
Sustainability Evaluation of Software Architectures:
A Systematic Review

Heiko Koziolek1

1Industrial Software Systems, ABB Corporate Research, Ladenburg, Germany

heiko.koziolek@de.abb.com

ABSTRACT
Long-living software systems are sustainable if they can be
cost-efficiently maintained and evolved over their entire life-
cycle. The quality of software architectures determines sus-
tainability to a large extent. Scenario-based software archi-
tecture evaluation methods can support sustainability anal-
ysis, but they are still reluctantly used in practice. They
are also not integrated with architecture-level metrics when
evaluating implemented systems, which limits their capabil-
ities. Existing literature reviews for architecture evaluation
focus on scenario-based methods, but do not provide a criti-
cal reflection of the applicability of such methods for sustain-
ability evaluation. Our goal is to measure the sustainabil-
ity of a software architecture both during early design us-
ing scenarios and during evolution using scenarios and met-
rics, which is highly relevant in practice. We thus provide a
systematic literature review assessing scenario-based meth-
ods for sustainability support and categorize more than 40
architecture-level metrics according to several design prin-
ciples. Our review identifies a need for further empirical
research, for the integration of existing methods, and for
the more efficient use of formal architectural models.

1. INTRODUCTION
Software systems with a life span of more than 15 years

must be designed and implemented carefully so that they
are prepared for maintenance and evolution. During their
life-time such systems inevitably undergo many corrective,
adaptive, enhancive, and preventive changes. This is es-
pecially pronounced in the industrial automation domain,
where software systems are embedded in complex techni-
cal hardware/software environments. Software architectures
are a major driver for the sustainability (i.e., cost-efficient
longevity) and evolvability [12, 73], because they influence
how quickly and correctly a developer is able to understand,
analyse, extend, test, and maintain a software system. Eval-
uating and improving the sustainability of a software archi-
tecture is thus a major concern for software architects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoSA ’11 Boulder, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

While researchers have proposed many scenario-based
evaluation methods [25], it is not well understood how they
support improving the sustainability of a system. In practice
many architects still mainly rely on experience and prototyp-
ing to support their design decisions [10]. For implemented
architectures, architecture-level code metrics assessing mod-
ularization quality can add valuable information to a sus-
tainability evaluation [18], but an overview and systematic
validation of such metrics is missing. Thereby, architecture-
level code metrics are still sparsely used in practice.

Existing literature reviews for architecture evaluation
methods [26, 9, 38, 11] focus mainly on scenario-based meth-
ods to evaluate early software architecture designs and do
not analyse their suitability for sustainability evaluation.
Other surveys [11, 59, 19] provide more breadth but do
not include architecture-level metrics either. Reviews of
architecture-level metrics cannot be found in literature, as
related studies (e.g., [57]) focus on class-level OO metrics
(e.g., McCabe [49], Halstead [33], Chidamber [24]) and ne-
glect metrics for higher-level code structures.

The contribution of this paper is a structured literature
review on methods and metrics for evaluating the sustain-
ability of software architectures. Our review carefully anal-
yses existing scenario-based methods for their suitability to
evaluate sustainability and additionally provides a survey
and analysis of more than 40 architecture-level metrics. An
integration of scenario-based and metrics-based methods is
useful to provide a continuous, pro-active approach towards
evolution problem throughout the entire system life-cycle.
Our survey is intended to help practitioners to select a
method reflecting their specific requirements, and to help
researchers to identify gaps and pointers for future work in
the existing body of work. Our review also provides the
base for a possible integration of both kinds of methods in
a combined and even more valuable approach.

The remainder of this paper is as follows [39]: Section 2
defines the most important terms and motivates the need
for a new review. Section 3 states our research questions,
list the data sources, inclusion criteria and data collections.
Section 4 then presents the results of the review, which shall
answer the formally stated research questions. Section 5
discusses the results and provides implications for research
and practice. Finally, Section 6 concludes the paper.

2. BACKGROUND
This section first defines the terms ’sustainability’ (Sec-

tion 2.1) and ’software architecture’ (Section 2.2) and then
discusses related surveys (Section 2.3).

2.1 Sustainability
To define the term ’sustainability’ in the context of soft-

ware architecture, we first introduce the notion of a long-
living software system:

Definition 1. A software-intensive system is long-living
if it must be operated for more than 15 years.

Thus, a long-living software system usually needs to oper-
ate longer than its technical infrastructure, which for exam-
ple consists of COTS, middleware, operating systems, and
databases. In the industrial automation domain longevity
requirements are rooted in the large investments in the con-
troller, network, and field devices of the system. Besides
changes of the technical infrastructure, a long-living soft-
ware system faces new or changing functional and extra-
functional customer requirements, changing business strate-
gies, and potentially corrective and preventive maintenance
during its life-cycle. The manageable and predictable opera-
tion of the system in terms of costs, customer requirements,
and technological changes characterizes a sustainable sys-
tem.

Definition 2. A long-living software system is sustain-
able if it can be cost-efficiently maintained and evolved over
its entire life-cycle.

The term ’sustainable’ is derived from the Latin word
’sustinere’ (tenere: to hold; sus, up) and thus best graps our
intended connotation. Here, the term is not used in the sense
of environment-friendliness as in other domains, but instead
in the sense of cost-effective longevity and endurance. We do
not use the terms ’maintainability’ (ISO/IEC 25000), ’modi-
fiability’ [14], or ’evolvability’ [15, 19], because they arguably
include the notions of longevity and cost-effectiveness only
to a limited extent.

The opposite of a sustainable software system is a long-
living system that cannot be adapted to changing require-
ments and environments due to unjustifiable costs or even
technical infeasibility. The architecture of a sustainable sys-
tem may evolve during its life-cycle, but the fulfillment of
customer requirements within timing, budget, and quality
constraints must be assured.

Sustainability at least comprises the attributes maintain-
ability (i.e., analysability, stability, testability, understand-
ability), modifiability, portability, and evolvability. A sus-
tainable software architecture can be achieved through ad-
herence to design principles (e.g., modularity, separation of
concerns, conceptual integrity) throughout the entire life-
cycle. It requires pro-active planning for the long life-time
of the system, which can be achieved by periodic evaluations
of evolution scenarios.

2.2 Software Architecture
In the following, we use the software architecture defini-

tion of ISO/IEC 42010-2007: ”Architecture is the fundamen-
tal organization of a system embodied in its components,
their relationships to each other, and to the environment,
and the principles guiding its design and evolution.”. Soft-
ware architecture descriptions consist of multiple views (e.g.,
functional, concurrency, development) dealing with higher-
level software structures (i.e., components, modules, subsys-
tems; not classes or methods).

A scenario is a brief description of a single interaction of
a stakeholder with a system [25]. Scenario-based methods
provide techniques for eliciting, documenting, and evaluat-
ing software architecture related scenarios against the re-

quirements. Scenarios assessing the sustainability of an ar-
chitecture are often called change, evolution, or exploratory
scenarios [14]. A change scenario may impact multiple com-
ponents. Undesired and costly ripple effects [66] can occur
if the change to a component causes changes in dependent
components. Thus, loose coupling between system compo-
nents is a desirable property of a sustainable architecture to
avoid such effects.

2.3 Related Reviews
Several authors have provided reviews on scenario-based

and metrics-based evaluation methods.
Dobrica and Niemelä [26] classified eight early scenario-

based evaluation methods for their activities, goals, ad-
dressed quality attributes and other criteria. In a similar
survey, Barbar and Gorton [9] added several practical clas-
sification criteria, such as maturity stage, process support,
and resources required. They also pointed out that several
of the formerly reviewed methods were already dormant or
merged with other methods. The same authors later anal-
ysed the state-of-practice in software architecture evalua-
tion [8, 10] and found that scenarios are used by 54% of the
polled software architects. Kazman et al. [38] criticized the
bottom-up classification of scenario-based methods and thus
proposed a new top-down classification, which they used to
compare the ATAM [25] and ALMA [14] method. None of
these surveys focussed on sustainability or analysed metrics-
based methods.

Barcelos et al. [11] again classified scenario-based meth-
ods but also included a small number of measurement ap-
proaches without however analysing their suitability for sus-
tainability analysis. In the same manner, Roy and Gra-
ham [59] surveyed scenario-based evaluation methods, but
provided only limited comparison of the metrics-based meth-
ods. Breivold and Crnkovic [19] provided a broad struc-
tured literature review on architecture evolvability, which
also included experience-based methods, design methods,
and knowledge management techniques but provided no sus-
tainability analysis on the scenario-based and metrics-based
evaluation methods.

While there are numerous reviews and discussions on
class-level metrics reported in literature [24, 57], there is
no systematic review on metrics-based software architecture
evaluation methods. Sarkar et al. [64] categorized several
modularization metrics for higher-level software structures
according to their adherence to well-known design principles,
such as similarity of purpose, encapsulation, and layering.
We reuse these generic principles in our review, but include
more metrics. Riaz et al. [57] provided a systematic review
of class-level OO metrics [49, 33, 24] and their usefulness for
maintenance prediction, but did not take architecture-level
metrics into account. Finally, Ducasse et al. [27] surveyed
methods and tools for software architecture reconstruction,
which can be helpful for the sustainability evaluation of im-
plemented architectures.

3. REVIEW METHOD

3.1 Research Questions
The goal of our study is to review software architecture

evaluation methods and metrics for the purpose of assessing
their industrial applicability in the context of sustainability
analysis from the perspectives of the software architect and

software analyst. From this goal, we derive three research
questions:

• RQ1: How do scenario-based architecture evaluation
methods used in industry support sustainability evalua-
tion?

• RQ2: Which architecture-level metrics have been pro-
posed to analyse the sustainability of software architec-
tures?

• RQ3: What implications can be derived for the industrial
and research communities from the findings?

The motivation for RQ1 is to analyse the usefulness of ex-
isting methods for the specific purpose of sustainability eval-
uation, as most scenario-based methods were defined for the
broader scope of a generic architecture evaluation. The aim
is to identify gaps in currently used methods and to analyse
the potential of combining scenario-based and metrics-based
methods. Concrete sustainability criteria analysed will be
described in Section 3.3.

As no systematic reviews on architecture-level metrics cur-
rently exist, RQ2 first asks for an overview and classification
of metrics proposed in literature. It is important to note that
we restrict our study exclusively at architecture-level metrics
dealing with subsystems, components, and interfaces. Class-
level metrics have the potential to analyse and improve the
sustainability of a software system as well, but are out of
scope of our study.

Finally, RQ3 aims at a discussion of the findings, poten-
tial for future research, and possible improvements and new
directions for sustainability evaluation.

3.2 Data sources and search strategy
Search Process: We searched for software architecture
evaluation methods in several books [40, 16, 25, 12, 47,
60, 73] and the journal and conference proceedings listed
in Tab. 1. We used the following search engines for our re-
views: ACM Digital Library, Google Scholar, IEEE Xplore,
Elsevier ScienceDirect, and SpringerLink. We searched for
term ”software architecture”together with the following key-
words: bad smells, evolvability, evolution, maintainability,
maintenance, qualitative evaluation quantitative evaluation,
scenario-based evaluation, metrics, modifiability, modular-
ization, and sustainability.

Journals

ACM Trans. on Software Eng. and Meth. (TOSEM)

Communications of the ACM (CACM)

Elsevier Information and Software Technology (IST)

Elsevier Journal of Systems and Software (JSS)

Elsevier Science of Computer Programming (SCP)

IEEE Transactions on Software Engineering (TSE)

IEEE Computer

IEEE Software

Springer Empirical Software Engineering (EMSE)

Journal on Softw. Tools for Tech. Transfer (STTT)

Springer Software Quality Journal (SQJ)

Wiley Journal of Softw. Maint. and Evolution (JSME)

Wiley Journal of Systems Engineering (JSE)

Journal on Softw. Eng. and Knowledge Eng. (SEKE)

Conferences & Workshops

ACM/IEEE Int. Conf. on Softw. Eng. (ICSE)

ACM Symp. on the Foundations of Softw. Eng. (FSE)

IEEE Int. Symp. on Software Metrics (METRICS)

IEEE/ACM Int. Conf. on Automated Softw. Eng. (ASE)

Europ. Softw. Eng. Conference (ESEC)

IEEE Int. Conf. on Softw. Main. (ICSM)

Europ. Conf. on Software Maint. and Reeng. (CSMR)

Int. Worksh. on Principles of Softw. Evolution (IWPSE)

ERCIM Workshop on Software Evolution (EVOL)

Working IEEE/IFIP Conf. on Softw. Arch. (WICSA)

Int. Conf. on the Quality of Softw. Architecture (QoSA)

Europ. Conf. on Software Architecture (ECSA)

Table 1: Sources: Journals and Conferences

Inclusion and Exclusion Criteria: More than 20
scenario-based architecture evaluation methods have been
proposed and categorized in various surveys [26, 9, 38, 10].
We exclude methods for which no industrial application has
been reported or which target other quality attributes ex-
clusively. We also exclude methods that are considered dor-
mant [9] (e.g., SAAM, SBAR, SAMMCS), or for which no
applications (e.g., case studies) or extensions have been re-
ported for several years.

For metrics-based approaches, we only consider metrics
concerning high-level software structures and exclude clas-
sical complexity metrics (e.g., McCabe [49], Halstead [33])
or class-level object-oriented metrics (e.g., Chidamber [24],
Harrison [34]). We also exclude process metrics or other de-
velopment metrics as our focus is on software architecture.
Quality Assessment: For quality assessment we include
as primary studies only publications from the books cited
before and the journals and conferences listed in Tab. 1.
For both scenario-based methods and architectural metrics,
we checked whether they have been applied in an industrial
setting.

3.3 Data Collection
The following describes which data we extracted from

the primary studies to evaluate scenario-based methods and
metrics for their suitability in the context of sustainability
evaluation.
Scenario-based methods: For the scenario-based meth-
ods, we can reuse most of the criteria from the former sur-
veys [26, 9, 38] in our context. Each evaluation method
serves a specific goal and requires a certain architectural de-
scription. Furthermore tool support, process support, knowl-
edge bases, and the form of validation are generic require-
ments. Some additional, sustainability-specific requirements
can be stated as follows:

• Support for change scenario specification: A useful
method should provide templates for specifying change
scenarios and guidelines for finding and eliciting such sce-
narios. A mature method could provide change scenario
patterns from former applications, which may speed up
scenario definition. To effectively support change sce-
nario evaluation, a method should offer repeatable tech-
niques for determining the consistency and completeness
of change scenarios.

• Support for analyzing ripple effects: An ideal
method should provide (semi-)automatic support for an-
alyzing ripple effects. The possibility for such analyses
is largely determined by the level of formalization of the
architecture. Interface descriptions and dependencies be-
tween components are required. If possible, the ana-
lyzed architectural documentation should provide service
effect specifications [56] for individual software compo-
nents, which determine the control and data flow through
components on an architectural level.

• Support for analyzing variation and extension
points: Variability must be introduced with care as too
much variability can complicate the evolution of a system,
while too few variability makes a system inflexible [71].
Thus, a sustainability evaluation method should provide
means to identify, analyze, and constrain variation and
extension points.

• Support for improving the architecture (heuris-
tics): A complete analysis method provide recommen-
dations and techniques on how to improve the architec-
ture. This is especially helpful for less experienced ar-
chitects. An integration of an evaluation method with
documented best practices in styles, patterns, and tactics
is desirable [12, 38].

• Support for trade-off analysis: Optimizing a software
architecture for sustainability inevitably leads to trade-
offs with other quality attributes. For example, the per-
formance of a sustainable system might be compromised,

if a system uses lots of indirection to ensure low coupling.
Thus, a sustainability evaluation method should provide
techniques to allow the analysis of trade-offs between sus-
tainability and other quality attributes.

• Support for legacy systems: While many scenario-
based methods target early design stages of a software
system, the use case of assessing legacy systems is much
more common in practice, especially for long-living soft-
ware systems. Thus the interoperability of a method with
architecture reconstruction tools is desirable [27].

• Support for existing artifacts and tools: To facilitate
a broader adoption of any architecture analysis method,
an integration with existing artifacts and tool chains is
essential. For example, if a method provides analytical
tools, they should be able to process existing design doc-
ument (e.g., in UML). As architecture evaluation relies
on the functional and extra-functional requirements of a
system, interfacing with respective requirements manage-
ment tools is desirable.

• Return on investment (ROI): Empirical evidence of a
significant cost/benefit ratio is essential for any method to
achieve broad adoption in industry. To better characterize
any method, it should be clear how many resources are
required and what kinds of results can be expected.

We also collected data about supplemental approaches
and tools for the scenario-based methods, as well as met-
rics for ranking evolution scenarios.
Architectural Metrics: Architectural metrics often mea-
sure the modularization quality of a system under the as-
sumption that a good modularization leads to better un-
derstandability, analysability, and maintainability and thus
sustainability. We extracted the name of each metric, its
abbreviation, an intuitive description, and the required in-
puts from the primary studies. The latter helps to analyse
whether the metric can be determined automatically using
tools. Additionally, we categorized the metrics according to
common modularization design principles [64]:

• Similarity of purpose: This principle states that func-
tions and data structures serving similar purposes or aim-
ing at common goals should be grouped in a single module,
package, or subsystem. It implies high cohesion within
such a module.

• Encapsulation: Information hiding improves under-
standability and analysability. Modules should have an
explicitly defined, restricted API through which all inter-
module call traffic should be routed.

• Independent compilability, extendibility, testabil-
ity: These principles allow modules to grow in parallel
and to be tested independently. The possibility for an
independent evolution of modules is important for cost-
effective development.

• Acyclic dependencies: As cyclic dependencies negate
many of the benefits of modularization, they should be
avoided where possible. In layered architectures, control
flow should be directed only from upper layers to lower
layers but not vice versa.

• Size: While there are no universally agreed module sizes,
it is plausible that modules should neither be too large
nor to small. A uniform size distribution is desirable to
improve the maintainability of a system. This however
can hardly be planned when implementing systems from

scratch, but is rather a desirable property when clustering
legacy systems.

3.4 Data Synthesis
Data synthesis involves collating and summarizing the re-

sults of the included primary studies. We chose a descrip-
tive synthesis and display the information extracted from
the primary studies in tables.

4. RESULTS
This section reports on the results for research questions

RQ1 (Section 4.1) and RQ2 (Section 4.2). RQ3 will be tack-
led in Section 5.2.

4.1 Scenario-based Methods (RQ1)
Research question RQ1 asks for the suitability of cur-

rent scenario-based methods for sustainability evaluation.
We found more than 20 scenario-based evaluation meth-
ods in literature. Our exclusion criteria limit the scope
to ATAM [25] and ALMA [14], because these are the only
active methods that have been applied in a number of in-
dustrial case studies in different domains [9]. For exam-
ple, SAAM [25] is no longer supported by its creator as it
has been superseeded by ATAM. Additionally, its various
derivates are dormant or have been merged into other meth-
ods [9]. PASA and SALUTA have been applied in industry
but target performance and usability exclusively.

4.1.1 ATAM
The goals of ATAM [25] are to identify trade-offs between

different quality attributes for a system and reveal sensi-
tivity points in an architecture. ATAM involves presenting
and discussing the architectural design in a 2 day workshop
attended by the system’s major stakeholders. The partic-
ipants define scenarios (i.e., regular use-cases, growth, and
exploratory scenarios) to evaluate the architecture against
and discuss the technical constraints of the system. Con-
cerning tool support, there is a web-based tool available [44],
which is however not regularly used. There are no specific
modeling tools targeted by ATAM, but the method requires
a logical and module view of the architecture.

ATAM supports sustainability evaluation as follows: the
definition of change scenarios is assisted with the quality
attribute scenario template and procedures for a quality at-
tribute workshop (QAW) to determine them. The method
description explicitly mentions that growth and exploratory
scenarios, which can represent change scenarios, should be
described. Stakeholders have to determine ripple effects
manually, as the granularity of architectural description used
in ATAM does not allow a formal analysis. There is no spe-
cial support for analysing variation and extension points.
ATAM offers some sustainability improvement recommen-
dations in the form of change-oriented architectural styles
and so-called modifiability tactics. For trade-off analysis,
the stakeholders rank different quality attributes in a so-
called utility tree. To support analysing legacy systems, the
SEI proposed the DALI workbench, which however has not
been applied on systems greater than 50 KLOC and seems
to be dormant since 2001. There is no special support for ex-
isting tool chains. The industrial maturity has been proven
in more than 20 industrial case studies [25, 13, 17]. The
effort for applying ATAM is estimated between 30-70 per-
son days [25], but it was never attempted to quantify its

benefits.
Evaluation: ATAM was not specifically designed for sus-

tainability evaluation, but more generically for assessing
risks and trade-offs between quality attributes. Neverthe-
less, it offers many helpful techniques in the context of sus-
tainability evaluation (e.g., utility trees trading off sustain-
ability with other attributes, quality attribute scenarios to
document expected changes, abstract modifiability tactics).
Other authors have noted that ATAM does not allow for in-
depth analysis of scenarios [38], because of the strict timing
constraints of the workshop. However, identified sustainabil-
ity risks could be further evaluated with other methods after
ATAM. In general ATAM is not perceived as a light-weight
evaluation method, because it requires to conduct expensive
workshops with all major stakeholders.

4.1.2 ALMA
The goals of ALMA [14] are to predict maintenance ef-

fort, to assess risks, or to compare candidate architecture
w.r.t. to modifiability. There is no specific workshop de-
scribed with the method but the required information is col-
lected by an analyst through stakeholder interviews. Based
on a software architecture description the analyst elicits and
evaluates change scenarios for the system together with the
stakeholders (e.g., architects, developers, customers). Main-
tenance effort is predicted by estimating the expected extent
of code changes per evolution scenario in lines of code. Risk
analysis involves weighting the impact of evolution scenarios,
and candidate architecture comparison is based on calculat-
ing an overall score for implementing the evolution scenarios
for all candidates.

ALMA supports sustainability evaluation as follows: a
top-down and bottom-up technique for finding change sce-
narios is sketched and the authors suggest partitioning the
scenarios into equivalence classes. There is no documenta-
tion template provided. Determining ripple effects is explic-
itly foreseen but relies on the experience of the involved ar-
chitects and developers, which can be misleading [42]. There
is no support for analysing variation and extension points
and there is no guidance on how to improve the architec-
ture after evaluation. Trade-off analysis is not in the scope
of ALMA, which exclusively focuses on modifiability. The
architecture of a legacy system has to be extracted man-
ually or using other methods into the required views and
there is no tool support. The authors have applied ALMA
in seven industrial case studies [14] until 2004, but no third
party applications are known and effort estimations for a
ROI calculation are missing.

Evaluation: ALMA was specifically designed for modi-
fiability evaluation, which is closely related to sustainabil-
ity evaluation. It offers some helpful techniques for change
scenario elicitation but still relies heavily on the experi-
ence of the involved stakeholders as there is no guidance on
how to improve the architecture. Some experience reports
with ALMA offer interesting insights to sustainability eval-
uation [41, 42]: During change scenario elicitation architects
are biased towards the scenarios they already had in mind
when designing the architecture. Determining the compo-
nents affected by a change scenario is often straight-forward,
but determining ripple effects is not. Often, stakeholders
miss important change scenarios during architectural eval-
uation. Furthermore, the architecture and the change sce-
narios may be based on an incorrect initial requirements

specification, which then invalidates them. In conclusion,
support for architectural improvements, trade-off analysis,
and extension points would be desirable for ALMA besides
tool support.

4.1.3 Supplemental methods and applications
The following supplemental approaches are not among the

primary studies of our systematic review for various reasons,
but could be combined with ATAM and ALMA for improved
sustainability analysis and are therefore listed here for com-
pleteness:

• Kazman et al. [37] combined ATAM and CBAM, and
added a more in-depth model-based analysis for selected
risks to form the ”Analytic Principles and Tools for the
Improvement of Architectures” (APTIA) method. They
also used the method in a case study to analyse the vari-
ation points of an architecture.

• Shen and Madhavji [68] describe the ”Evolutionary Sce-
nario Development Method” (ESDM), which includes an
elaborate template for change scenario specification and
shall be used in combination with ATAM.

• Olumofin and Misic [52] introduce the ”Holistic Prod-
uct Line Architecture Assessment” (HooPLA) method ex-
tending ATAM for SPL evaluation and provide a qualita-
tive analytical treatment of variation points using scenar-
ios.

• Breivold and Crnkovic [20] propose the ”Architecture
Evolvability Analysis” (AREA) method, which evalu-
ates change stimuli against fine-grained sustainability at-
tributes (e.g., analysability, testability) and defines re-
spective refactorings and test cases. The method was pro-
totypically applied for assessing a single change scenario
of an industrial system.

In addition to the proposed extensions to scenario-based
evaluation methods, there are several case study reports in
literature [48, 32, 17].

4.1.4 Metrics for Scenario Ranking
Several authors have also proposed metrics to rank evolu-

tion scenarios and use them for maintenance effort predic-
tions:

• Avritzer and Weyuker [7] created a list of potential project
issues based on architectural reviews and ranked them to
get a simple project risk metric. These issues are however
only loosely related to the structure of the system.

• Paulish and Bass [54] decompose evolution scenarios into
smaller tasks and asked developers for the task efforts.

• Liu and Wang [43] propose two metrics (Impact On the
Software Architecture (IOSA), Adaptability Degree of
Software Architecture (ADSA)) based on probabilities for
evolution scenarios and their impact in terms of affected
lines of code or function points. Tarvainen [72] applies
these metrics in a case study.

• Stammel and Reussner [69] propose the KAMP tool,
which lets architects decompose evolution scenarios into
smaller change actions based on a formal architectural
model and uses summarized implementation effort esti-
mations for scenario ranking.

• Anwar et al. [6] compute the ”maintenance effort”per evo-
lution scenario based on probability weights and estimated
LOC using COCOMO II.

In conclusion scenario ranking methods combine classi-
cal cost estimation techniques (e.g., COCOMO, Function
Points) with evolution scenarios to enable early maintenance
effort predictions.

4.1.5 Conclusions RQ1
Table 2 summarizes the sustainability support of our pri-

mary studies ATAM and ALMA. While ATAM is more re-
fined and offers more features, ALMA is more specifically
designed for sustainability evaluation. In practice, a com-
bination of ATAM, ALMA, and the supplemental methods
and scenario-ranking approaches is advisable. It is common
that the methods are not used exactly as they are docu-
mented [10], but that different parts of them are recombined
as needed. Nevertheless, existing scenario-based methods do
not provide systematic analysis of ripple effects, integration
with reverse engineering tools, or knowledge management
support and could benefit from more formal models.

Name ATAM ALMA

Goals Sensitivity & tradeoff-

analysis

Change impact analysis,

predicting maintenance

effort

Architectural Description Process, data-flow, uses,

physical & module view

Any

Process support Comprehensive Limited

Tool support n/a n/a

Knowledge repository Recommended n/a

Validation >20 industrial case studies 7 industrial case studies

(none since 2004)

Change scenario

specification

Quality attribute scenario

template

Top-down, bottom-up

method, no template

Ripple effect analysis Manual, based on

experience

Manual, based on

experience

Variation/extension point

analysis

n/a n/a

Architecture improvement Tactics, Styles n/a

Trade-off analysis Based on utility tree with

preferences

n/a

Legacy systems No support No support

Existing artifacts

and tools

No explicit support No explicit support

Return on Investment Costs: 30-70 person days

Benefits: not quantified

Costs: unknown

Benefits: not quantified

Sustainability criteria

General criteria

Table 2: Comparison of scenario-based evaluation
methods

4.2 Metrics-based Methods (RQ2)
Concerning RQ2 this section summarizes architecture-

level metrics suites for software architectures. We briefly
describe each approach (Section 4.2.1) and provide a cate-
gorization in Tab. 3. Furthermore, we list some recent ap-
proaches for defining and detecting architecture bad smells,
which are closely related to architecture-level metrics (Sec-
tion 4.2.2).

4.2.1 Architecture-level Metrics Suites
Most work in the area of architecture-level metrics derives

from the module concept described by Parnas [53] and the
notions of coupling and cohesion [70, 74]. Software com-
plexity metrics [49, 33] as well as class-level object-oriented
metrics [24, 57, 1] are out of scope for our study. Our sys-
tematic review extracted the following metrics suites and
approaches from literature:

M1 Briand et al. [22, 21] provide a generic formalization
for metrical notions independent of any programming

paradigm, which includes coupling and cohesion besides
complexity-based and class-based metrics. The authors
also formally define coupling and cohesion between mod-
ules.

M2 Lakos [40] defines a metric called Cumulative Component
Dependency (CCD), which is the sum of required depen-
dencies by a component within a subsystem. Derived met-
rics are the average component dependency (ACD) and
the normalized CCD (NCCD). They can be determined
by tools such as SonarJ or STAN.

M3 Mancoridis et al. [45, 51] introduce a clustering tool called
BUNCH, which tries to optimize the proposed modular-
ization quality metric. This metric is based on a parti-
tioned module dependency graph and computed by the
difference of the average inter- and intra-connectivity of
the partitions.

M4 Allen and Khoshgoftaar [3, 4, 2] propose an information-
theory based approach to define coupling and cohesion
metrics. Opposed to the former count-based measures,
their definitions are based on the entropy in a module in-
terconnection graph, which accounts for patterns in the
relationships. They found that the information-theory
based metrics were able to make finer distinctions than
the count-based metrics.

M5 Martin [47] defines metrics for software packages, i.e.,
groups of related classes (e.g., java packages, C++-
projects, low-level modules). These include package affer-
ent coupling, efferent coupling, abstractness, instability,
distance from main sequence, and package dependency cy-
cles. Several tools support measuring these metrics (e.g.,
JDepend, CppDepend, STAN).

M6 Sant’anna et al. [62] propose a set of 11 concern-driven
metrics to measure the modularity of a software system.
An architectural concern is defined as a partition of sys-
tem components with a common goal (e.g., GUI, persis-
tence, distribution). Examples for the metrics are con-
cern diffusion (i.e., counts the number of components or
interfaces for a given concern), coupling between concerns
(i.e., counts for a concern how components relate itself
and other concerns), or interface complexity. The authors
compare the modularization of aspect-oriented and non
aspect-oriented systems using their metrics in three case
studies.

M7 Sarkar et al. [64] create a set of 12 API-based and
information-theoretic metrics for measuring modulariza-
tion quality. The metrics rely on the definition of APIs be-
tween modules, module size thresholds, and concept term
maps and explicitly exclude any object-oriented features.
Each metric is defined between 0 and 1 where higher val-
ues are better. Some metrics are derived from the works of
Lakos [40] and Martin [47]. The metrics were applied on
a number of open source systems (e.g., Apache, MySQL,
Mozilla) as well as a 12 MLOC commercial system [65],
but the authors do not provide their tools publicly.

M8 Sarkar et al. [63] extend their former work on mod-
ule metrics with 9 additional metrics concerning object-
oriented relationships (e.g., inheritance, association) be-
tween higher-level modules in large OO-systems. These
metrics for example measure the extent of the fragile base-
class problem or inheritance relations between higher-level
modules. They were measured for eight open source sys-
tems between 30 KLOC and 2.5 MLOC, where a human

Source Abbr. Name Description Required Input Tool

M7 Sarkar2007 CDM Concept Domination Metric Non-uniformity of the distribution of concepts List of concepts, frequency of occurrences per mod. Proprietary

M7 Sarkar2007 CCM Concept Coherency Metic Amount of mutual information between mod./concept List of concepts, entropy for concepts Proprietary

M7 Sarkar2007 APIU API Function Usage Index Percentage of API functions used by other modules API definition, # calls to API Proprietary

M6 Sant'anna2007 CDAC Concern Diffusion over Arch. Components Counts the components realizing an arch. concern Mapping of components to architectural concerns

M11 Sethi2009 CS Concern Scope Amount of design decisions influenced by a concern Design decisions, concerns

M11 Sethi2009 CO Concern Overlap Amount of design decisions infl. by multiple concerns Design decisions, concerns

M1 Briand1996 RCI Ratio of Cohesive Interactions Ratio of potential/known data declarations interactions Module dependencies

M1 Briand1996 IC Import Coupling Extend to which a module depends on externals # imports per module

M1 Briand1996 EC Export Coupling Interactions between internal/external data decl. Module dependencies

M3 Mancoridis1998 MQ Modularization Quality Diff. of inter- and intra-connectivity of subsystems Module dependency graph, clusters Bunch

M5 Martin2003 Ca Afferent Couplings # packages depending on classes in a package Class dependencies JDepend

M5 Martin2003 Ce Efferent Couplings # packages the classes of a package depend on Class dependencies JDepend

M6 Sant'anna2007 CLIC Comp.-level Interlacing Betw. Concerns Counts components sharing concerns Mapping of components to architectural concerns

M6 Sant'anna2007 LCC Lack of Concern-based Cohesion Counts the number of concerns by a component Mapping of components to architectural concerns

M7 Sarkar2007 MII Module Interaction Index Percentage of calls routed through APIs Module and API definition Proprietary

M7 Sarkar2007 NC Non-API Function Closedness Index Percentage of functions classified API or non-API API definition Proprietary

M7 Sarkar2007 IDI Implicit Dependency Index Percentage of explicit module dependencies # Implicit module dep. (e.g., global variables, files) Proprietary

M8 Sarkar2008 BCFI Base class fragility index Extent of base-class fragility in the system Classes, ancestors, inherited methods, depend. Proprietary

M8 Sarkar2008 IC Inheritance-based intermodule coupling Fraction of classes in other mod. defined by inherit. Module definition, inheritance dependencies Proprietary

M8 Sarkar2008 NPII Not-programming-to-interfaces Index Percentage of calls to to root interfaces Interface definitions, call dependencies Proprietary

M8 Sarkar2008 AC Association-induced coupling Percentage of class associations to other modules Module definition, associations Proprietary

M8 Sarkar2008 SAVI State Access Violation Index Extend of intermodule access to internal state Module definition, state accesses Proprietary

M10 Anan2009 IEAS Entropy of an architectural slicing Amount of information encoded in a arch. layer Mapping of modules to layers, dependency graph

M10 Anan2009 ASC Architecture Slicing Cohesion Ratio of intra- and intermodule coupling Mapping of modules to layers, dependency graph

M11 Sethi2009 DV Decision Volatility Stability of a decision decision ag. ext. influences Design decisions, env. impact, impact scope

M2 Lakos1996 CCD Cumulative Component Dependency Sum of component dependencies in a subsystem Component dependency graph for a subsystem SonarJ

M2 Lakos1996 ACD Average Cumulative Comp. Dependency CCD divided by components in subsystem Component dependency graph for a subsystem SonarJ

M2 Lakos1996 NCCD Normalized Cumulative Comp. Dependency CCD divided by CCD of a binary dependency tree Component dependency graph for a subsystem SonarJ

M4 Allen2001 COUM Coupling of a module Amount of information in intermodule-edges graphs Module dependency graph

M4 Allen2001 ICM Intramodule coupling of a module Amount of information in intramodule-edges graph Module dependency graph

M4 Allen2001 COHM Cohesion of a module Amount of information in intramodule coupling Module dependency graph

M5 Martin2003 A Abstractness Ratio of abstract classes to total classes in package Class definitions in a package JDepend

M5 Martin2003 I Instability Ratio of efferent to total coupling [I=Ce/(Ce+Ca)] Class dependencies JDepend

M5 Martin2003 DMS Distance from the Main Sequence Perpendicular dist. of a package from the line A + I = 1 Abstractness and Instability JDepend

M7 Sarkar2007 MISI Module Interaction Stability Index Percentage of module depending on stable layers Mapping of modules to layers, fan-in, fan-out Proprietary

M7 Sarkar2007 NTDM Normalized Testability Dependency Metric Percentage of module independent testing Test dependencies between modules Proprietary

M8 Sarkar2008 PPI Plugin Polution Index Amount of superfluous code in a plugin module Extension API, abstract methods in plugins Proprietary

M11 Sethi2009 CI Change impact Amount of design decisions changed during evolution Design decisions, evolution scenario

M11 Sethi2009 IL Independence Level System perc. changeable under stable design rules Independent module set in augmented constr. netw.

M5 Martin2003 PDC Package Dependency Cycles Cyclic dependencies between packages Package dependency graph JDepend

M7 Sarkar2007 Cyclic Cyclic Dependencies Index Extent of cyclic dependencies between modules Module dependency graph Proprietary

M7 Sarkar2007 LOI Layer Organization Index Cyclic dependencies between layers Mapping of modules to layers, dependency graph Proprietary

M9 Sangwan2008 XS Excessive Structural Complexity Cyclic dependencies violation times amount of dep. Module dependency graph Structure101

M7 Sarkar2007 MSBI Module Size Boundness Index Deviation of module sizes from a threshold Lines of code per module, optimal module size SourceMonitor

M7 Sarkar2007 MSUI Module Size Uniformity Index Distribution of module sizes Lines of code per module SourceMonitor

Similarity of Purpose

Encapsulation

Compilability, Extendibility, Testability

Acyclic Dependencies

Size

Table 3: Architecture-level software metrics potentially useful in the context of sustainability evaluation

modularization achieved significantly higher values than
a randomized modularization based on assigning classes
arbitrarily to modules.

M9 Sangwan et al. [61] introduce the complexity measure-
ment framework Structure 101, which uses a metric called
excessive structural complexity (XS). It is computed as
the product of the degree of cyclic dependencies viola-
tions (metric ’tangled’) and a multi-level complexity met-
ric (’fat’), which can also be determined on the package
or module level.

M10 Anan et al. [5] propose an approach that is similar to
Allen and Khoshgoftaar [4] and use information-theory to
measure the coupling between modules. The authors com-
pute the entropy of an architectural slicing (i.e., a module
layer) and condense the values to a metric called ”archi-
tecture maintainability effort”. The metrics were applied
for a number of artificial module dependency graphs.

M11 Sethi et al. [67] base their metrics not on source code, but
instead on an augmented constraint network and design
structure matrix derived from a higher-level UML compo-
nent diagram, which also captures architectural concerns
and design rules. They define metrics such as decision
volatility (i.e., impact of environmental conditions on a
design decision) and concern overlap. They evaluate the
metrics on eight object-oriented and aspect-oriented re-
leases of a software product line and find for example that
the aspect-oriented design is better in accommodating op-
tional features, but also leads to a higher design volatility.

Besides mapping the metrics to design principles as in

Tab. 3, they could also be classified according to their re-
quired inputs. Some metrics can be determined by simply
analysing source code, while others require additional in-
puts, e.g., concept maps, design decisions, or module size
thresholds. Some metrics are similar or overlapping (e.g.,
MISI is derived from Martin’s Instability, NTDM is an adap-
tion of CCD).

4.2.2 Architecture Bad Smells
Several authors have proposed to transfer the idea of ”bad

smells” in code [29] to higher-level software structures, where
they are called ”architecture smells” [58]. It is also con-
ceivable to deduce a condensed metric for sustainability by
weighting a number of found architectural smells. They are
typically used in the evaluation of implemented architec-
tures [18].

Kazman and Burth [36] propose the so-called ”Interac-
tive Architecture Pattern Recognition” (IAPR) approach for
detecting architecture smells. The approach is supported
by a tool for diagnosis and exploration. In a case study,
the authors demonstrate the detection of cyclic dependen-
cies, layering violations, communication constraint viola-
tions, classes with high fan-out or high fan-in. The approach
can be considered a precursor to recent architecture smell
investigations, but was not followed-up by the authors.

Roock and Lippert [58] provide an extensive catalog of ar-
chitecture smells. They include smells in dependency graphs
(e.g., static cycles), inheritance hierarchies (e.g., parallel in-
heritance), packages (e.g., too large), subsystems (e.g., over-
generalization), and layers (e.g., upward references). They

also list tools for locating architecture smells and describe
best practices on how to perform large-scale refactorings.

Garcia et al. [30] describe four architectural smells (i.e.,
connector envy, scattered parasitic functionality, ambiguous
interfaces, and extraneous adjacent connectors) and discuss
their quality impacts and trade-offs. They regard tool sup-
port for smell detection as future work.

4.2.3 Conclusions RQ2
Our review has provided a list of more than 40

architecture-level metrics, which could assist sustainability
evaluation of implemented architectures. A mix of these
metrics as well as the architecture bad smells should be
identified for a given project, as no single metric is able
to characterize the overall sustainability of the implemen-
tation. The metrics can be combined with class-level met-
rics [57], process metrics, and other development metrics [35]
and can be monitored during system evolution (e.g., as done
in the ISIS approach [55]). Normalizing the metrics between
0 and 1 [64] improves understandability. Most metrics are
currently based on plausibility and have not been system-
atically validated empirically. Their concrete value towards
sustainability improvement is thus still unknown.

5. DISCUSSIONS

5.1 Principle findings
Our survey analysed the capabilities of scenarios-based

methods and architecture-level metrics for evaluating the
sustainability of software architectures. While there are
many scenario-based methods proposed, only ATAM and
ALMA have so far been used repeatedly in industrial case
studies in different domains. Since ALMA (published in
2004), no new method was validated extensively. ALMA too
lacks newer experience reports. Practitioners still mostly
rely on experience and prototypes instead of following a
scenario-based method step-by-step [10]. Nevertheless ap-
plying the methods likely results in more sustainable soft-
ware architectures. For an effective sustainability architec-
ture review, the best techniques from ATAM, ALMA, and
supplemental methods should be combined.

Besides the plethora of class-level OO metrics, there is
now also a growing number of metrics on the architectural
level. These mostly focus on the modularization quality
of an architecture and require an implementation for mea-
surement. A comprehensive set of metrics was proposed
by Sarkar et al. [64, 63], but tool support is still missing.
There is potential to define metrics based on architecture
documentation (e.g., UML component diagrams [67]). De-
sired values for the metrics as well as systematic empirical
evaluations are mostly missing. Nevertheless, reviewers use
metrics informally during the evaluation of implemented ar-
chitectures [18].

No end-to-end method for sustainability evaluation from
requirements to maintenance is available.

5.2 Implications for research/practice (RQ3)
Based on our review, we identified the following implica-

tions for research and practice:

• More empirical research needed: both scenario-based
methods and architecture-level metrics should be evalu-
ated more thoroughly and repeatedly in empirical stud-
ies especially regarding their return on investment. This

should extend the current amount of controlled experi-
ments, field studies, and surveys [28]. Besides a sound
scientific assessment of benefits and drawbacks, empirical
studies can also be helpful to overcome the limited appli-
cation of the analysed approaches in practice [10], as they
might be used to advocate the methods better. A return
on investment quantified through empirical studies could
greatly speed up their adoption in practice. Another open
question is how much effort should be invested upfront in
the definition of evolution scenarios since the evolution of
a system is often unpredictable [42] and thus might lead
to wasted efforts.

• Integration of methods: while the combination of dif-
ferent scenario-based methods or the combination of mul-
tiple metrics can be helpful, there is also potential for
combining the qualitative and quantitative approaches
formerly presented. As quantitative methods are usu-
ally only applicable on implemented architectures, com-
bined methods should target legacy systems. Initial at-
tempts at combined methods have been made by Briand
and Wüst [23] (SAMM + coupling measures) and Kaz-
man et al. [37] (ATAM + rate monotonic analysis and
variability analysis). Methods from ALMA for change
scneario elicitation could be combined with ATAM tech-
niques for trade-off analysis. A metrics assessment report
evaluation step could be integrated into the scenario-based
approaches. Additionally, architecture recovery tools [27]
or automated improvement tools [46] could be integrated
with the methods.

• Effective use of formal models: scenario-based eval-
uations are usually based on early, informal architecture
models. Thus, tool-supported analysis (e.g., for ripple ef-
fects, undesired dependencies, other non-functional prop-
erties) is hardly feasible at this stage. As more formal
models require a higher specification effort, methods and
tools to rapidly construct and analyse such models would
be desirable. Modeling tools could provide aids to ask
the architects precisely for the required information for
a certain analysis (e.g., more refined interface specifica-
tions or dependencies) given an early architectural model.
Modelling notations and tools should support iterative re-
finements based on the successively increasing available
information during architectural design.

• Codify experiences: the outcome of most scenario-
based evaluation methods is still largely determined by
the experience of the participants. Patterns and tactics
are a way to encode design knowledge and make good de-
sign practice available even to inexperienced architects.
Knowledge bases should be created to capture and reuse
the experiences from former sustainability evaluations.
Also architecture-level metrics could be accompanied with
a catalogue or guidelines for architecture-level refactorings
aiming at improving specific metric values.

• Explore other approaches: Using scenarios during
early design stages and metrics during implementation
and maintenance seem to be the most popular methods
to improve software architecture evolution. Other ap-
proaches (e.g., based on simulation or other techniques)
are not explored extensively. Garlan et al. [31] propose
a method and tool called AEvol for assisting software ar-
chitects in designing and analysing architectural evolu-
tion paths. Mens et al. [50] propose an approach and
tool called Evolve to link architectural descriptions to im-

plementation artifacts and making the evolution intrinsic
to the architectural description. These approaches still
need refinement and maturation but provide pointers for
future directions of developing sustainable software archi-
tectures.

5.3 Strength and weaknesses of this review
Our review is the first review on architecture evaluation

including both scenario-based and measurement-based ap-
proaches. It thus provides a more holistic perspective. Com-
pared to former reviews, we use a more restricted scope (i.e.,
sustainability evaluation) and include more recent studies.
Our survey includes architecture-level metrics, which were
formally not reviewed systematically.

However, some limitations are inherent to our review.
We use very selective inclusion criteria and potentially ex-
clude promising studies, which have not been evaluated thor-
oughly. Our survey might be biased towards to more pop-
ular evaluation methods and metrics also since we focus on
a restricted set of renowned books, journals, and conference
proceedings. We have not applied the methods and metrics
ourselves and can thus not be sure of their applicability.

6. CONCLUSIONS
This paper provided a systematic review on scenario-

based evaluation methods and architecture-level metrics for
the sustainability of software architectures. We analysed the
suitability of existing methods for sustainability analysis and
assembled a list of more than 40 architecture-level metrics.
We discussed implications for practice and research.

Practitioners can use our review to tailor their own sus-
tainability evaluation method based on the referenced meth-
ods and tools. Researchers can identify gaps in the body of
work and create systematic sustainability evaluation meth-
ods.

Our review identifies a need for more empirical studies
on architecture evaluation. Scenario-based methods should
better validate their potential return on investment and met-
rics require a validation of their relevance for sustainability.
Additionally the existing methods and metrics should be
combined in integrated approaches that offer even more ben-
efits. Using more formal architecture models could provide
more automated analyses during architecture analyses.

7. REFERENCES
[1] J. Al Dallal and L. C. Briand. An object-oriented high-level

design-based class cohesion metric. Inf. Softw. Technol.,
52:1346–1361, December 2010.

[2] E. Allen, S. Gottipati, and R. Govindarajan. Measuring size,
complexity, and coupling of hypergraph abstractions of
software: An information-theory approach. Software Quality
Journal, 15(2):179–212, 2007.

[3] E. B. Allen and T. M. Khoshgoftaar. Measuring coupling and
cohesion: An information-theory approach. In Proceedings of
the 6th International Symposium on Software Metrics, pages
119–, Washington, DC, USA, 1999. IEEE Computer Society.

[4] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen. Measuring
coupling and cohesion of software modules: An
information-theory approach. In Proceedings of the 7th
International Symposium on Software Metrics, METRICS ’01,
pages 124–, Washington, DC, USA, 2001. IEEE Computer
Society.

[5] M. Anan, H. Saiedian, and J. Ryoo. An architecture-centric
software maintainability assessment using information theory.
J. Softw. Maint. Evol., 21:1–18, January 2009.

[6] S. Anwar, M. Ramzan, A. Rauf, and A. Shahid. Software
Maintenance Prediction Using Weighted Scenarios: An

Architecture Perspective. In Proc. Int. Conf. on Information
Science and Applications (ICISA’10), pages 1–9. IEEE, 2010.

[7] A. Avritzer and E. Weyuker. Metrics to assess the likelihood of
project success based on architecture reviews. Empirical
Software Engineering, 4(3):199–215, 1999.

[8] M. A. Babar, L. Bass, and I. Gorton. Factors influencing
industrial practices of software architecture evaluation: an
empirical investigation. In Proc. 3rd. Int. Conf. on the Quality
of Software Architectures (QoSA’07), QoSA’07, pages 90–107,
Berlin, Heidelberg, 2007. Springer-Verlag.

[9] M. A. Babar and I. Gorton. Comparison of scenario-based
software architecture evaluation methods. In Proc. 11th
Asia-Pacific Software Engineering Conf., APSEC ’04, pages
600–607, Washington, DC, USA, 2004. IEEE Computer Society.

[10] M. A. Babar and I. Gorton. Software architecture review: The
state of practice. Computer, 42:26–32, July 2009.

[11] R. Barcelos and G. Travassos. Evaluation approaches for
software architectural documents: a systematic review. In
Ibero-American Workshop on Requirements Engineering and
Software Environments (IDEAS’06), 2006.

[12] L. Bass, P. Clements, and R. Kazman. Software architecture in
practice. Addison-Wesley Professional, 2003.

[13] L. Bass, R. Nord, W. Wood, and D. Zubrow. Risk themes
discovered through architecture evaluations. Technical Report
CMU/SEI-2006-TR-012, Software Engineering Institute (SEI),
2006.

[14] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (ALMA). Journal of
Systems and Software, 69(1-2):129–147, 2004.

[15] S. Bode and M. Riebisch. Impact evaluation for quality-oriented
architectural decisions regarding evolvability. In Proc. 4th
Europ. Conf. on Software Architecture (ECSA’10), volume
6285 of LNCS, pages 182–197. Springer, 2010.

[16] J. Bosch. Design and use of software architectures: adopting
and evolving a product-line approach. Addison-Wesley
Professional, 2000.

[17] N. Boucké, D. Weyns, K. Schelfthout, and T. Holvoet.
Applying the atam to an architecture for decentralized control
of a transportation system. In C. Hofmeister, I. Crnkovic, and
R. Reussner, editors, Quality of Software Architectures,
volume 4214 of Lecture Notes in Computer Science, pages
180–198. Springer Berlin / Heidelberg, 2006.

[18] E. Bouwers, J. Visser, and A. Van Deursen. Criteria for the
evaluation of implemented architectures. In Proc. 25th IEEE
Int. Conf. on Software Maintenance (ICSM’09), pages 73–82.
IEEE, 2009.

[19] H. Breivold and I. Crnkovic. A Systematic Review on
Architecting for Software Evolvability. In 21st Australian
Software Engineering Conference, pages 13–22. IEEE, 2010.

[20] H. Breivold, I. Crnkovic, R. Land, and M. Larsson. Analyzing
Software Evolvability of an Industrial Automation Control
System: A Case Study. In 3rd Int. Conf. on Software
Engineering Advances (ICSEA’08), pages 205–213. IEEE,
2008.

[21] L. Briand, S. Morasca, and V. Basili. Property-based software
engineering measurement. IEEE Trans. on Softw. Eng.,
22(1):68–86, 1996.

[22] L. C. Briand, S. Morasca, and V. R. Basili. Measuring and
assessing maintainability at the end of high level design. In
Proc. Int. Conf. on Sofw. Maintenance (ICSM’93), pages
88–97, Washington, DC, USA, 1993. IEEE Computer Society.

[23] L. C. Briand and J. Wüst. Integrating scenario-based and
measurement-based software product assessment. Journal of
Systems and Software, 59(1):3–22, 2001.

[24] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Trans. Softw. Eng., 20:476–493, June
1994.

[25] P. Clements, R. Kazman, and M. Klein. Evaluating software
architectures: methods and case studies. Addison-Wesley
Reading, MA, 2002.

[26] L. Dobrica and E. Niemelä. A survey on software architecture
analysis methods. IEEE Trans. on Softw. Eng., 28(7):638–653,
July 2002.

[27] S. Ducasse and D. Pollet. Software architecture reconstruction:
A process-oriented taxonomy. IEEE Trans. Softw. Eng.,
35:573–591, July 2009.

[28] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten.
Applying empirical software engineering to software
architecture: challenges and lessons learned. Empirical
Software Engineering, 15(3):250–276, 2010.

[29] M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[30] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic.
Identifying architectural bad smells. In Proc. 13th European
Conf. on Software Maintenance and Reengineering
(CSMR’09), pages 255–258. IEEE, 2009.

[31] D. Garlan, J. Barnes, B. Schmerl, and O. Celiku. Evolution
styles: Foundations and tool support for software architecture
evolution. In Proc. IEEE/IFIP Working Int. Conf. on
Software Architecture (WICSA’09), pages 131–140. IEEE,
2009.

[32] B. Graaf, H. van Dijk, and A. van Deursen. Evaluating an
Embedded Software Reference Architecture - Industrial
Experience Report. In 9th European Conf. on Software
Maintenance and Reengineering (CSMR’05), pages 354–363.
IEEE, 2005.

[33] M. H. Halstead. Elements of Software Science. Elsevier
Science Inc., New York, NY, USA, 1977.

[34] R. Harrison, S. Counsell, and R. Nithi. An Evaluation of the
MOOD Set of Object-Oriented Software Metrics. IEEE Trans.
on Softw. Eng., 24(6):491–496, 1998.

[35] S. H. Kan. Metrics and Models in Software Quality
Engineering. Addison-Wesley, Boston, MA, USA, 2nd edition,
2002.

[36] R. Kazman. Assessing architectural complexity. In Proc. 2nd
EUROMICRO Conf. on Software Maintenance and
Reengineering (CSMR’98), pages 104–112. IEEE, 1998.

[37] R. Kazman, L. Bass, and M. Klein. The essential components
of software architecture design and analysis. Journal of
Systems and Software, 79(8):1207–1216, 2006.

[38] R. Kazman, L. Bass, M. Klein, T. Lattanze, and L. M.
Northrop. A basis for analyzing software architecture analysis
methods. Software Quality Journal, 13(4):329–355, 2005.

[39] B. Kitchenham and S. Charters. Guidelines for performing
systematic literature reviews in software engineering. ST5 5BG,
UK Version 2.3, School of Computer Science and Mathematics,
Keele University, UK, 2007.

[40] J. Lakos. Large-scale C++ software design. Addison-Wesley,
1996.

[41] N. Lassing, P. Bengtsson, H. van Vliet, and J. Bosch.
Experiences with alma: architecture-level modifiability
analysis. J. Syst. Softw., 61:47–57, March 2002.

[42] N. Lassing, D. Rijsenbrij, and H. van Vliet. How well can we
predict changes at architecture design time? J. Syst. Softw.,
65:141–153, February 2003.

[43] X. Liu and Q. Wang. Study on application of a quantitative
evaluation approach for software architecture adaptability. In
5th Int. Conf. on Quality Software, 2005 (QSIC’05), pages
265–272. IEEE, 2006.

[44] P. Maheshwari and A. Teoh. Supporting atam with a
collaborative web-based software architecture evaluation tool.
Sci. Comput. Program., 57:109–128, July 2005.

[45] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner.
Bunch: A clustering tool for the recovery and maintenance of
software system structures. In Proc. Int. Conf. on Softw.
Maitenance (ICSM’99), ICSM ’99, pages 50–, Washington,
DC, USA, 1999. IEEE Computer Society.

[46] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner.
Automatically improve software models for performance,
reliability and cost using genetic algorithms. In Proc. 1st Joint
WOSP/SIPEW Int. Conf. on Perf. Eng. (ICPE’10), pages
105–116, New York, NY, USA, 2010. ACM.

[47] R. C. Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2003.

[48] M. Matinlassi. Evaluating the portability and maintainability
of software product family architecture: terminal software case
study. In 4th Working IEEE/IFIP Conf. on Software
Architecture (WICSA’04), pages 295–298. IEEE, 2004.

[49] T. McCabe. A complexity measure. IEEE Transactions on
software Engineering, pages 308–320, 1976.

[50] T. Mens, J. Magee, and B. Rumpe. Evolving software
architecture descriptions of critical systems. Computer,
43:42–48, May 2010.

[51] B. S. Mitchell and S. Mancoridis. On the automatic
modularization of software systems using the bunch tool. IEEE
Trans. Softw. Eng., 32:193–208, March 2006.

[52] F. Olumofin and V. Misic. A holistic architecture assessment
method for software product lines. Information and Software

Technology, 49(4):309–323, 2007.

[53] D. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058,
1972.

[54] D. Paulish and L. Bass. Architecture-centric software project
management: A practical guide. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2001.

[55] N. Rauch, E. Kuhn, and H. Friedrich. Index-based Process and
Software Quality Control in Agile Development Projects.
http://goo.gl/RxNXJ, 2008.

[56] R. Reussner, I. Poernomo, and H. Schmidt. Reasoning about
software architectures with contractually specified components.
In Component-Based Software Quality, volume 2693 of LNCS,
pages 287–325. Springer, 2003.

[57] M. Riaz, E. Mendes, and E. Tempero. A systematic review of
software maintainability prediction and metrics. In Proceedings
of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM ’09, pages
367–377, Washington, DC, USA, 2009. IEEE Computer Society.

[58] S. Roock and M. Lippert. Refactoring in Large Software
Projects: Performing Complex Restructurings Successfully.
John Wiley & Sons, 2005.

[59] B. Roy and T. Graham. Methods for Evaluating Software
Architecture: A Survey. Technical Report 545, Queen’s
University at Kingston, Ontario, Canada, Kingston, 2008.

[60] N. Rozanski and E. Woods. Software systems architecture:
working with stakeholders using viewpoints and perspectives.
Addison-Wesley Professional, 2005.

[61] R. S. Sangwan, P. Vercellone-Smith, and P. A. Laplante.
Structural epochs in the complexity of software over time.
IEEE Softw., 25:66–73, July 2008.

[62] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. Lucena. On the
modularity of software architectures: A concern-driven
measurement framework. In F. Oquendo, editor, Software
Architecture, volume 4758 of Lecture Notes in Computer
Science, pages 207–224. Springer Berlin / Heidelberg, 2007.

[63] S. Sarkar, A. C. Kak, and G. M. Rama. Metrics for measuring
the quality of modularization of large-scale object-oriented
software. IEEE Trans. Softw. Eng., 34:700–720, September
2008.

[64] S. Sarkar, G. M. Rama, and A. C. Kak. Api-based and
information-theoretic metrics for measuring the quality of
software modularization. IEEE Trans. Softw. Eng., 33:14–32,
January 2007.

[65] S. Sarkar, S. Ramachandran, G. Kumar, M. Iyengar,
K. Rangarajan, and S. Sivagnanam. Modularization of a
large-scale business application: A case study. IEEE Software,
pages 28–35, 2009.

[66] N. F. Schneidewind. The state of software maintenance. IEEE
Trans. Softw. Eng., 13:303–310, March 1987.

[67] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna. From
retrospect to prospect: Assessing modularity and stability from
software architecture. In Proc. IEEE/IFIP Working Int. Conf.
on Software Architecture (WICSA’09), pages 269–272. IEEE,
2009.

[68] Y. Shen and N. Madhavjim. ESDM-A Method for Developing
Evolutionary Scenarios for Analysing the Impact of Historical
Changes on Architectural Elements. In Proc. 22nd IEEE Int.
Conf. on Software Maintenance (ICSM’06), pages 45–54.
IEEE, 2006.

[69] J. Stammel and R. Reussner. KAMP: Karlsruhe architectural
maintainability prediction. In Proc. 1st Workshop des
GI-Arbeitskreises Langlebige Softwaresysteme (L2S2), pages
87–98. Citeseer, 2009.

[70] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured
design. IBM Syst. J., 13:115–139, June 1974.

[71] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques: Research articles. Softw.
Pract. Exper., 35:705–754, July 2005.

[72] P. Tarvainen. Adaptability evaluation of software architectures;
a case study. In Proc. 31st Int. Conf. on Computer Software
and Applications Conference (COMPSAC’07), volume 2,
pages 579–586. IEEE, 2007.

[73] R. Taylor, N. Medvidovic, and E. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley
Publishing, 2009.

[74] E. Yourdon and L. L. Constantine. Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design. Prentice Hall, 1979.

