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ABSTRACT
Designing software architectures that exhibit a good trade-
off between multiple quality attributes is hard. Even with
a given functional design, many degrees of freedom in the
software architecture (e.g. component deployment or server
configuration) span a large design space. In current prac-
tice, software architects try to find good solutions manually,
which is time-consuming, can be error-prone and can lead
to suboptimal designs. We propose an automated approach
guided by architectural tactics to search the design space for
good solutions. Our approach applies multi-objective evo-
lutionary optimization to software architectures modelled
with the Palladio Component Model. Software architects
can then make well-informed trade-off decisions and choose
the best architecture for their situation. To validate our ap-
proach, we applied it to the architecture models of two sys-
tems, a business reporting system and an industrial control
system from ABB. The approach was able to find meaningful
trade-offs leading to significant performance improvements
or costs savings. The novel use of tactics decreased the time
needed to find good solutions by up to 80% .

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture

1. INTRODUCTION
Software architecture design is influenced to a large extent

by the consideration of quality attributes, such as perfor-
mance, reliability, maintainability, costs, or security. Expe-
rienced software architects intuitively know styles and tac-
tics to improve quality attributes of a software architec-
ture [3]. In recent years, many researchers have proposed to
encode architectural design decisions into software architec-
ture models (e.g., using architecture description languages
or UML) [30] thus enabling automated reasoning. A num-
ber of approaches evaluate these models for performance [2,
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18] in terms of expected response times, throughputs and
resource utilizations. This systematic support can lead to
better decisions than experience [23].

As a major challenge in this area, most evaluation tools
are only able to determine the quality attribute values (e.g.
5 sec response time) for a given architectural model. They
leave the task of improving the architectural model as a
manual exercise to the software architect. Due to the large
design space for non-trivial systems and many degrees of
freedom, improving the architecture is an error-prone and
tedious task [3]. Isolated improvement of a single quality at-
tribute can result in degradation of other quality attributes,
which is hard to determine and quantify by software archi-
tects manually.

While a completely synthesised design is infeasible, many
degrees of freedom that influence quality attributes remain
in the software architecture even after functional design.
For example, the component deployment, hardware sizing,
component selection, and possibly further configuration op-
tions of components, servers, and middleware can be ad-
justed. To automate the improvement of architectural mod-
els within such degrees of freedom, researchers have pro-
posed rule-based and metaheuristic approaches. Rule-based
approaches [32, 11] translate known tactics, such as bot-
tleneck removal or caching, into processable rules for ma-
nipulating architectural models. However, these rules are
restricted to one quality attribute, without taking the degra-
dation of others into account. Metaheuristic approaches [1,
6, 25] encode the architecture model improvement as an
optimization problem and apply general-purpose, problem-
independent optimization strategies such as evolutionary al-
gorithms, hill climbing, or simulated annealing [9]. Exist-
ing approaches in this direction operate on an encoding of
the problem that does not contain any additional domain-
specific knowledge.

We present a novel hybrid approach called PerOpteryx
that incorporates architectural performance tactics into a
metaheuristic optimization process. To the best of our
knowledge, it is the first such approach for software architec-
ture design optimization. PerOpteryx manipulates architec-
ture models specified with the Palladio Component Model
(PCM) [5] and uses the multi-objective evolutionary algo-
rithm NSGA-II [10] internally. For performance analyses, it
uses expressive Layered Queueing Networks (LQN) [12].

With our approach, software architects do not have to
search for alternative solutions manually. Instead, they can
focus on the automatically determined optimal trade-offs be-



tween the considered quality attributes and choose the best
trade-off for their situation. As the approach works on the
architectural model level (as opposed to the e.g. perfor-
mance model), architects can directly understand and use
the automatically found solutions.

To validate our approach we have applied PerOpteryx in
two case studies: a distributed business reporting system
(BRS) and an industrial control system from ABB. Both
cases show that PerOpteryx can find a meaningful set of
optimal trade-off solutions. Additionally, we have compared
the formerly unguided search with the tactics-guided search
and found that the incorporation of a limited number of
tactics already yielded an average decrease of optimization
runtime by 80 percent (BRS) and 56 percent (ABB).

The contribution of this paper is a hybrid rule-based and
metaheuristic optimization approach for software architec-
ture models. We have implemented the automated applica-
tion of a number of known architectural performance and
costs tactics in our PerOpteryx tool and applied it on two
case studies. Our approach improves the state of the art
beyond former approaches because (i) it exploits multiple
degrees of freedom (e.g. component allocation, component
selection, hardware sizing) to find better solutions and can
be extended to cover more, (ii) it improves multiple quality
attributes at once and (iii) it incorporates established archi-
tectural tactics (e.g. “spread the load”, “scale out bottleneck
resources”, etc.) to search the design space more efficiently.

This paper is organised as follows: Sec. 2 discusses re-
lated approaches for software architecture model improve-
ment. Sec. 3 provides a general overview of our PerOpteryx
approach. Sec. 4 presents a list of generic performance and
costs architectural tactics and shows how they can be in-
tegrated into the PerOpteryx process. Sec. 5 validates the
improvements of our approach in two case studies before
Sec. 6 concludes the paper.

2. RELATED WORK
Our work is based on software performance prediction [29,

2, 18] and multi-objective metaheuristic optimization [9].
Rule-based Approaches: Xu et al. [32] present a semi-

automated approach to find configuration and design im-
provements on the model level. Based on a LQN model, per-
formance problems (e.g., bottlenecks, long paths) are iden-
tified in a first step. Then, mitigation rules are applied.

Diaz-Pace et al. [11] have developed the ArchE framework.
ArchE assists the software architect during the design to
create architectures that meet quality requirements. It pro-
vides the evaluation tools for modifiability or performance
analysis, and suggests modifiability improvements.

All rule-based approaches share two common limitations.
The model can only be changed as defined by the improve-
ment rules. However, as especially performance is a complex
and cross-cutting quality attribute, optimal solutions could
lie on search paths not accessible by rules. Additionally, the
rules only improve a single quality attribute, so other quality
attributes are likely to degrade and the approaches cannot
determine the optimal trade-offs (i.e. the Pareto-optimal
candidates, see Section 3.2) well.

Specialised Optimization Approaches (for software
architectures or more general) on analytic quality models
have been suggested for a defined set of degrees of freedom
(such as e.g. component selection and component alloca-
tion [16]) in a certain environment under a set of assump-

tions. However, these approaches only consider the given de-
gree of how to change the system, thus, they cannot find an
overall optimal solution in all available degrees of freedom.
Works from the area of self-adaptive systems [7] tackle a dif-
ferent optimization problem that focusses on quickly finding
a satisfiable solution, also considering adaptation costs, in-
stead of finding the optimal trade-offs to support human
design decisions as required at design time.

Metaheuristic-based Approaches: Aleti et al.[1]
present a generic framework to optimize architectural mod-
els with evolutionary algorithms for multiple arbitrary qual-
ity attributes. As a single degree of freedom, they vary the
deployment of components to hardware nodes. Canfora et
al. [6] optimize service composition costs using evolutionary
algorithms while satisfying SLA constraints. Only service
selection is considered as a degree of freedom.

Menascé et al. [25] generate service-oriented architectures
that satisfy quality requirements, using service selection
and architectural patterns. They use random-restart hill-
climbing. The only supported degrees of freedom are the
introduction of two architectural patterns, namely load bal-
ancing and one fault tolerance mechanism, the hardware
level cannot be considered.

All metaheuristic-based approaches to software architec-
ture improvement explore only one or few degrees of freedom
of the architectural model. Our approach offers multiple de-
grees of freedom, such as component allocation, hardware
configuration, and component selection, and is extendible
for more by plugging in additional model transformations.
In addition, except for [1], the other approaches do not
enable trade-off decisions because they assume fixed qual-
ity requirements or a given utility function, and then opti-
mize only a single quality attribute or utility function. In
contrast, PerOpteryx can optimize an arbitrary number of
quality attributes independently. In this work, we consider
performance and costs, while PerOpteryx also supports re-
liability [21].

Additionally, like our preliminary work [21], all these ap-
proaches do not use domain-specific knowledge (e.g. tactics)
to guide the search. For the related domain of software-
intensive system design, Grunske et al. [13] survey more
related optimization approaches. None of the metaheuris-
tic approaches uses additional domain-specific knowledge to
guide the search.

Problem-specific Knowledge in Metaheuristic
Search: In the field of metaheuristic search techniques [9],
problem-specific knowledge can be integrated into a meta-
heuristic in several ways [8]. First, the problem represen-
tation itself contains knowledge about the domain. For ex-
ample, genetic encoding can be chosen so that only feasible
solutions are constructed. In this work, the encoding only
allows valid architectures.

Second, the performance of the search can be enhanced by
problem-specific knowledge. For example, Cheng et al. [8]
present a heuristic crossover operator based on a problem-
specific neighbourhood definition. So far, these heuristic op-
erators are defined based on static properties of the search
problem. In this work, we suggest use detailed domain-
specific rules (as used in the rule-based approaches) in a
new type of heuristic operator. To the best of our knowl-
edge, this kind of heuristic operators and the resulting hy-
brid optimization has not been described before.



Server S1

 

Component  `

C2

Server S2

Component  `

C3PR = 3.0 GHz

HC = 10 

Action

Action

Component  ` 

C1

<<implements>> <<implements>> <<implements>>

Demand = 5

Demand = 7

Users 

= 20

Think time 

= 5.0 s 

 

 

PR = 3.0 GHz

HC = 10 

CC = 12

CC = 10CC = 8

Action Action

Demand = 3
Demand = 4

p=0.6

p=0.4

Action

Demand = 2

Call C2 Call C3

p=0.8

p=0.2

Figure 1: Running Example

3. PEROPTERYX FRAMEWORK
This section introduces the models used in our approach

and the steps of the automated design improvement pro-
cess. We implemented PerOpteryx based on the Palladio
Component Model (PCM) [5], but its concepts are not tied
to the PCM and could also be applied on other modelling
languages (e.g., UML MARTE [27]).

3.1 Running Example
For a quick overview of the PCM, consider the running ex-

ample shown in Fig. 1 using a UML visualization. Software
architects can model their systems as an assembly of soft-
ware components deployed on hardware resources. The ex-
ample model contains three software components deployed
on two servers. For each service provided by a software
component, an abstract behaviour model is provided, which
models demands to hardware resources (e.g., 2 seconds), and
architecture-level control flow with branch probabilities p.
The lower part of Fig. 1 shows one such model for each
component. Details can be found in [5].

Architects can annotate the hardware resources in PCM
models with processing rates (PR) and hardware costs (HC)
(cf. Fig.1). Furthermore, software components can be an-
notated with component costs (CC). Based on this infor-
mation, different tools analyse the overall performance (i.e.,
response time, throughputs, utilizations) and costs (i.e., the
sum of all component and hardware costs) of a PCM model.

Component performance models can be explicitly
parametrized for the influence factors to performance, e.g.
resource environment, usage, and assembly of compo-
nents [5, 4, 20]. This means that the performance models re-
main valid if these influence factors are changed (e.g. faster
servers, different workload, altered component topology).

In our case, the performance analysis for PCM models is
based on the PCM2LQN [19] transformation into layered
queueing networks (LQN) [12], which is a popular and ex-
pressive performance model. The costs analysis is based on
the PCM2Costs transformation [21]. For the running ex-
ample, the tools calculate an expected mean user response
time of 8.8 seconds, a utilization U(S1) of 17% for server
S1, a utilization U(S2) of 88% for server S2 and costs of 407
monetary units.
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Figure 2: PerOpteryx process model

3.2 PerOpteryx Search Process
The PerOpteryx approach applies an automated, meta-

heuristic search process on a given PCM model to improve
performance p and costs c properties. Because we consider
multiple, possibly conflicting quality attributes, we search
for Pareto-optimal candidates [9]: A candidate is Pareto op-
timal iff there exists no other candidate that is better in all
quality criteria. The result of the optimization is a Pareto
front: A set of candidates that are Pareto optimal with re-
spect to other candidates evaluated so far, and which should
approximate the set of globally Pareto-optimal candidates
well.

The process steps of PerOpteryx are depicted in Fig. 2.
In step 1 the degree of freedom instances in the model are

automatically identified based on rules that describe degree
of freedom types (e.g. the degree of freedom type “com-
ponent allocation”) for the PCM. In our running example,
there are five degree of freedom instances: changing the pro-
cessing rates (for 2 servers), and changing the component al-
location (for 3 components). In more complex PCM models,
the degrees of freedom may for example also comprise the
selection of different components, the configuration of mid-
dleware parameters, or the adjustment of thread pool sizes.
The degree of freedom instances define the search space for
PerOpteryx. Each degree iof freedom has a set of design
options. For example, let us assume server S1’s speed can
be varied between 2GHz and 4GHz. Each possible solution
can be represented as a set of decisions, one for each degree,
called genome. For example, the initial PCM model has a
genome of (PR of S1: 3GHz, PR of S2: 3GHz, allocation
of C1: S1, allocation of C2: S2, allocation of C3: S2) for
this search space. The resulting optimization problem (with
min denoting Pareto optimality and x a genome) for this
example is:

Opt : min(p(x), c(x)) with x ∈ [2GHz, 4GHz]2 × {S1, S2}3

In general (cf. [22]), for a set of degree of freedom instances
D where each d ∈ D has a set of design options Od, and
for a set of quality properties Q to be minimised that are
evaluated by a combined evaluation function Φ : Πd∈DOd →
R|Q|, the problem is

Opt : min Φ(x) with x ∈ Πd∈DOd
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In step 2 PerOpteryx applies evolutionary optimization
based on the genomes. The evolutionary optimization is
based on the NSGA-II algorithm [10], which is one of the ad-
vanced elitist multi-objective evolutionary algorithms, and
suitable for our multi-objective combinatorial problems [9].
In addition to the initial PCM model genome, PerOpteryx
generates several candidate genomes randomly based on
the degree of freedom instances as the starting population.
Then, iteratively, the main steps of evaluation (step 2a),
selection (step 2b), and reproduction (step 2c) are applied.

First, each candidate is evaluated by generating the PCM
model from the genome and then applying the LQN and
costs solvers (step 2a) on it. The LQN solver applies an
efficient, heuristic algorithm on the queueing model and
deduces for example the expected response times for the
system. Other performance analysis approaches could be
plugged in here, too.

Based on the evaluation results, the most promising candi-
dates (close to the current Pareto front and well spread) are
selected for further manipulation, while the least promising
candidates are discarded (step 2b). During reproduction
(step 2c), PerOpteryx manipulates the selected candidate
genomes using crossover and mutation, and creates a num-
ber of new candidates. With cross-over, the genotypes of two
selected candidate solutions are merged into one, for exam-
ple by combining the processing rates from one candidate
with the allocation by another candidate. With mutation,
PerOpteryx varies one or more design options. For exam-
ple, PerOpteryx might change the component deployment
to allocate all components on one server, or increase the
processing rate of server S2.

In step 3 PerOpteryx presents the results of the evo-
lutionary optimization to the software architect. Apply-
ing PerOpteryx on the running example yields 77 Pareto-
optimal candidates (also called Pareto front) after 140 iter-
ations. Fig. 3 visualises the front for performance and costs.
The software architect can identify interesting solutions in
the Pareto front fulfilling the user requirements and make
well-informed trade-off decisions. To support this task, re-
searchers have developed an number of multi-criteria deci-
sion analysis methods, such as multi-attribute utility theory,
analytic hierarchy process, weighting methods, outranking
methods and fuzzy methods [17], which can be incorporated
into the PerOpteryx framework.

Architectural tactics could have sped up the search pro-
cess for the running example. The search process could have
started to improve the component deployment on the bot-
tleneck resources (server S2 with U = 0.88), as it is gen-
erally known that removing bottlenecks improves perfor-

mance [29]. Therefore, we describe the integration of per-
formance and costs tactics in the PerOpteryx framework in
the next section.

4. INTEGRATING TACTICS
Architectural tactics for quality attribute improvement

of software architectures encode design knowledge and rules
of thumb [3]. They are intuitively applied by experienced
architects when designing an architecture.

We consider tactics on the level of the software ar-
chitecture at design time, particularly in the domain of
component-based distributed systems. As our approach tar-
gets improving an architectural model instead of an imple-
mentation, we exclude code-level tactics here. We may ap-
ply rules only on a PCM model, which describes a system
as an assembly of component and connectors, component
behaviour, and component deployment to hardware nodes
and reflects the available knowledge of the system at design
time.

The following subsections provide a list of generic tactics
for performance (Sec. 4.1) and costs (Sec. 4.2) and a sketch
how these tactics can be mapped to PCM models. Finally,
Sec. 4.3 describes in detail how the tactics are integrated in
the PerOpteryx process.

4.1 Performance Tactics
We have aggregated our list of performance tactics in Ta-

ble 1 from multiple sources about performance improvement
on the level of architecture models with performance an-
notations. Smith and Williams [29] highlight technology-
independent performance principles, patterns and anti-
patterns. Further rules have been integrated from Mi-
crosoft’s performance improvement guide [26] and literature
on architectural tactics [3, 30]. The list tries to be compre-
hensive, but does not claim completeness. The tactics are
grouped into software, hardware, and network tactics. The
third column in describes how the rules can be applied to
PCM models.

Classical performance analysis guides [15, 24] focus on
queueing models and simulation, but provide only limited
hints on how to improve performance on an architectural
level. Contrary to other approaches (e.g., [32, 28]) our list
of performance tactics is not tied to a specific performance
model, such as LQN, or to a specific technology, such as
EJB, but is more generically applicable.

Our approach assumes a component-based development
process, where possibly black-box components from third
party vendors are assembled. In such a process, it might
be complicated to change the implementation of individual
components as the code may not be accessible. Therefore,
we have marked tactics that require to alter component im-
plementations as “Change component” in the table. These
tactics may therefore not be applicable in all cases.

The short rule descriptions in column three of Table 1 can
be implemented to directly manipulate PCM models. De-
spite their brevity, some of the rules encapsulate complex re-
lationships. For example, different kinds of database perfor-
mance improvements, such as query optimizations or differ-
ent schema layouts, are summed up in the tactic ”Data struc-
ture and Algorithms”, because in an architectural model
such as the PCM, these changes are reflected only in changes
to the resource demands of services of a database compo-
nent. The large number of known concurrency patterns is
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Asynchronous 

Communication 

Let components exchange data 

asynchronously to avoid 

synchronization delays. 

[“Parallel Processing Principle”] 

Change components: change 

interfaces and RDSEFFs of 

blocked components to support 

asynch. comm., add cost. 

Caching Keep the most frequently used 

data in a cache in main memory 

to allow quick access. 

[“Centering Principle”] 

Create a cache component either 

immediately serving a request 

with a cache hit probability or 

delegating the request, add costs. 

Concurrency  / 

Parallelisation 

Introduce parallelism using 

multithreading or multiple 

processes. 

[“Parallel Processing Principle”] 

Change components: use fork 

actions in RDSEFFs and reduce 

resource demand per thread, add 

costs. 

Coupling  

and Cohesion 

Ensure a loosely coupled design 

that exhibits an appropriate 

degree of cohesion. 

[“Locality Principle”] 

Change components: Merge 

components with a high 

interaction rate. Build 

subsystems, add costs. 

Internal Data 

Structures and 

Algorithms 

Use appropriate data structures 

and algorithms within the 

components. 

[“Centering Principle”] 

Identify component with highest 

resource demand and exchange 

them with different component 

implementations. 

Fast Pathing Find long processing paths and 

reduce the number of processing 

steps. 

[“Centering Principle”] 

Introduce additional components 

to serve the most frequently used 

functionality in a dedicated way, 

add costs. 

Locking 

Granularity 

Acquire passive resources late 

and release early, minimize 

locking. 

[“Shared Resources Principle”] 

Change components: change 

RDSEFFs and minimize the 

time between Acquire and 

Release Actions, add costs. 

Priorisation Partition the workload and 

prioritize the partitions so that 

they can be efficiently queued. 

[“Centering Principle”] 

Not yet supported. 

Resource 

Pooling 

Ensure effective use of pooling 

mechanisms (Objects, Threads, 

Database connections, etc.). 

[“Fixing-Point Principle”] 

Identify passive resources with 

the highest waiting delay and 

adjust their capacity. 

State 

Management 

 

 

Use stateless components where 

possible to keep them decoupled 

and allow scalability. 

[“Shared Resources Principle”] 

Not yet supported. 
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Component 

Reallocation 

Allocate software components 

from saturated resources to 

underutilized resources.  

[“Centering Principle”] 

Identify resources with 

U>=maxThreshold & reallocate 

components to resources with 

U<=minThreshold 

Component 

Replication 

Start multiple instances of the 

same component and spread the 

load on multiple servers. 

[“Spread-the-load Principle”] 

Identify components accessed by 

many users, create multiple 

component instances and intro-

duce load balancer component. 

Faster 

Hardware 

 

 

Buy faster hardware to decrease 

the node utilization and response 

times. 

[“Centering Principle”] 

Increase processing rate of 

bottleneck processing resources, 

increase hardware costs 

More  

Hardware 

Buy additional servers and 

spread the load among them. 

 

[“Spread-the-load Principle”] 

Increase the number of 

processing resources, introduce 

load balancer (incl. costs),  

increase hardware costs 
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Batching Avoid network accesses by 

bundling remote requests. 

[“Processing vs. Frequency 

Principle”] 

Insert messaging components 

that bundle remote requests to 

batches and unpack them at the 

receiver side, add costs. 

Localization Allocate frequently interacting 

components on the same 

hardware devices. 

[“Locality Principle”] 

Identify components with a high 

interaction rate and reallocate 

them to the same resources. 

Remote Data 

Exchange 

Streamlining 

Decrease the amount of data to 

be send across networks (e.g., 

using compression). 

[“Centering Principle”] 

Create a compression 

component that shrinks the size 

of the data transferred, but adds 

a resource demand to the CPU. 

 

  

Table 1: Performance Tactics

summed up in the tactic ”Concurrency”.
As a proof of concept we have implemented the following

performance tactics from Table 1 in our PerOpteryx tool, be-
cause they are most generic and applicable. For each tactic
we detail rationale, precondition, action, additional effects,
and available extensions below. Additionally, we illustrate
each tactic based on the running example (from Fig. 1).

• Spread the Load: In distributed systems, components
can be allocated to different servers. To improve perfor-
mance in situations with high load, the overall load should
be spread evenly across the system. Thus, some compo-
nents should be reallocated from highly utilised servers to
servers with low utilisation. If the right components are
reallocated, this tactic can improve performance, while

being cost-neutral.
Precondition: The utilisation difference between the most
saturated server Sb and the server with the lowest utilisa-
tion Sl is larger than threshold ∆spread: U(Sb)−U(Sl) >
∆spread) and Sb hosts several components.
Action: One of the components allocated to server Sb is
randomly chosen and reallocated to server Sl.
Additional effects: The reallocation is cost-neutral. How-
ever, it may introduce additional network processing over-
heads if components are separated that communicate in-
tensely.
Example: In the running example, component C3 could
be reallocated from server S2 (utilisation 88%) to server
S1 (utilisation 17%).
Extensions: The component to reallocate could be chosen
more intelligently by considering the demand of a compo-
nent and its communication frequencies with other (local
and remote) components.

• Scale-Up Bottleneck Server: Highly utilised bottle-
neck servers slow down the system and should be scaled
up. This tactic is limited by the maximally available re-
source speed.
Precondition: The most saturated server Sb is utilised
above a threshold (U(Sb) >= Uscale-up).
Action: Increase the processing rate of server Sb by an in-
crease factor f . If the result is higher than the maximum
processing rate, choose that maximum. If the processors
are chosen from a discrete set, choose the cheapest pro-
cessor with a processing rate PR > PR(Sb) · f .
Additional effects: Hardware costs are increased. The
modelled costs need to reflect additional drawbacks of the
faster hardware such as e.g. increased maintenance costs.
Example: The processing rate of the bottleneck server S2
could be increased by f = 25%.

• Scale-Out Bottleneck Server: Due to the hard limit
of server processing rates it is necessary to add additional
servers (scale out) to cope with high loads. However, scal-
ing out is limited by the software design. Currently, we
consider the maximum number of servers to be the num-
ber of components (i.e. in the maximum scale-out each
component is deployed to one dedicated server). This tac-
tic is not effective if a single component causes most of the
load in the system.
Precondition: The most saturated server Sb is utilised
above a threshold (U(Sb) >= Uscale-out) and the maxi-
mum number of servers has not yet been reached.
Action: Reallocate one component from the bottleneck
server Sb to a new server.
Additional effects: Increases hardware costs and possibly
adds a performance overhead for the additional network
communication.
Example: A third server S3 could be added and compo-
nent C3 could be reallocated to it.
Extension: The extensions of the reallocation tactic also
apply here. Additionally, a single component could also
be deployed to multiple servers using load balancing tech-
niques and possibly synchronisation strategies (both not
yet supported by the PCM).

PCM models can already be improved for performance
with these three tactics, as demonstrated in Sec. 5. We
intend to extend our approach to comprise more tactics in
future work.



4.2 Cost Tactics
Although costs are usually not considered a quality at-

tribute of software architectures like in this work, their min-
imisation is of high business interest. Here, we only consider
costs that can be predicted based on the software architec-
ture model as presented in Sec. 3: These can be development
costs, procurement costs and operating costs, for example.
Costs can be minimised by choosing a less expensive op-
tion for a degree of freedom. Examples are the choices for
cheaper components or cheaper hardware. Additionally, all
tactics that improve performance and increase costs can be
inverted. In this work, we consider two costs tactics of this
type:

• Scale-Down Idle Server: Inversely to the “Scale-Up
Bottleneck Server” tactic, this tactics decreases resource
speeds of infrequently used servers, because we expect
that performance is only slightly degraded, while costs
are saved. This tactic is only applicable if faster servers
are also more expensive.
Precondition: The server with the lowest utilisation (Sl)
is utilised less that a threshold (U(Sl) >= Uscale-down).
Action: Decrease the processing rate PR of Sl by an de-
crease factor d. If the result is lower than the minimum
processing rate of the resource, choose that minimum. If
the processors are chosen from a discrete set, choose the
fastest processor S′ with PR(S′) < PR(Sl) · d.
Additional effects: Performance is degraded.
Example: The processing rate of S1 (U(S1) = 17%) could
be decreased by d = 25% in the example.

• Consolidate Servers: Inversely to the “Scale-Out Bot-
tleneck Server” tactic, lowly utilised servers can also be
consolidated and their components can be joined one
server to save cost.
Precondition: The utilisation of two servers Sl1 and Sl2

is lower than a threshold (U(Sl1) < Ucons and U(Sl2) <
Ucons).
Action: Reallocate all components from Sl2 to Sl1, so that
Sl2 is no longer used.
Additional effects: Performance may deteriorate. Also see
reallocation tactic in Sec. 4.1.
Example: Assume that the load of the running example
was lower and both servers had a utilisation of lower that
25%. Then, all three components could be allocated to
server S1, and the costs of S2 could be saved.

4.3 Tactics as Heuristic Operators
The tactics act as heuristic operators in the reproduc-

tion step (step 2c) of the PerOpteryx approach (Fig. 4).
The evolutionary algorithm can perform a crossover, a mu-
tation, or apply tactics on the selected candidates (parents)
in order to improve the quality of the population. In Per-
Opteryx, the probability of a crossover is determined by a
user-configurable crossover rate. PerOpteryx applies tactics
if the algorithm chooses not to perform a crossover. Then,
if the precondition of a tactic is fulfilled by a parent, a new
candidate is generated based on the tactics by changing the
parent’s genome accordingly, and added to the set of tactic
result candidates C. If no tactic precondition matches, set
C remains empty and PerOpteryx performs a mutation of
the parent’s genome.

If the preconditions of multiple tactics match, PerOpteryx
generates multiple candidates. To decide for one candi-

Reproduction: 

Generate new 

candidates

p = crossover rate

p = 1 ‒ crossover rate

|C| = 0|C| > 0Crossover

Generate set of tactic result candidates C

Mutation
Chose candidate 

from C randomly

New genotype representing PCM instance

For each candidate 

selected for reproduction
c

Mutation

Figure 4: Integration of heuristics into the reproduc-
tion step. Cf. Fig 2 for an overview of the complete
process

date, we assign weights between 0 and 1 to both the tactics
(weights W ) and the candidate (weights V ).

Tactic weights Wt are assigned to each tactic t and define
how promising it is in general. Candidate weights Vct are
assigned to a generated candidate ct based on the input can-
didate’s applicability for tactic t. Then, PerOpteryx chooses
one candidate from candidate set C. Each candidate ct∗ is
chosen with probability:

Prob(ct∗) =
Wt∗ · Vct∗∑
ct∈T Wt · Vct

Based on our experiments, we chose the following candi-
date weights Vct for our current tactics. Let Sb be the server
with the highest utilisation, Sl1 be the server with the low-
est utilisation, and Sl2 be the server with the second lowest
utilisation. U(S) denotes a server S’s utilisation.

• Spread the Load: Vspread = U(Sb) − U(Sl). In our
running example, we get a weight of 0.88 − 0.17 = 0.69
for reallocating C3 to S1.

• Scale-Up Bottleneck Server: Vscale-up =

Max (0,
U(Sb)−Uscale-up

1−Uscale-up
). In our running example, if

Uscale-up is 80% we get a weight of 0.88−0.8
1−0.8

= 0.4 for
the heuristic candidate with a higher processing rate of
server S2.

• Scale-out Bottleneck Server: Vscale-out =
Max (0, U(Sb)−Uscale-out

1−Uscale-out
). In our example, if Uscale-out is

80% we get a weight of 0.88−0.8
1−0.8

= 0.4 for adding a third
server.

• Scale-Down Idle Server: Vscale-down =

Max (0,
Uscale-down−U(Sl1)

Uscale-down
). In our example, if Uscale-down

was 25%, we get a weight of 0.25−0.17
0.25

= 0.32 for
decreasing S1’s processing rate.

• Consolidate Servers: Vcons = Min (1, 1 −
U(Sl1)+U(Sl2)

2Ucons
).

This approach allows us to take both the expected impact
of a tactic and its applicability to a concrete input candidate
into account. Directing the evolutionary search process us-
ing tactics can speed up the search compared to an unguided
search and find better candidates faster as will be evaluated
in the following section.

5. EVALUATION
This section validates the benefits of our approach. Sec-

tion 5.1 presents the goals of the validation, before Sec-
tion 5.2 describes the setup of the optimization runs. We



have applied the approach in two case studies, a business re-
porting system (BRS) (Section 5.3) and an industrial control
system (ICS) from ABB (Section 5.4), which shows the in-
dustrial applicability of our appproach. Finally, Section 5.5
discusses the results and findings of the case studies.

5.1 Validation Goal
The goal of our evaluation is (i) to validate the applica-

bility of our approach, i.e. that PerOpteryx is able to find a
meaningful Pareto front, and (ii) to show that tactic-guided
optimization runs are significantly superior to unguided op-
timization in terms of quality and efficiency.

To operationalize the second goal, we defined a coverage
metric C to determine the quality of the found candidates
and a speed-up metric D to determine the efficiency of the
optimization runs. The coverage metric C (similar to the
coverage indicator described in [33]) compares two Pareto
fronts A and B (e.g. generated by a guided and an un-
guided search). First, the Pareto front P of A ∪ B is cal-
culated. Then the coverage C(A,B) of A is defined as the

share of candidates from A in the P : |A∩P ||P | . Therefore if

C(A,B) > 0.5 then A is a better Pareto front because of a
higher number of candidates in P .

The speed-up metric D determines how many iteration
steps earlier one optimization run has found a solution with
equivalent quality. Because each iteration has a similar du-
ration, this measures the computational effort of a run while
is is independent of execution time measurement errors such
as additional load on the executing machine. At each iter-
ation i, an optimization run R has a current Pareto front
of architectural candidates P (R, i). To compare a tactics-
guided run T with an unguided run B, we determine the
smallest iteration step x in which the guided run T has a
Pareto front P (T, x) that is superior or equivalent to the un-
guided run B at the final iteration imax (front P (B, imax)):
C(P (T, x), P (B, imax)) > 0.5. For a fair comparison, we also
determine the smallest iteration y in which the unguided run
has already found a front P (B, y) that is equivalent to the
front P (B, imax): C(P (B, y), P (B, imax)) ≥ 0.5. Then, the
guided run has found an equivalent solution y−x iterations
earlier. D is defined as the relative runtime improvement
(y−x)∗100

y
(1).

To assess the statistical significance of our results, we
analysed the results for both coverage metric C and speed-
up metric D using Student’s t-test as implemented in the
t.test procedure of R (r-project.org).

5.2 Setup of the Optimization Runs
To account for the stochastic nature of evolutionary al-

gorithms, we analysed 10 tactics-guided optimization runs
Tr, 0 < r < 9, each starting with the initial candidate and
19 random candidates (different for each run) as population
pr. PerOpteryx was configured with imax = 200 iterations,
as initial experiments showed that the Pareto fronts do not
change much afterwards, population size 20, and crossover
rate 0.75. Then, each optimization run evaluated around
2000 candidates and ran for 5 to 6 hours on one 2.4 GHz
core of a standard PC.

To compare the quality and duration of tactic-guided op-

1This metric definition is not valid if run T performed worse
that run B. However, this never happened in our analyses,
thus we do not complicate the metric to cover it.
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Figure 5: PCM model of the Business Reporting
System

timization (T ) with unguided optimization (B), we ran an-
other 10 unguided optimization runs Br, 0 < r < 9, each
starting with the same population pr as its guided counter-
part Tr. Then, we can compare P (Tr, i) and P (Br, i) pair-
wise for each r and thus exclude influence of the starting
population pr on the results.

In our case studies we considered the five tactics presented
in Section 4 with the following weights and thresholds:

• Spread the Load: The threshold for high utilisation is
∆spread = 0.4. The weight Wspread is 1.0.

• Scale-up Bottleneck Server: The threshold for high
utilisation is Uscale-up = 0.75. The increase factor f is
25%. The weight Wscale-up is 0.1.

• Scale-out Bottleneck Server: The threshold for high
utilisation is Uscale-out = 0.8. The weight Wscale-out is 0.5.

• Scale-down Idle Server: The threshold for low utili-
sation is Uscale-down = 0.25. The decrease factor is 25%.
The weight Wscale-down is 0.1.

• Consolidate Server: The threshold for low utilisation
is Ucons = 0.3. The weight Wcons is 1.

For the performance prediction, we configured the LQN-
Solver with convergence value 0.001, iteration limit 50 and
underrelaxation coefficient 0.5 (c.f. [12]).

5.3 Case I: Business Reporting System
For the first case study, we analysed the so-called business

reporting system (BRS). It allows users to retrieve statisti-
cal reports about business processes from a database and is
based on a real system [31].

Fig. 5 shows a condensed excerpt of the initial PCM model
of the BRS visualised using annotated UML diagrams2. The
components are initially allocated to four different servers.
Besides components and servers, the PCM model of the BRS
contains the behaviour model (cf. Sec. 3). Fig. 5 shows an
example behaviour model for the CoreOnlineEngine compo-
nent in the lower part.

2The complete model is described in more detail at
http://sdqweb.ipd.kit.edu/wiki/PerOpteryx.
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Figure 6: Pareto Fronts (Performance vs. Costs) of
the Business Reporting System showing an Advan-
tage for the Optimization Run with Tactics (i = 200)

The case study analyses an open workload usage sce-
nario [24], with an arrival rate of 0.5 users per second. Users
access multiple services of the system per interaction.

The BRS server costs depend on the chosen CPU pro-
cessing rate pr. For the costs model, we analysed In-
tel’s CPU price list [14]. We fitted a power function to
this data, so that the resulting costs of one server s is
costs = 0.7665 pr6.2539s + 145 with coefficient of determina-
tion R2 = 0.965. The overall server costs of one candidate
is the sum of the costs of all used servers. The server costs
of the initial system are 618 units. The performance pre-
diction shows that the system is overloaded, i.e. its queue
lengths grow over time and operational equilibrium is not
reached [15].

All components of the system can be freely allocated to
different servers to spread the load and improve perfor-
mance. The processing rates prs of each server s can be
varied continuously between 0.75 and 3 GHz. With 9 com-
ponents in the BRS system and up to nine used servers,
we obtain 18 degrees of freedom: 9 allocation degrees and
9 server sizing degrees. In this case study, the considered
objectives are mean user response time and server costs.

Fig. 6 shows the comparison of two Pareto fronts gener-
ated by optimization runs T1 and B1 at iteration 200 as an
example. Recall that the initial candidate had infinite re-
sponse time and costs of 618 units. The runs generated a
number of Pareto-optimal candidates with a mean response
time between 2.4 and 15.4 seconds and costs between 479
and 3063 units. One concrete Pareto-optimal candidate is
circled in Fig. 6 as an example. Compared to the initial sys-
tem, it has an improved response time of 3.76 sec at slightly
higher costs of 824. It uses only 3 servers with higher pro-
cessing rates, a better allocation of the components, and the
resource-intensive “Graphical Reporting” component is allo-
cated on a dedicated server. Some other candidates on the
left even have lower costs and better response time than the
initial system, which is achieved by better allocation and
adjusted processing rates.

The optimization run using tactics T1 yielded 19 Pareto-
optimal candidates, which dominate 18 of the 21 candidates
found by the unguided optimization run B1. None of the re-
sults from T1 is dominated by B1. This results in a coverage
metric of C(P (T1, 200), P (B1, 200)) = 19/22 = 0.86 > 0.5.
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Figure 7: Pareto front coverage C(P (Tr, i), P (Br, i))
of runs using tactics T over unguided runs B for
r ∈ 0, ..., 9 (BRS system)

From the figure, we notice that the tactics have improved
the Pareto front for low costs values, i.e. on the left side of
the graph, particularly well. Here, the distance between the
fronts is largest.

Fig. 7 shows the minimum, average, and maximum cover-
age C(P (Tr, i), P (Br, i)) over all 10 starting populations pr
for each iteration step i. We observe that the average cov-
erage is larger than 0.5 starting from few iterations, rapidly
increases to a value of around 0.8 at iteration 33, and then in-
creases more slowly up to an average value of 0.86. Even the
worst-performing run using tactics, i.e. the minimum cover-
age, is larger than 0.5 for iteration 20 and later. Student’s t-
test confirms that the average coverage C(P (Tr, i), P (Br, i))
is significantly larger than 0.5 for all i > 16 with a signifi-
cance level α = 0.99.

Concerning the speed-up, the optimization run with tac-
tics was able to find an equivalent front 153 iterations earlier
than the optimization without tactics on average. Thus, for
our formerly defined metric, we get D = 80, meaning an
80% improvement in runtime. The speed-up is statistically
significant with a lower confidence interval bound of 70%
improvement in runtime (α = 0.99).

5.4 Case II: Industrial Control System
The second case study provides additional evidence about

the supposed improvement of the guided search and also
shows the applicability of the method in an industrial con-
text on a large scale system. In this case, we analysed an
industrial control system from ABB, which is used in many
domains, such as power generation, pulp and paper han-
dling, and oil and gas processing. It comprises of several
million lines of C++ code.

Fig. 8 shows a part of the PCM model of the system. We
have modelled 28 components of the system, each one hav-
ing at least one resource demand, which were determined
from performance measurements on a running instance of
the system. The resource environment is adaptable to cus-
tomer requirements and consists of three servers in our ini-
tial configuration. For the hardware resources, we used a
costs model similar to the former case study. One behaviour
model for component C13 is shown in Fig. 8 at the lower part.
Additionally, we modelled four of the most important usage
scenarios of the system.

Our optimization aimed at lowering the costs for the over-
all system while keeping the response time of one usage
scenario within tolerable limits. As degrees of freedoms,
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it is possible to replace component C1 and C13 by alterna-
tive implementations with different performance and costs.
Furthermore, the allocation of the components to hardware
resources can be adjusted and the processing rates of the
servers can be lowered to save costs. As in the former study,
we again generated 10 starting populations and ran both the
unguided and tactic-guided variant of PerOpteryx.

In total PerOpteryx found on average 33 Pareto-optimal
candidates per run3. One example candidate had its costs
reduced by 23.1%, while the response time increased by
19.4% which is tolerable within customer requirements. For
this candidate PerOpteryx suggested to use the standard
variants of components C1 and C13, to purchase a slightly
more powerful CPU for server 1, and then to deploy all com-
ponents on this server, so that the others servers can be re-
moved to save costs. Indeed this candidate reflects a realistic
configuration of the system that is sold to smaller customers.

Again, we study the development of coverage metric C
as the search advances in Fig. 9. In this case, we observe
that the average coverage is again larger than 0.5 starting
from few iterations and increases to a value of around 0.67 at
iteration 142, and then stays at that level until iteration 200.
This time, the worst-performing run using tactics, i.e. the
minimum coverage, is inferior to its unguided counterpart
until iteration 117, but then also improves to values larger
than 0.5. Student’s t-test confirms that the average coverage
C(P (Tr, i), P (Br, i)) is significantly larger than 0.5 for all

3The Pareto fronts can be found at
sdqweb.ipd.kit.edu/wiki/PerOpteryx/Tactics Case Study

i > 61 (α = 0.99).
In case II, the optimization runs with tactics were able

to find an equivalent front 108 iterations earlier than their
counterpart without tactics on average. Thus, for our for-
merly defined metric, we get D = 56, meaning an 56%
improvement in runtime. The speed-up is statistically sig-
nificant with a lower confidence interval bound of 46% im-
provement in runtime (α = 0.99). We also noted that all
optimization runs with tactics found more Pareto-optimal
candidates than their counterpart without tactics.

5.5 Discussion
The case studies showed that PerOpteryx can successfully

determine a meaningful Pareto front in both cases, which
enable the software architect to weigh up the quality at-
tributes and choose one candidate. Significant performance
improvements and/or costs savings are possible compared
to the initial design. Additionally, the tactics can signifi-
cantly speed-up the search process (up to 80% in our cases).
Assuming a fixed time given for the optimization, as it is
often the case in industrial settings, the tactics lead to sig-
nificantly better results (candidates with lower costs and
better performance).

Notice that conflicting tactics (e.g. scaling out and con-
solidating) are not detrimental to the search process: The
search should develop the population in both directions. We
weighted the tactics so that cost-neutral performance tac-
tics, such as reallocation, are preferred.

Some limitations are inherent to our approach. It inher-
its the limitations of the underlying performance predictions
techniques (PCM/LQN) [5]. Additionally, because the un-
derlying performance models are expressive, the evaluation
of each candidate takes several seconds. Thus, our approach
can hardly be applied at runtime to reconfigure systems if
immediate reactions are expected. Furthermore, our ap-
proach does not guarantee to find the real Pareto front, i.e.
the globally optimal solutions, because metaheuristics are
used [9].

6. CONCLUSIONS
We have presented the PerOpteryx approach for improve-

ment of software architecture models using a metaheuris-
tic search guided by architectural tactics. We have imple-
mented a selection of performance and costs tactics and in-
tegrated them into the metaheuristic search process of Per-
Opteryx. Two case studies on industry-sized systems vali-
dated our approach and demonstrated the potential for im-
proving quality attributes.

Both practitioners and research can benefit from our ap-
proach. Practitioners gain a tool for automatic improvement
software architecture designs in an efficient way. The tool
assists them in overcoming the craftsmanship-like trial-and-
error approach to software architecture design as it makes
known performance and costs rules accessible to them. The
result can be systems with better performance, which are
built according to engineering principles. Researchers get a
demonstration for the combination of rule-based and meta-
heuristic approaches applied to software architecture model
improvement. The included concepts are not PerOpteryx-
specific, but could be included into other design optimiza-
tion approaches, such as ArcheOpteryx [1] and SASSy [25].
The generic list of tactics can serve as a template for future
approaches and be extended to other quality attributes.



In future work, we aim at extending PerOpteryx to incor-
porate reliability tactics [21]. We plan to take uncertainties
for model parameters into account when executing the pre-
dictions.
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