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ABSTRACT
Systematic decision support for architectural design deci-
sions is a major concern for software architects of evolving
service-oriented systems. In practice, architects often anal-
yse the expected performance and reliability of design alter-
natives based on prototypes or former experience. Model-
driven prediction methods claim to uncover the tradeoffs be-
tween different alternatives quantitatively while being more
cost-effective and less error-prone. However, they often suf-
fer from weak tool support and focus on single quality at-
tributes. Furthermore, there is limited evidence on their
effectiveness based on documented industrial case studies.
Thus, we have applied a novel, model-driven prediction
method called Q-ImPrESS on a large-scale process control
system consisting of several million lines of code from the
automation domain to evaluate its evolution scenarios. This
paper reports our experiences with the method and lessons
learned. Benefits of Q-ImPrESS are the good architectural
decision support and comprehensive tool framework, while
one drawback is the time-consuming data collection.

1. INTRODUCTION
Distributed, service-oriented software systems within

companies or on the web are constantly evolved due to new
customer requirements, failure reports, or technology up-
dates. When a system requires architectural changes, there
are often multiple alternatives (e.g., make-or-buy, selection
of technologies). Software architects usually cannot quan-
tify the tradeoffs of these alternatives concerning quality
attributes, such as performance, reliability, and maintain-
ability, before implementing them. While current practice
often relies on prototyping or former experience to assess de-
sign alternatives, researchers have proposed several model-
driven prediction methods [1, 11, 13] to quantitatively evalu-
ate evolution alternatives. These methods claim to be more
cost-effective and less error-prone than current practice.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11 Waikiki, Honolulu, Hawaii
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

A major challenge to conduct model-driven evolution sce-
nario predictions is first to create a suitable model to eval-
uate the quality attributes of the current system [29]. Such
a model must resemble the architecture, so that architec-
tural evolution scenarios (e.g., replacing a service) can be
represented. To reflect performance characteristics, it must
include dynamic properties, i.e., control and data flows
through the architecture as well as resource demands [13].
To reflect reliability characteristics, it must additionally al-
low modeling service and/or environmental failure proba-
bilities [11]. Creating such models is currently tedious and
error-prone because of sparse tool support and missing step-
by-step guidelines [29].

While researchers have proposed many low-level model-
ing methods (e.g., queueing networks, stochastic Petri nets),
these were often created in disconnected communities (e.g.,
performance [1, 13] or reliability [11]) thus treating a single
quality attribute in isolation. High-level notations, such as
UML MARTE [22] currently lack sufficient tool support [23].
Furthermore, there is only a limited number of documented
case studies for model-driven prediction approaches (e.g.,
[12, 6, 10] for performance, [7, 24] for reliability) often
analysing small-scale systems, focussing on particular steps
instead of an end-to-end assessment, and providing limited
hints on broader applicability.

The contribution of this paper is a large-scale, industrial
case study on the applicability of a novel, model-driven
prediction method called Q-ImPrESS (Quality Impact Pre-
dictions for Evolving Service-oriented Systems)[25]. The
method has been developed in the past three years as a
combined effort by several academic and industrial partners
within an EU project. It integrates multiple formerly dis-
connected prediction methods in a single modeling environ-
ment. We applied the method on a large-scale, distributed
process control system from ABB and report our experiences
and lessons learned in this paper. The paper discusses the
advantages of Q-ImPrESS as well as its inherent risks and
pitfalls. Additionally, it provides initial evidence about the
costs and benefits of this method to enable third party users
assessing the usefulness in their own contexts.

The paper is structured as follows. Section 2 introduces
the Q-ImPrESS method, models, tools, and prediction capa-
bilities. Section 3 characterizes the system we analyze in our
case study. Section 4 reports on experience from reverse en-
gineering and manually building a Q-ImPrESS model. Sec-
tion 5 then focusses on parameterizing the model for perfor-



mance and reliability properties, conducting predictions for
different evolution scenarios, and performing tradeoffs anal-
yses. Section 6 evaluates the Q-ImPrESS from a broader
perspective and discusses costs and benefits. Section 7 con-
cludes the paper.

2. THE Q-ImPrESS METHOD
The Q-ImPrESS method enables software architects to

predict the impact of architectural design decisions on
performance, reliability, and maintainability of a service-
oriented software system. Fig. 1 shows a process view of
the Q-ImPrESS method including major activities and arti-
fact flow [18].

Service Architecture Model.
The Q-ImPrESS method is based on the novel ’Service Ar-

chitecture Meta Model’ (SAMM) [3] implemented using the
Eclipse Modeling Framework (EMF). It enables a uniform
handling of multiple quality attributes. The model (Fig. 1
middle part) is divided into multiple parts referencing each
other, which in combination enable quality-of-service (QoS)
predictions. The repository model describes components
and interfaces. They are connected and allocated in the
service architecture model. Component service behaviour is
expressed in so-called service effect specifications (SEFFs),
which abstractly model control flow and resource demands.
The hardware and target environment models contain hard-
ware devices and network interfaces. The usage model spec-
ifies the workload on the system.

Software architects have to exploit several information
sources to construct a SAMM instance (Fig. 1 upper part).
Architecture and user documentation serve as valuable
source of information for modelling a system.

The QoS annotation model contains performance and reli-
ability parameters as well as service transition probabilities.
Performance parameters, such as execution times of individ-
ual services, have to be measured on a running instance of
the system or coarsely estimated based on source code and
experience. Reliability parameters, such as failure probabil-
ities of individual services, have to be estimated (e.g., by
statistical testing or reliability growth modeling based on
bug tracking system data [15]).

The Q-ImPrESS method also includes a reverse engineer-
ing step supported by the tools SISSy1, for parsing Java or
C++ code, and SoMoX2, for deriving component architec-
tures from the parsed representation. These tools can assist
the software architect in obtaining the static structure of the
system. SoMoX uses heuristics, such as name resemblance,
interface adherence, hierarchy mapping etc., to identify ar-
chitectural structures in the code. Software architects can
adapt these heuristics to their source code [4].

Q-ImPrESS Workbench and Evolution Scenarios.
Software architects semi-automatically create a SAMM

instance using the Eclipse-based Q-ImPrESS workbench
(Fig. 2). It enables running the reverse engineering tools,
manually editing the models using graphical and textual ed-
itors, and executing the prediction tools. The workbench
also manages evolution scenarios and alternatives. Evolu-
tion scenarios express planned changes to the system, such

1http://fast.fzi.de/index.php/sissy
2http://www.somox.org

as new services, different allocation schemes, higher work-
loads, faster resources, etc. For such an evolution scenario
(e.g., replacing a service), the software architect can model
multiple alternatives (e.g., make or buy).

Figure 2: Q-ImPrESS workbench showing editors,
simulation status, result viewer

Each change is modeled as a distinct architecture alterna-
tive. Note that such a SAMM instance in turn may serve
as the original SAMM instance for a subsequent architec-
ture change, thus, after modeling a series of architectural
changes, the software architect ends up with a tree-like hi-
erarchy of SAMM instances.

Q-ImPrESS also supports automatically generating archi-
tectural alternatives, which each posses optimised QoS at-
tributes, with the tool PerOpteryx [17]. It requires the soft-
ware architect to specify degrees of freedom in the archi-
tectural model (e.g., sizing of the hardware environment or
allocation of components to different server nodes). Then it
applies a metaheuristic search on the spanned design space,
by manipulating the model with an evolutionary algorithm.
As a results, the architect gets a set of Pareto-optimal alter-
natives.

Predictions and Tradeoff Analysis.
For each SAMM instance in the hierarchy of alternatives,

model-to-model transformations create instances of existing
QoS prediction models that are seamlessly processed by the
respective model solvers (Fig. 1, lower part). For perfor-
mance prediction, the Q-ImPrESS workbench creates in-
stances of the Palladio Component Model (PCM) [5]. As
performance metrics, the PCM supports response times,
throughput, and resource utilizations. Internally, it can
solve a model either using simulation (SimuCom) or using
numerical analysis based on an additional transformation
into layered queueing networks (LQN) [6].

For reliability prediction, the Q-ImPrESS workbench cre-
ates an instance of the KLAPER model [8], which in turn
is transformed into a discrete time Markov chain and solved
using the PRISM model checker. As a reliability metric,
the solver supports calculating the probability of failure on
demand for system-level services.

The results of the different solver tools are collected in
the Q-ImPrESS workbench and feed the tradeoff analysis
tool. The tool is a wizard application based on the Analytic
Hierarchy Process (AHP) [26] and lets the user specify pref-
erences for quality attributes and prediction metrics for in-
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Figure 1: The Q-ImPrESS method: activities, artifacts, and tools

dividual alternatives based on pairwise comparisons. Based
on these utility estimates the tool presents a ranking of the
design alternatives. The software architect can then select
the best suitable design alternative for implementation.

3. SYSTEM UNDER STUDY
To evaluate the various features of the Q-ImPrESS

method, we selected a process control system (PCS) from
the automation domain. A PCS manages time-dependent
industrial processes, e. g. power generation, pulp and paper
handling, and oil and gas processing. It periodically col-
lects sensor data like temperature, flow, and pressure from
various field devices and visualizes it for human operators.
The operators use the system to manipulate actuators in
the process, e. g. pumps, valves, and heaters. The system
can automatically execute predefined actions and informs
operators of irregular conditions using alarms.

Our evaluation focuses on the server-side part of one
ABB PCS and neglects embedded devices. The system
under study consists of millions lines of C++ code and is
structured into 8 subsystems with several hundreds compo-
nents. It is a service-oriented system and consists of several
dozen OS processes (i. e., Windows services) during runtime.
Clients, such as operator workplace applications, communi-
cate with the services via open standards (e. g., OPC). Our
testbed consisted of two regular PCs with quad core CPUs,
which are often used in typical smaller customer setups.

ABB constantly evolves the system due to new customer
requirements, technology updates, and bug reports. With
the architectural models from Q-ImPrESS, we evaluated
those evolution scenarios that have an impact on the ar-
chitecture. These scenarios include replacing components
with newer versions, adding new components, increasing the

workload, or changing the hardware environment. Many of
these scenarios include multiple alternatives (e. g., different
implementation technologies) whose trade-offs with respect
to quality-attributes need to be analyzed. The current prac-
tice of evaluating evolution scenarios is to build prototypes
or rely on experience without having quantitative data to
support design decisions.

4. MODEL CREATION
This section describes how we created the basic

Q-ImPrESS model of the ABB PCS, which includes all
Q-ImPrESS models except the qos annotation model. We
describe both applying the reverse engineering tools (Sec-
tion 4.1) and manual modeling (Section 4.2). Section 5 will
provide more details on how the qos annotation model was
created using performance measurements and reliability es-
timations.

4.1 Reverse Engineering
The Q-ImPrESS reverse engineering tools can support

program comprehension and reduce the time for modelling
by creating an initial component and connector model using
static code analysis. As architecture knowledge is not fully
encoded in the source code, a 100% reverse engineering of
the original architecture cannot be expected. The tools ap-
ply heuristics to identify higher level components in source
code.

For the PCS system, we executed a special use case of So-
MoX, where we evaluated whether the static analysis can
produce a model similar to a reference decomposition of
the system provided in the architectural documentation. To
limit the scope, we focused our analysis on the source code
of a single subsystem. It consists of 250 KLOC in C++ and



uses standard Microsoft technologies.
SISSy needed 3.5 hours to parse the code and produced

a 80 MB generalised abstract syntax tree (GAST) model.
Unfortunately, the Eclipse CDT parser did not support
Microsoft extensions to C++ and required manual pre-
processing of the code. While all classes appeared in the
GAST, component interfaces were not correctly identified.
We therefore had to configure SoMoX to create one SAMM
interface per recognized class and include all publicly defined
functions as services of the interface.

SoMoX can be provided naming schemas (e.g., “EJB ”
prefixes) to identify class names which could be mislead-
ingly identifying higher level components. It additionally
requires the user to adjust a number of weights for the in-
cluded heuristics, such as code coupling, name resemblance,
the level of composition, and the desired level of abstrac-
tion from the class-level decomposition. The user needs to
change the weights and run SoMoX iteratively until a satis-
fying decomposition is found.

In our case, we ran SoMoX aprox. 30 times with different
weights on the GAST produced by SISSy. Each run took
between 4 and 12 minutes. While the initial class-level de-
composition consisted of 348 primitive components and 80
composite components, we subsequently increased the ab-
straction to get 45 primitive components and 4 composite
components (Fig. 3).

The resulting SAMM static structure model was complete
and valid for model transformations, but did not resemble
our reference decomposition. SoMoX identified two large
clusters that could not be mapped to the 6 high-level com-
ponents in the reference decomposition. Besides the nesting
of components, the SoMoX output however also included
connectors. We checked some of these connectors and could
find respective calls in the code. Nevertheless, additional ex-
perience with the complex interplay of the SoMoX weights
is needed to more easily arrive at a desired decomposition.

Figure 3: Reverse engineered SAMM repository in-
cluding composite and primitive components for one
subsystem of the ABB PCS (masked view)

Findings: Currently, missing documentation and experi-
ence make the user-configured component clustering in So-
MoX with heuristic weights an intransparent trial-and-error
process that needs further study. Although the Q-ImPrESS
reverse engineering can be performed within one person week
on a system with 250 KLOC, our achieved results were not
yet convincing. As a reference decomposition was used to
validate the SoMoX output, it is still questionable if execut-

ing SISSy/SoMoX is indeed faster than manually creating
a Q-ImPrESS model based on this decomposition. Manual
modeling might however miss architectural erosion and vio-
lation of the reference decomposition in the code and bears
the risks of inconsistent modeling.

Risks of the method are associated with the limits of static
analysis and the validation of the results. Static analysis
for example cannot determine whether multiple instances
of a component are active during runtime, which can be
important for QoS predictions. If a system does not have
a component-based structure the clustering by SoMoX fails.
As another pitfall the results are hard to validate. If SoMoX
is configured to a low abstraction level (meaning many com-
ponents), it is tedious to validate whether the correct com-
ponents were clustered. If the abstraction level is too high,
assessing the validity of a few large components subsuming
many classes is again hard.

4.2 Manual Modeling
As the Q-ImPrESS reverse engineering tools did not pro-

duce a repository model close to the reference decomposi-
tion of the PCS, we manually built such a model using the
Q-ImPrESS model editors. Additionally, we manually cre-
ated a target environment, hardware, service effect specifica-
tion, service architecture, and usage model.

The main challenge for modeling is to find a suitable ab-
straction level of the system to enable meaningful predic-
tions. We therefore searched for an abstraction level suffi-
cient to analyze the architectural evolution scenarios defined
for the ABB PCS. We decided that modeling on the level of
components was too detailed, while modeling on the level of
subsystems was too coarse-grained and would have excluded
analyzing several evolution scenarios.

Instead we mapped runtime processes of the system to
primitive components (i. e., services) of the Q-ImPrESS
SAMM and subsystems to composite components. This al-
lowed us to analyze scenarios where components are allo-
cated to different servers. It also enabled us later to include
the available reliability data into the composite components.
For modeling the workload of the system in the usage model,
we focused on four concurrently running, steady-state use
cases and neglected transient use cases. We defined an user
arrival rate for each scenario based on typical customer be-
havior. Fig. 4 depicts an abstracted overview of the archi-
tectural model including 28 components.
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Figure 4: Architecture of the ABB process control
system: components, connectors, deployment, and
service effect specification



The typical workload of the system as well as the static
dependencies between the components are described in the
architectural documentation. However, it does not cover the
number of calls between components during runtime, which
are required for the service effect specification model. There-
fore, we configured an ABB development tool for logging
PCS system calls to log transitions between components.
We set up the ABB PCS and executed it according to the
use cases mentioned above. The logging tool produced a
large list of component transitions, which we processed with
a PCS-specific script to derive transition probabilities be-
tween components. Two PCS experts validated the transi-
tion probabilities by matching different paths through the
model with the use cases we executed and referring to the
architectural documentation.

Findings: Manually modeling our system using
Q-ImPrESS required substantial effort (ca. 1.5 person
months). For performance analyses, it would have been
easier to create a simple queuing model, but this would
have complicated analyzing evolution scenarios regarding
the topology of the components. It should be mentioned that
thinking about an architecture in terms of the Q-ImPrESS
model and being forced to formalize certain elements can
bring additional incentives besides QoS predictions by im-
proving the architectural documentation.

A main risk of manual modeling is the expensive amount
of time needed, which can be caused by imprecisely de-
fined goals or missing input data. Thus modeling should
rely on explicitly defined evolution scenarios and concrete
non-functional requirements to avoid modeling unimportant
details.

Finding a suitable abstraction level for the model is one
of the hardest tasks. The Q-ImPrESS method drives the
focus on providing a complete architectural picture. It is
possible to model both on a too high abstraction level, where
important bottlenecks can be missed, or to model on a too
low abstraction level, where many modeling elements can be
irrelevant for certain performance and reliability scenarios.

5. MODEL ANALYSES
This section describes the performance analysis (Sec-

tion 5.1) and reliability analysis (Section 5.2) for the ABB
PCS as well as applying the Q-ImPrESS tradeoffs analyses
tools (Section 5.3).

5.1 Performance Analysis
For performance analysis, we parameterized the manually

built Q-ImPrESS model of the ABB PCS with performance
annotations obtained from measurements as described in the
following. We also show how we used the model to make
performance predictions.

QoS Annotations: To enable performance predictions,
we had to annotate the approx. 35 service effect specifi-
cations of the ABB PCS model with resource demands to
hardware devices. Because the resource demands of individ-
ual components cannot be directly measured from a running
implementation with standard tools, we decided to exploit
the service demand law [20] to determine the resource de-
mands indirectly. According to this law, the demand of a
component at resource k can be computed as Dk = Uk/X0,
where Uk is the utilization and X0 is the system throughput.

We set up load drivers on a running instance of the ABB
PCS and used them to measure the system throughput X0.

For measuring the utilization Uk, we employed the Win-
dows performance monitor to record the CPU utilization
per process. The hard disk utilization could be attributed
to a single component. We neglected memory overheads and
abstracted network overheads because they showed only a
small overhead in our measurements.

Using the load drivers, we stressed the system for each
use case in isolation and tried each time to reach the maxi-
mum possible throughput. Each measurement period lasted
180 seconds and was repeated eight times to avoid tran-
sient disturbances. Across different workload levels (e.g.,
number of of requested items) we applied a linear regres-
sion on the measurement data to determine individual re-
source demands. We calculated the mean value for all re-
source demands and additionally approximated some impor-
tant resource demands using normal distributions incorpo-
rating standard deviations.

Model Validation: Table 1 shows some measured and
predicted CPU utilizations for one use case. We used
the SAMM2PCM transformation to make simulations using
SimuCom and numeric analyses using the layered queueing
network solver LQNS. In this use case, the average error be-
tween measured and predicted values was 10.7%. In other
use cases the error went up to 40 percent. The model is
used for extrapolation from the measurement data to deter-
mine the maximum throughput per use case. (Fig. 5). We
could not measure the system for very high load levels, be-
cause the load drivers disturbed our measurements. There-
fore, the predictions with a workload greater than 150 are
not validated. However, the observed linear dependencies
increase the confidence in model extrapolation. In conclu-
sion, we deemed the model sufficiently accurate to conduct
predictions for the evolution scenarios.

SimuCom Error (%) LQNS Error (%)

30 17.146 12.467 27.288 12.464 27.305

60 26.681 22.366 16.174 22.343 16.260

90 31.902 32.347 1.395 32.322 1.317

120 39.016 42.432 8.754 42.329 8.490

150 51.929 51.943 0.027 51.760 0.326

Predicted

CPU Utilization

Measured

(%)

Workload

(Req./Time)

Table 1: Small excerpt of measured vs. predicted
CPU utilizations for one use case of the ABB PCS
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Figure 5: Extrapolation from the model

Analyses: Using the performance annotated model, we
analysed various evolution scenarios for their performance
impacts. Fig. 6 depicts two exemplary predictions. In
Fig. 6(a), the maximum throughput for four possible al-
location scenarios mapping components to different nodes
was determined. While allocation 2 shows almost no im-
provement, allocation 3 and 4 enable an approx. 18 percent



higher maximum throughput. Fig. 6(b) shows the CPU uti-
lization of one server in a specific use case. The different
curves illustrate the impact of a 20 percent or 40 percent
faster CPU. In the latter case, the CPU is not saturated up
to a workload of 330.
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Figure 6: Predictions for evolution scenarios

Findings: Q-ImPrESS offers two expressive and ma-
tured performance solvers (Simucom and LQNS), which al-
low evaluating many realistic settings. Q-ImPrESS does
not introduce any new concepts in performance modelling.
It would be desirable if specifics of service-oriented sys-
tem would be better supported (e.g., dynamic adaptation
or the comparison of transmission protocols, such as SOAP
or REST). The accuracy of the performance predictions de-
pends on the efforts spent for data collection (estimation for
Q-ImPrESS in Section 6). Given detailed input data, the
tools can provide accurate predictions.

In the future, prototype measurements could be integrated
into the architectural model to analyse the influence of new
components to the overall system performance. The models
can then also help in scalability analysis.

Risks in applying Q-ImPrESS for performance analysis
are mainly associated to data collection and the expressive-
ness of the SAMM. Q-ImPrESS offers limited support for
performance measurement, but instead relies on the user to
provide resource demands. If no performance test-beds or
former measurements are available, Q-ImPrESS users have
to create testbeds or rely on possibly inaccurate estimations.
Unsupported constructs in SAMM (e.g., networks latencies,
and memory effects) can rule out analyzing practically rele-
vant evolution scenarios. Missing trust into the predictions
might be another obstacle for successfully supporting design
decisions.

5.2 Reliability Analysis
To conduct a reliability analysis using the Q-ImPrESS

tools, we first annotated the general model described in Sec-
tion 4 first with QoS annotations representing failure proba-
bilities. After validating the model and obtaining the overall
reliability, we conducted a sensitivity analysis.

QoS Annotations: There are different ways to obtain
the failure probabilities of a system including statistical test-
ing, reliability growth modeling, defect prediction based on
code metrics, and fault injection [11]. We decided to use
failure reports from a bug tracking database to calculate
the failure probabilities of the subsystems of the PCS [15].

In the bug tracking database, each bug report has a time-
stamp, a criticality, a reference to the involved subsystem,
and a list of actions taken. We only selected bug reports that
were reported after the system release date, had a certain
criticality (i. e., critical and high), and had been fixed.

0.021

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Sy
st

e
m

 f
ai

lu
re

 r
at

e
  

Subsystem failure rate (Unit obfuscated) 

1 2 3 4

5 6 7 8
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To calculate the failure probabilities of the subsystems, we
searched the IEEE Std. 1633-2008 for a fitting software reli-
ability growth model. We chose the Littlewood and Verrall
model [16] (LV), which was used in the same domain before
and fits to the two assumptions that we made, namely, that
the reliability is growing, but that fixing a bug can introduce
new bugs.

Using the LV model and the filtered failure reports from
the bug tracking database, we calculated the failure prob-
ability for each subsystem of the ABB PCS. Then, we an-
notated the composite components in the manually built
Q-ImPrESS model which represent subsystems with the fail-
ure probabilities of the corresponding subsystems using the
QoS annotation editor.

Model Validation: We validated the annotated model
used for reliability analysis in two ways. First, we compared
the failure probabilities of the subsystems to different code
metrics. Then, we compared the outcome of the reliability
analysis done within Q-ImPrESS with the results of a reli-
ability analysis of a Markov model that we created outside
the Q-ImPrESS tools using a script.

To get a first hint of the plausibility of the subsystem fail-
ure probabilities predicted by the LV model, we searched
for a correlation between code metrics and failure probabil-
ities [21, 27]. We compared the subsystem failure probabil-
ities and the arithmetic average cyclomatic complexity per
method [19], which had been used in former studies.

Spearman’s rank correlation coefficient ρ is moderately
high for average cyclomatic complexity vs. the failure rate
(ρ = 0.6428, p = 0.1389). The slight correlation between
complexities and failure probabilities gives us some con-
fidence that the failure probabilities predicted by the LV
model are indeed representative for the current failure prob-
abilities of the system.

To further confirm the validity of the model, we compared
the results of the reliability analysis done within Q-ImPrESS
with a reliability analysis of a Markov model done outside of
the Q-ImPrESS tools. The deviation between the two results
was 7%. Given that the grade of abstraction is slightly differ-
ent in both models, this deviation is not too high. Therefore,
we are confident that the Q-ImPrESS model is valid.

Analyses: The sensitivity analysis in the Q-ImPrESS
tools is conducted by manually varying the failure proba-
bilities of a single component and executing the reliability
analysis. The result of the sensitivity analysis is shown in
Fig. 7.

Subsystems 8 and 6 have the highest failure probabilities



(on the far right side), while subsystem 5 has the lowest
failure probability (on the far left side). The slopes of the
curves are a measure for the sensitivity of the system failure
probability to the subsystem failure probability.

Subsystem 1 is the most sensitive for the system relia-
bility, which appears plausible because it is responsible for
processing most of the data in the PCS and is called most
often. Subsystem 6, which is infrequently used by many
subsystems, does not contribute much to the overall system
reliability. Compared to other subsystems, this subsystem
is called only a limited number of times and therefore has
a limited impact on system reliability. For subsystem 8, we
had estimated the highest failure probability, but it is in fact
also only a minor driver for system reliability.

To validate the results of the sensibility analysis, we com-
pared them to results of a sensitivity analysis done on the
Markov model. The average deviation of the slopes of the
two models is 1.3%. It is to be noted that the deviation of
some slopes is quite high (approximately 85%). This stems
from the fact that the abstraction level of the two models
is slightly different. The order of the different subsystems,
however, stays the same.

Findings: The reliability analysis in Q-ImPrESS is sim-
ple as there is currently no support for concurrency, hard-
ware reliability, replication patterns and fault tolerance
mechanisms. Thus, there are only limited options to model
reliability evolution scenarios. Changing the hardware, re-
allocating components, or increasing the workload do not
change reliability prediction results in Q-ImPrESS although
in practice these changes can have a significant impact. A
more refined model would be needed to evaluate the impact
of different component topologies on the system reliability.

However, even simple quantitative reliability predictions
are an improvement over the current prevalent practice of
relying simply on a number of executed test cases and expe-
rience. The results of the sensitivity analysis are useful to
make future testing procedure more efficient by allocating
more testing resource on the most sensitive components [24].
This can also save future maintenance costs.

Data collection for the reliability annotations is the hard-
est part, as it is not obvious which data to collect and how to
collect this data. The validation of the data and the evalua-
tion of reliability prediction is also difficult. The collection of
data needed for evaluating the reliability predictions would
take years because the changes would first have to be imple-
mented and due to the low failure probability of the system,
the system would have to be monitored for a few years.

5.3 Tradeoff Analysis
The following describes applications of the two alterna-

tives for tradeoff analysis in Q-ImPrESS, i.e., design space
exploration with PerOpteryx and alternative weighting with
AHPWizard. The former alternative is suited for generating
a large number of architectural candidates, while the latter
supports trading off a handful of candidates.

Design Space Exploration with PerOpteryx.
We applied the Q-ImPrESS PerOpteryx tool [17] to search

for optimal performance and costs tradeoffs in the ABB
PCS. It requires the architect to specify degrees of freedom
(i.e., variation points with multiple alternatives, examples
see below) in the architectural model using an EMF model.
From this model PerOpteryx generates an initial set of archi-

tectural candidates. Afterwards it executes the QoS predic-
tion tools (e.g., LQNS and DTMC solver) on each candidate.
Based on the results the tool selects promising candidates
(e.g., with low costs and short response times). It then re-
produces new candidates from this selection by performing
crossover and mutation (e.g., taking component allocations
from one candidate and CPU speeds from another candi-
date). This process is repeated for a pre-specified number
of times. The result is a Pareto curve of architectural can-
didates with optimal QoS tradeoffs.

In our case study, we specified the following degrees of
freedom: reallocating the services to different servers, vary-
ing the number of servers, varying the processing rates of
CPUs, and integrating several alternative services, which
we had manually added to the model (e.g., a faster compo-
nent with higher costs). The costs of the CPUs depended
on their processing rate and had been determined by fitting
a power function to Intel’s CPU price list.

We generated 10 starting populations for the ABB PCS
model (i.e., initial selection of components, allocation, and
CPU speeds) and performed 10 independent runs of Per-
Opteryx each lasting 5-6 hours on a standard PC. The repli-
cation helps to reduce distortions from the evolutionary al-
gorithm. The tool evaluated around 2000 candidates per run
and found 330 Pareto-optimal candidates in total (Fig. 8).

One example candidate exhibited a cost reduction by 23
percent while the response time was increased by 19 per-
cent, which is tolerable within customer requirements. In
this case, PerOpteryx suggested to allocate all services to
a powerful, single-server node thus saving costs for other
nodes. This candidate is similar to an actual configuration
sold to smaller customers based on rules of thumb.
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Figure 8: Tradeoff analysis results from PerOpteryx:
response time vs. costs for the ABB PCS visualized
as a set of unified Pareto front (units obfuscated)

Findings: The application of the PerOpteryx tool is an
interesting alternative to the current practice of sizing and
configuring systems by rules of thumb, which can lead to
expensive overprovisioning. Future customer recommenda-
tions could be substantiated by model-driven prediction re-
sults. However, the validity of the generated candidates
(i.e., whether the predicted performance can be perceived
in a running system) still needs to be proven, which was not
attempted here for time constraints.

The explorable degrees of freedom in the design are lim-
ited to architecture-level changes. As another pitfall, the
tool might generate architectural candidates undesirable for
reasons not reflected in the model (e.g., security / safety
constraints). The effort for applying PerOpteryx depends
on the possible degrees of freedom to be modelled and the
required validation of the resulting candidates, while the ef-
fort for running the tool is negligible.



Weighting Alternatives with AHP Wizard.
As a second alternative for tradeoff analysis, we applied

the Q-ImPrESS AHP Wizard [9]. AHP was chosen in
Q-ImPrESS because of promising results in former soft-
ware architecting studies [30]. The tool operates on the
Q-ImPrESS prediction result repository and requires se-
lecting a set of alternative predictions for tradeoff analysis.
Then it asks the user for weights (from -4 to +4) in pairwise
quality attribute comparisons (e.g., response time vs. reli-
ability). Afterwards, the tool lets the user specify weights
(from -4 to +4) to pairwise comparisons of predictions re-
sults (e.g., response time alt1 vs. alt2). Finally, it calculates
a score for each alternative based on the weights.

In our case study, we analysed four (yet artificial) alter-
natives for one of the components in the ABB PCS system.
The first alternative represents the current implementation
of the component. In the second alternative, the component
has a lower resource demand because it exploits multi-core
CPUs, but also a higher failure probability because of ex-
pected concurrency bugs. In the third alternative, the com-
ponent comes from a third party and has a slightly higher
resource demand, but a lower failure probability because it
has been proven in long-term use. The fourth variant uses
the same component as the first variant but deploys it to
a dedicated server. We neglected specifying costs for each
alternative.

Figure 9: Tradeoff analysis results from AHP Wiz-
ard: alternative 3 receives the highest score because
of the preference for reliability

Using the Q-ImPrESS AHP wizard, we specified a high
preference for reliability and provided 24 weights for the
prediction result comparison. Fig. 9 depicts the resulting
score. Alternative 3 has received the highest score, because
of its low failure probability. Alternative 2 is best for CPU
utilization, while alternative 4 exhibits the lowest response
times.

Findings: The AHP method is established in business
decision support and can help to quantify tradeoffs between
multiple architectural alternatives. Benefits of the method
in the Q-ImPrESS context are the good tool integration,
visualization, and export functionality. Drawbacks are the
limited traceability of the results and the inherently limited
scalability of AHP. If n is the number of alternatives and
q is the number of quality attributes under analysis, the
method requires

(
n
2

)
· q pair-wise comparisons from the user,

which yielded 24 comparisons in our study (4 alternatives,
4 quality attributes). For 10 alternatives, 180 comparisons
would be required thus becoming impractical.

6. Q-ImPrESS EVALUATION
This section discusses the applicability of Q-ImPrESS,

evaluates cost and benefits, and reports on lessons learned.

6.1 Applicability of Q-ImPrESS
Below we discuss some findings about the applicability of

the Q-ImPrESS method in an industrial environment:

• Integrated approach with comprehensive tool sup-
port: The method uniquely integrates multiple mature
research approaches in a single environment; even though
the tools still need more stabilization. The method is
technology-agnostic and has been applied in different do-
mains (e.g., automation, telecommunication [14], or busi-
ness information systems [17]).

• Limited integration with other tools and methods:
While the Q-ImPrESS tools are well-integrated with each
other, they do not easily incorporate into existing non-
Java development environments. Existing UML models
need to be recreated for Q-ImPrESS as there are currently
no model transformations to SAMM. The tools are aligned
with Eclipse but do not seamlessly integrate into other
development environments.

• Cost-effective only for large systems: The complex-
ity of the SAMM (>100 classes) requires a substantial
learning effort (approx. 1 week). Q-ImPrESS models are
more difficult to understand than simple queueing net-
works because they are developed for evaluating evolution
scenarios. Therefore, it might not be justified to apply
Q-ImPrESS for single evolution scenarios or smaller sys-
tems (efforts discussed below). However, the effort might
pay off when the models can be reused.

• Limited expressiveness of SAMM: Although being
complex, SAMM still lacks constructs to model many in-
teresting evolution scenarios. There is no direct support
for virtualization, OS changes, application server con-
figurations, transmission protocols, event-based commu-
nication, real-time scheduling, or dynamic architectures.
There is also only limited support for modeling the mid-
dleware.

• Missing data collection support: The hardest, most
time-consuming, and error-prone activity in modelling is
data collection (i.e., determining resource demands, fail-
ure probabilities, etc.). For these activities, Q-ImPrESS
offers no method or tool support and requires manual
work or third party product use from the user. It would
be conceivable to create technology-specific versions of
Q-ImPrESS, for example to support data collection in
.NET or Java environments.

The following findings are not specific to Q-ImPrESS, but
also apply to other model-driven prediction methods:

• Complexity of evolution scenarios determines ac-
curacy: The accuracy of model-driven predictions mainly
depends on the accuracy of the input data. If a user wants
to analyse large-scale redesigns, input data must almost
certainly be based on manual estimations (i.e., guessing),
as new parts of the system cannot be measured. Then
predictions might be inaccurate and lead to suboptimal
design decisions. Therefore model-driven predictions are
best applicable to analyse smaller evolutionary changes or
to relatively rank design alternatives.



• Risks and pitfalls: Missing goal-orientation of the
Q-ImPrESS user can lead to unfocused modeling and
wasted time. Inaccurate input data can lead to inaccu-
rate predictions. Collecting precisely the needed data is
difficult, and finding a suitable abstraction level requires
multiple iterations. Decision makers have to trust the pre-
diction results so that they become meaningful.

6.2 Cost/Benefit
Former studies have pointed out that model-driven pre-

diction methods bear the potential for a significant return
on investment (e.g,. >400% for a 15 person, 18 months
project [28]). Improving architectural design decisions can
have a profound impact on a system [2]. However, quanti-
fying the benefits of model-driven predictions requires long-
term studies and is therefore out of the scope for this paper.
Instead, the following comparision of cost estimations for
Q-ImPrESS with conventional methods (e.g., prototyping or
relying on experience) helps the reader to further evaluate
the applicability of Q-ImPrESS.

Tab. 2 shows estimated efforts for the different
Q-ImPrESS activities based on our experience when apply-
ing the method. The best case reflects the situation when
information for modeling is readily available and the evolu-
tion scenarios are rather simple. The worst case reflects the
situation when test beds have to be set-up, new methods
for data collection have to be applied, or complex scenarios
need to be analysed.

Note that the external validity of these estimations is de-
batable. In general, the efforts for Q-ImPrESS depend on
the desired accuracy of the prediction and the complexity
of the analysed evolution scenarios and can therefore vary
heavily. Furthermore, the efforts depend on the familiarity
of the users with the system under study and the existence of
data collection facilities (e.g., existing performance testbeds,
customer failure data).

# Activity Name Best Likely Worst
1 Document Analysis 40 80 120
2 Reverse Engineering 20 60 200
3 Manual Modeling 50 150 300
4 Performance Measurement 20 70 190
5 Reliability Estimation 16 48 140
6 Autom. Design Exploration 8 16 40
7 Modeling Evol. Scenarios 10 16 24
8 Performance Analysis 3 4 8
9 Reliability Analysis 3 8 12
10 Tradeoff Analysis (AHP) 1 1 1

Table 2: Effort estimations (person hours) for the
Q-ImPrESS activities

Typical prototyping studies at ABB last for 3-12 person
months, which is longer than our modeling activities. The
efforts for modeling and prototyping are however not mu-
tually exclusive. To assess new technologies or components,
some prototype measurements would also be required when
modeling in order to parameterize the Q-ImPrESS models.
The table currently indicates higher upfront efforts for mod-
eling the initial system, whereas the effort for the analysis
of evolution scenarios is moderate. This might indicate that
the models pay off best if used multiple times for assessing
evolution scenarios over the whole life-cycle of a system.

6.3 Lessons Learned
In the following we report on our lessons learned during

the project:

• Data collection is most time-consuming: In the be-
ginning of our case study, we vastly underestimated the
efforts required for determing QoS annotations (i.e., tran-
sition probabilities, resource demands, and failure proba-
bilities). While there are standard tools for performance
measurements, it is still time-consuming to set up a dis-
tributed, service-oriented system, derive performance re-
quirements, create load drivers, monitor performance, sta-
tistically analyze the data, and instantiate the models.
For reliability estimation, data collection is even harder as
there are no established step-by-step processes but rather
many approaches (e.g., reliability growth modeling, sta-
tistical testing, code metrics) with different pitfalls (e.g.,
missing statistical validity, limited scalability [15]).

• Model creation is an iterative process: In our expe-
rience, finding a suitable abstraction level for modeling is
difficult and requires several iterations. This is especially
pronounced if there is limited experience with the system
under study. Although model creation is currently de-
picted as a single step in the Q-ImPrESS process model,
it is actually an iterative process. Multiple information
sources (e.g., architectural documents, developer inter-
views, measurements, estimations) have to be combined
to create a meaningful model.

• Static code analysis clashes with QoS predictions:
We found that the results of the static code analy-
sis currently are not meaningful for subsequent steps in
Q-ImPrESS. This issue is probably more evident in our
case study because the size of the system under analysis
is much larger than previously analysed Java systems. A
QoS model for such a complex system must necessarily
heavily abstract from the source code. The structuring
of the source code may only bear a limited resemblance
of the system at runtime, therefore the resulting decom-
position is of limited value. Future work could extend
Q-ImPrESS with dynamic analysis methods, e.g., perfor-
mance monitoring or bug tracking system analyses tools.

• How to design an integrated meta-model: Finding
a fitting abstraction level for a QoS modeling language is
hard. The Q-ImPrESS SAMM is complex but it still does
not support many practically-relevant evolution scenar-
ios. Some elements in SAMM are currently not used by
the prediction tools (e.g., processor caches). Future meta-
modelling should carefully consider the eventual analysis
of any meta model element. To reduce the complexity
of the model and better support certain evolution sce-
narios, specialised model support for extended evolution
modelling would be beneficial.

7. CONCLUSIONS
We conducted a large-scale industrial case study of the

novel Q-ImPrESS method for service-oriented systems. The
method combines several formerly disconnected approaches
for performance and reliability prediction and provides de-
cision support for software architects. In our case study,
the performance prediction part of Q-ImPrESS proved to
be most mature, while the reliability prediction part still re-
quired substantial manual effort. The Q-ImPrESS reverse
engineering tools could not yet be applied successfully.

The benefits of Q-ImPrESS over similar approaches lie in
its integrated tool environment, its treatment of multiple
quality attributes, its built-in support for evolution scenario



modeling, and its tools for tradeoff analysis. Drawbacks in-
clude the tedious, manual data collection, the still unclear
cost-efficiency, and the support of only a subset of practical
evolution scenarios. Q-ImPrESS should be applied if input
data for the models is easily obtainable and multiple evolu-
tion scenarios need to be analysed. Our case study provides
interested researchers and practitioners evidence for the ap-
plicability of model-driven quality prediction methods.

Future methods could work with restricted domain-
specific languages targeting specific evolution scenarios.
Q-ImPrESS itself could be extended to support more quality
attributes (e.g., security, safety), so that even more complex
tradeoff analyses could be conducted. To reduce the effort
for applying Q-ImPrESS, there could be some automated
support for data collection. To better integrate into exist-
ing development environments, transformations from UML
models to Q-ImPrESS models could be implemented.
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