 145–
163. Springer, Juli 2007.

[55] Michael Kuperberg, Klaus Krogmann, and Ralf Reussner. Performance
Prediction for Black-Box Components using Reengineered Parametric

Behaviour Models. In Proceedings of the 11th International Symposium
on Component Based Software Engineering (CBSE 2008), Karlsruhe,
Germany, 14th-17th October 2008, volume 5282 of LNCS, pages 48–
63. Springer, October 2008.

[56] Kung-Kiu Lau and Zheng Wang. Software component models. IEEE
Transactions on Software Engineering, 33(10):709–724, October 2007.

[57] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantita-
tive System Performance. Prentice Hall, 1984.

[58] Yan Liu, Alan Fekete, and Ian Gorton. Design-level performance pre-
diction of component-based applications. IEEE Trans. Softw. Eng.,
31(11):928–941, November 2005. Member-Yan Liu and Member-Alan
Fekete and Member-Ian Gorton.

[59] Catalina M. Llado and Peter G. Harrison. Performance evaluation of an
enterprise JavaBean server implementation. In Proc. 2nd Int. Workshop
on Software and Performance (WOSP’00), pages 180–188, New York,
NY, USA, 2000. ACM.

[60] Anne Martens, Steffen Becker, Heiko Koziolek, and Ralf Reussner. An
Empirical Investigation of the Effort of Creating Reusable Models for
Performance Prediction. In Proc. 11th Int. Symposium on Component-
based Software Engineerint (CBSE”08), volume 5282 of LNCS, pages
16–31. Springer, October 2008.

[61] M.D. McIlroy, JM Buxton, P. Naur, and B. Randell. Mass-Produced
Software Components. Software Engineering Concepts and Techniques
(NATO Science Committee), 1:88–98, 1968.

[62] D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy. Performance by
Design. Prentice Hall, 2004.

[63] Marcus Meyerhöfer. Messung und Verwaltung von Software-
Komponenten für die Performance-Vorhersage. PhD thesis, University
of Erlangen-Nuernberg, 2007.

[64] Marcus Meyerhöfer and Frank Lauterwald. Towards platform-
independent component measurement. In Proceedings of the 10th Work-
shop on Component-Oriented Programming (WCOP2005), 2005.

[65] Marcus Meyerhöfer and Christoph Neumann. TESTEJB - A Measure-
ment Framework for EJBs. In Proceedings of the 7th International Sym-
posium on Component-Based Software Engineering (CBSE7), 2004.

[66] Gabriel Moreno and Paulo Merson. Model-driven performance anal-
ysis. In Proc. 4th Int. Conf. on the Quality of Software Architecture
(QoSA’08), volume 5281 of LNCS, pages 135–151. Springer, 2008.

[67] Adrian Mos and John Murphy. A framework for performance moni-
toring, modelling and prediction of component oriented distributed sys-
tems. In WOSP ’02: Proceedings of the 3rd international workshop on
Software and performance, pages 235–236, New York, NY, USA, 2002.
ACM.

[68] Object Management Group (OMG). UML Profile for Schedulability,
Performance and Time. http://www.omg.org/cgi-bin/doc?
formal/2005-01-02, 2005. last retrieved 2008-01-13.

[69] Object Management Group (OMG). Corba component model,
v4.0 (formal/2006-04-01). http://www.omg.org/technology/
documents/formal/components.htm, 2006. last retrieved
2008-01-13.

[70] Object Management Group (OMG). Metaobject facility (MOF). http:
//www.omg.org/mof/, 2006. last retrieved 2008-01-13.

[71] Object Management Group (OMG). MOF QVT final adopted specifi-
cation (ptc/05-11-01). http://www.omg.org/cgi-bin/apps/
doc?ptc/05-11-01.pdf, 2006. last retrieved 2008-01-13.

[72] Object Management Group (OMG). UML Profile for MARTE, Beta
1. http://www.omg.org/cgi-bin/doc?ptc/2007-08-04,
August 2007. last retrieved 2008-01-13.

[73] Object Management Group (OMG). Unified modeling language: Infras-
tructure version 2.1.1. http://www.omg.org/cgi-bin/doc?
formal/07-02-06, February 2007. last retrieved 2008-01-13.

[74] Trevor Parsons and John Murphy. Detecting Performance Antipatterns
in Component Based Enterprise Systems. Journal of Object Technology,
7(3):55–90, March-April 2008.

[75] Erik Putrycz, Murray Woodside, and Xiuping Wu. Performance tech-
niques for cots systems. IEEE Softw., 22(4):36–44, 2005.

[76] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek
Plasil, editors. The Common Component Modeling Example: Compar-
ing Software Component Models, volume 5153 of LNCS. Springer, 2008.

[77] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multi-
chain queuing networks. J. ACM, 27(2):313–322, 1980.

21

http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/mof/
http://www.omg.org/mof/
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
http://www.omg.org/cgi-bin/doc?formal/07-02-06
http://www.omg.org/cgi-bin/doc?formal/07-02-06


[78] Ralf H. Reussner, Steffen Becker, and Viktoria Firus. Component com-
position with parametric contracts. In Tagungsband der Net.ObjectDays
2004, pages 155–169, 2004.

[79] Ralf H. Reussner, Iman H. Poernomo, and Heinz W. Schmidt. Reason-
ing on software architectures with contractually specified components.
In A. Cechich, M. Piattini, and A. Vallecillo, editors, Component-Based
Software Quality: Methods and Techniques, number 2693 in LNCS,
pages 287–325. Springer, 2003.

[80] J. A. Rolia and K. C. Sevcik. The method of layers. IEEE Trans. Softw.
Eng., 21(8):689–700, 1995.

[81] Jayshankar Sankarasetty, Kevin Mobley, Libby Foster, Tad Hammer,
and Terri Calderone. Software performance in the real world: personal
lessons from the performance trauma team. In WOSP ’07: Proceedings
of the 6th international workshop on Software and performance, pages
201–208, New York, NY, USA, 2007. ACM.

[82] Murali Sitaraman, Greg Kuczycki, Joan Krone, William F. Ogden, and
A.L.N. Reddy. Performance specification of software components. In
Proc. of SSR ’01, 2001.

[83] Connie U. Smith. Performance Solutions: A Practical Guide To Creat-
ing Responsive, Scalable Software. Addison-Wesley, 2002.

[84] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons,
2006.

[85] Clemens Szyperski, Daniel Gruntz, and Stephan Murer. Component
Software: Beyond Object-Oriented Programming. Addison-Wesley,
2002.

[86] Microsoft ACE Team. Performance Testing Microsoft .NET Web Appli-
cations. Microsoft Press, 2002.

[87] T. Verdickt, B. Dhoedt, F. De Turck, and P. Demeester. Hybrid Per-
formance Modeling Approach for Network Intensive Distributed Soft-
ware. In Proc. 6th International Workshop on Software and Performance
(WOSP’07), ACM Sigsoft Notes, pages 189–200, February 2007.

[88] Tom Verdickt, Bart Dhoedt, Frank Gielen, and Piet Demeester. Au-
tomatic inclusion of middleware performance attributes into architec-
tural uml software models. IEEE Transactions on Software Engineering,
31(8):695–771, 2005.

[89] Kurt Wallnau and James Ivers. Snapshot of CCL: A Language for Pre-
dictable Assembly. Technical report, Software Engineering Institute,
Carnegie Mellon University, 2003.

[90] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-
time problem—overview of methods and survey of tools. Trans. on Em-
bedded Computing Sys., 7(3):1–53, 2008.

[91] Lloyd G. Williams and Connie U. Smith. Making the business case for
software performance engineering. In Proceedings of CMG, 2003. last
retrieved 2008-01-13.

[92] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn
Regnell, and Anders Wesslén. Experimentation in Software Engineer-
ing: an Introduction. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

[93] C. Murray Woodside, Vidar Vetland, Marc Courtois, and Stefan Ba-
yarov. Resource function capture for performance aspects of software
components and sub-systems. In Performance Engineering, State of the
Art and Current Trends, pages 239–256, London, UK, 2001. Springer-
Verlag.

[94] Murray Woodside, Greg Franks, and Dorina Petriu. The Future of
Software Performance Engineering. In Future of Software Engineer-
ing (FOSE ’07), pages 171–187, Los Alamitos, CA, USA, May 2007.
IEEE Computer Society.

[95] Murray Woodside, Dorin Petriu, and Khalid Siddiqui. Performance-
related completions for software specifications. In ICSE ’02: Pro-
ceedings of the 24th International Conference on Software Engineering,
pages 22–32, New York, NY, USA, 2002. ACM Press.

[96] Xiuping Wu and Murray Woodside. Performance Modeling from Soft-
ware Components. In Proc. 4th International Workshop on Software
and Performance (WOSP’04), volume 29, pages 290–301, New York,
NY, USA, 2004. ACM Press.

[97] Jing Xu. Rule-based automatic software performance diagnosis and im-
provement. In WOSP ’08: Proceedings of the 7th international work-

shop on Software and performance, pages 1–12, New York, NY, USA,
2008. ACM.

[98] Jing Xu, Alexandre Oufimtsev, Murray Woodside, and Liam Murphy.
Performance modeling and prediction of enterprise javabeans with lay-
ered queuing network templates. SIGSOFT Softw. Eng. Notes, 31(2):5,
2006.

[99] Sherif M. Yacoub. Performance analysis of component-based applica-
tions. In SPLC 2: Proceedings of the Second International Conference
on Software Product Lines, volume 2379 of LNCS, pages 299–315, Lon-
don, UK, 2002. Springer-Verlag.

[100] Peter Zadrozny, Philip Aston, and Ted Osborne. J2EE Performance Test-
ing. A-Press, 2003.

[101] Tao Zheng, Murray Woodside, and Marin Litoiu. Performance model
estimation and tracking using optimal filters. IEEE Trans. on Softw.
Eng., 34(3):391–406, May/June 2008.

[102] Liming Zhu, Yan Liu, Ngoc Bao Bui, and Ian Gorton. Revel8or: Model
Driven Capacity Planning Tool Suite. In Proc. 29th Int. Conf. on Soft-
ware Engineering (ICSE’07), pages 797–800, Washington, DC, USA,
2007. IEEE Computer Society.

22


	Introduction
	Software Component Performance
	Software Components
	Factors influencing Component Performance
	Component Life-Cycle
	Requirements for a Component Performance Modelling Language
	A Life-Cycle Process Model for Component-based Software System Performance Engineering

	Performance Evaluation Methods
	Main Approaches
	Prediction Approaches based on UML
	Prediction Approaches based on proprietary Meta-Models
	Prediction Approaches with focus on Middleware
	Formal Performance Specification Approaches
	Measurement Approaches for System Implementations

	Supplemental Approaches
	Measurement Approaches for Component Implementations
	Prediction Approaches with focus on Component Connectors
	Miscellaneous Approaches


	Evaluation
	Feature Discussion
	General Features
	Language Expressiveness

	Critical Reflection
	Prediction Approaches based on UML
	Prediction Methods based on proprietary Meta-Models
	Prediction Methods with Focus on Middleware
	Formal Specification Methods
	Measurement Methods for System Implementations


	Future Directions
	Conclusions

