The SPOSAD Architectural Style for Multi-tenant Software Applications

Heiko Koziolek
Industrial Software Systems
ABB Corporate Research
Ladenburg, Germany
heiko.koziolek@de.abb.com

Keywords-Software architecture; Software quality; Software
performance; Software maintenance

Abstract—A multi-tenant software application is a special
type of highly scalable, hosted software, in which the ap-
plication and its infrastructure are shared among multiple
tenants to save development and maintenance costs. The
limited understanding of the underlying architectural concepts
still prevents many software architects from designing such
a system. Existing documentation on multi-tenant software
architectures is either technology-specific or database-centric.
A more technology-independent perspective is required to
enable wide-spread adoption of multi-tenant architectures. We
propose the SPOSAD architectural style, which describes the
components, connectors, and data elements of a multi-tenant
architecture as well as constraints imposed on these elements.
This paper describes the benefits of a such an architecture
and the trade-offs for the related design decisions. To evaluate
our proposal, we illustrate how concepts of the style help to
make current Platform-as-a-Service (PaaS) environments, such
as Force.com, Windows Azure, and Google App Engine scalable
and customizable.

I. INTRODUCTION

The software industry is currently adopting the Software-
as-a-Service (SaaS) deployment model in many application
domains [1]. SaaS applications are hosted on Internet servers
by a provider instead of being downloaded and installed
locally on the user’s computer. SaaS applications typically
provide licenses on a pay-per-use basis, instead of being
bought by a user.

A special kind of SaaS offering is a multi-tenant software
application [2]. It serves multiple tenants (e.g., companies
or non-profit groups) from a single application instance.
Furthermore, for all tenants the software runs on the same
infrastructure (i.e., containers, virtual machine, operating
system, hardware), runs from the same code base, and can
thus be maintained centrally. The most popular example for
a multi-tenant SaaS application is a customer relationship
management (CRM) software by Salesforce [3].

Because of their scalability and efficiency, multi-tenant
architectures are considered a critical competitive advantage
over classical single-tenant architectures for large-scale sys-
tems in specific domains, such as CRM, HR, or financial
applications [2]. Despite the emerging platforms for SaaS
applications [1], implementing multi-tenant architectures is
still not well understood and documented. It is hard for

software engineers to develop such a system, because the
architectural concepts, the necessary design decisions and
their trade-offs require high expertise.

Existing attempts on providing a structured documenta-
tion of multi-tenancy architectural concepts either focus on
restricted aspects (e.g., the database layer [4]) or depend
on certain technologies (e.g., .NET [5], IBM/Java [6]). The
documented architectures of existing multi-tenant systems
(e.g., [3]) are difficult to transfer to other systems. A more
abstract and technology-independent perspective is needed
to understand the involved design decisions and architectural
trade-offs.

We propose capturing the architectural concepts of a
multi-tenant system as a new architectural style (the
so-called SPOSAD style: Shared, Polymorphic, Scalable
Application and Data). Classical architectural styles (e.g.,
client/server, pipe-and-filter, mobile code, etc.) were docu-
mented decades ago, but are still useful to structure new
software applications [7]. The SPOSAD style for multi-
tenant applications as described in this paper is an extension
of the multi-tier architectural style [7].

The contribution of this paper is the initial proposal of
a new architectural style called SPOSAD for multi-tenant
software systems. We apply software architecture research
concepts and methodologies to multi-tenant software sys-
tems to help software architects understand the implications
of their design decisions and inevitable trade-offs. We have
enhanced the initially sketched concepts from a former pa-
per [8] to comprise multiple architectural views of SPOSAD,
detailed descriptions of the involved components, and a
refined presentation of the induced architectural constraints.
To initially evaluate the style, we compare its architectural
concepts with the concepts underlying three Platform-as-
a-Service (PaaS) environments (i.e., force.com, Windows
Azure, and Google App Engine).

This paper is organized as follows: Section II briefly
recalls some background on architectural styles and de-
scribes two recent styles related to SPOSAD. Section III then
describes the SPOSAD style with the desired architectural
properties, its architectural elements, its induced constraints
on these elements, and its trade-offs. Section IV provides an
initial evaluation of the style via a relation to current PaaS
environments. Finally, Section V discusses related work.

II. ARCHITECTURAL STYLES

According to Fielding [9], an architectural style is a coor-
dinated set of architectural constraints that restricts the roles
of the architectural elements and the allowed relationships
among those elements within any architecture that conforms
to that style. Compared to the more descriptive design
patterns that summarize proven solutions, architectural styles
have a more prescriptive character and limit the design
space.

Basic architectural styles are for example client/server,
n-tier, pipe-and-filter, and code on demand. More complex
styles, which build on and extend the basic styles, are model-
view-controller for GUIs, REST for the WWW [9], and
SPIAR for AJAX applications [10].

REST and SPIAR are architectural styles related to multi-
tenant architectures. REST induces a constrained clien-
t/server architecture with focus on the communicated data
elements. The style prescribes the use of resources (i.e.,
the target of hyperlinks), resource identifiers (e.g., URLSs),
representations (e.g., HTML documents, JPEG images), and
meta-data. Two constraints for the architecture are a syn-
chronous request/response communication between client
and server as well as stateless and context-free interaction
for scalability.

SPIAR targets client / server architectures with rich
user interfaces and was deduced from AJAX applica-
tions. The style constraints the architecture by prescribing
asynchronous interaction between client and server, delta-
communication (i.e., only state-changes are transferred to
reduce network traffic), and component-based user interface
for more interactivity.

Both the REST and SPIAR style (if stateless) might
be used in a multi-tenant architecture. However, they are
not sufficient to describe such architectures. Multi-tenancy
puts additional constraints on the code to be used at the
application tier and the data elements held in the data tier
as described in the next section.

To describe the architectural concepts in this paper, we
use the terminology of Perry and Wolf [11]. They define
an architecture as a configuration of architectural elements
- processing (i.e., components), connectors, and data - con-
strained in their relationships in order to achieve a desired
set of architectural properties.

III. THE SPOSAD STYLE

This section first describes the architectural properties
targeted by the SPOSAD style (Section III-A), before de-
scribing its architectural elements in detail (Section III-B).
Then, the architectural constraints imposed by SPOSAD
are elaborated (Section III-C) and architectural trade-offs
are discussed (Section III-D). The section concludes with
a discussion of the style, a short comparison to related
approaches, and open issues (Section III-E).

A. Architectural Properties

The following architectural properties mainly focus on the
extra-functional properties to be achieved by the style. They
describe the goals of a multi-tenant software architecture
and can also be viewed as typical requirements for such a
system.

Resource Sharing: One central aim of a multi-tenant archi-
tecture is cost reduction by sharing resources among a large
number of tenants. Resources do not only include hardware
devices, such as CPUs, memory, and hard disks, but also
software resources, such as application servers, databases,
and operating systems. It is the aim to leverage economics
of scale and avoid unnecessary overheads for hardware and
resources. The total costs of ownership (TCO) shall be
reduced for the tenants, because they face lower maintenance
costs for patching as well as for up- and down-scaling.
Scalability / Elasticity: A multi-tenant system shall serve a
large number of tenants with a potentially also large number
of clients. Such a system should be able to handle growing
amounts of workload without noticeable increasing response
times or decreased reliability. Also, reduced amounts of
workload shall be handled efficiently and seamlessly.. Due
to the inherent limits of scaling up (i.e., adding resources
to a single node), the ability to seamlessly scale out (i.e.,
adding more nodes) is a typical architectural property of a
multi-tenant system.

Maintainability: In contrast to many hosted, single-tenant
software applications, a multi-tenant architecture relies on
a shared code basis for all tenants. The developers can fix
bugs centrally. Feature updates are available to all tenants.
Thus, the costs of maintaining a single system should be
dramatically lower than for multiple systems. Besides the
code, also the database administration shall be shared among
tenants to reduce maintenance costs for databases.
Customizability: While a single code base limits a multi-
tenant system for high customization by individual tenants,
a limited degree of user extensions and tenant-specific
adaptations shall still be possible. This is simply a functional
requirement from many tenants, who want to use adaptations
of the software for customer-friendliness and competitive
advantages. A well-designed multi-tenant architecture effec-
tively trades resource sharing off against user customizabil-
ity.

Usability: Besides changing the business logic and the data
of an application, also the user interface shall be configurable
through tenant-specific customizations. It allows different
tenants to create their own branding for an application.

B. Architectural Elements

This section describes the architectural elements of the
SPOSAD style, namely its components, its connectors, and
its data elements according to the template by Perry and
Wolf [11] for the description of architectural styles. Mul-

tiple views of the SPOSAD style (Fig. 1- 4) illustrate the
relationships between its elements.

1) Components: The components of the SPOSAD style
are arranged as in the classical multi-tier style into several
tiers (cf. Fig. 1). This improves the separation of concerns
and enables updating certain tiers (e.g., the database tier)
during system evolution. Users access the system through
the client tier and access the application and database
tier through the presentation tier, which is responsible for
providing the user interface (e.g., web pages). For business
transactions, all computations are made in the application
tier, which retrieves and persists the involved data in the
database tier.

Client Presentation Tier

Figure 1: Functional view of the SPOSAD style comprising
components and connectors

The following components (Fig. 1) are typical (but not
sufficient) for a multi-tenant system:

Browser/Rich Client: Users access the system via a web
browser as in typical web applications or a rich client
application (using HTML/REST).

Web Content: The Web Content component is responsible
for serving HTTP requests and providing static (via HTML)
or dynamic pages (via CGI, servlets, JSPs, ASP.NET, etc.).
This component typically spawns several threads (cf. Fig. 2)
to handle individual client requests. In the SPOSAD style,
the threads of this component are constraint to be stateless
to keep them independent from specific clients. Thus, im-
mediately after completing a single request by a user, each
thread can serve another user without waiting for input from
the first user.

For the multi-tenant system conforming to SPOSAD, the

viewable content shown by the Web Content component
must be customizable, which is not provided by regular web
applications. Each tenant may provide a unique arrangement
of the user interface, branding, and specialized forms for
tenant-specific data. Therefore, the Web Content component
may access the meta-data manager within the application
tier to provide tenant-specific customizations for the user
interface.
Load Balancer: Requests directed to the Web Content
component and Application Logic component are routed
through one or more load balancers, which ensure a uniform
utilization of the respective threads. Different balancing
strategies might be useful depending on the expected request
profile.

Figure 2: Concurrency view of the SPOSAD style with
processes and threading

The load balancers ensure horizontal scaling, so that
the application can be adapted to an increased number of
requests by adding more machines instead of using more
powerful machines. Load balancers in multi-tenant systems
typically also support auto-scaling, which includes shutting
down unnecessary machines if the request load decreases
("elasticity”). This can lower the overall power consumption
of a data center and lead to substantial financial savings.
Application Logic: The Application Logic component exe-
cutes tenant-specific business logic and queries the database
for necessary data. Unlike in a single-tenant system, where
tenant-specific implementations of the application logic are
created and maintained, in a SPOSAD-constrained multi-
tenant system the Application Logic component is based on
the same source code for all tenants. Thus, maintaining the
common code benefits all tenants and patches can be applied
centrally.

Unlike in the classical multi-tier architecture, the Appli-
cation Logic might be adapted by the meta-data manager
for tenant-specific workflows or computations and thus
exhibits a so-called “’polymorphic” behaviour. Constrained
by SPOSAD, the threads of the application logic reside
in a single container on the same machine to increase
resource sharing, but there might be multiple machines
hosting instances of the component (Fig. 3). Communication
with other components can be handled by middleware.

In regular web applications, the application logic may
carry client-specific state. However in the SPOSAD style,
the Application Logic must be stateless to ensure scalability.
It allows I/O operations to be carried out asynchronously.
This enables horizontal scaling. User-specific state must be
stored either on the client side or in the database, which can
increase the complexity of the application.

Database Node
{number=1..k)

Load Balancing Node Web Content Node

Application Logic Node
{number=1..j =

Load €1 e £ Load €]
ache
€] Balancer Balancer a
o] M1 MT-Datab
Balancer atabase
Web Content Metadata Applicatiort]
Manager Logic

Figure 3: Deployment view of the SPOSAD style illustrating
one possible component allocation

Meta-data Manager: The Meta-data Manager is responsi-
ble for customization of the application logic threads and
the web content threads. It retreives tenant-specific meta-
data from the database and adapts the application accord-
ingly. Different implementations are possible: the Meta-data
manager can direct meta-data to the application logic and
let the application adapt itself or the Meta-data Manager
can generate tenant-specific code on-the-fly, which can then
serve as the application logic.

There may be different scopes of customization per tenant,

so that, for example, different business units of a com-
pany can be handled differently. According to SPOSAD,
the multi-tenant system must allow users to customize the
application logic and data model and must provide respective
functionalities (e.g., wizards) for this.
Multi-tenant Database: The multi-tenant database stores
business data as well as meta-data persistently. To maximize
resource sharing, a single database should host the data of
all tenants. It avoids overheads for memory consumption and
administration.

A conventional, off-the-shelf database can be used for
a multi-tenant system. However, the data needs a special
arrangement to enable multi-tenancy. Different options for
the data and schema layout for multi-tenant applications are
discussed Section III-B3.

Hosting a large amount of tenants in the same database
results in the need to partition the database and to store the
data into multiple physical nodes. Special security mecha-
nisms, such as row level access control, are required to keep
the tenant data isolated from each other. Backup procedures
can be implemented efficiently by creating table spaces
from shared tables for each tenant and making incremental
backups [2], [4].

2) Connectors: The communication between the client
and the presentation tier follows a RESTful style. Clients
request services from the Web Content component syn-
chronously.

Between the presentation tier and the application tier
SPOSAD requires the communication to be asynchronous,
so that application threads do not have to wait for user
inputs.

The interaction of other components with the meta-data
manager is handled through procedure calls. Between the
application tier and the database tier, the communication can
be synchronous for short queries and asynchronous for long
running queries. With the asynchronous communication,
waiting for the query results from the multi-tenant database
can be avoided, while the short synchronous queries can be
handled immediately.

The connections might involve additional resolvers (e.g.,
DNS lookup) or tunnels (SOCKS, SSL after HTTP) as addi-
tional, optional connectors. Because the component topology
follows the pipe-and-filter style, the communication can be
flexibly extended.

3) Data Elements: Requests exchanged by the compo-
nents, as well as the data stored in the database tier, represent
the most important data elements in the multi-tenant system.
Besides the client id, each client request must include also
the tenant id, so that tenant-specific customizations and
security mechanisms are enabled.

In the data tier, as many resources as possible should
be shared to decrease operational expenses. For example,
when hosting data for a large number of tenants, the memory
and processing overheads for keeping their data in separate
databases or tables should be avoided. The multi-tenant
database stores at least tenant-specific customer data (e.g.
accounting information) and tenant-specific meta-data (e.g.,
customized workflows).

There are several trade-offs when implementing a form
of sharing in the data tier [5]. The simplest solution is
using a separate database per tenant on the same physical
nodes, which is straight forward to implement and favorable
for security purposes. However, the sharing of resources is
limited and costs for hardware, backups, and administration
can be high.

A shared database with per-tenant schemas reduces mem-
ory overheads, hardware costs, and maintenances efforts,
because only a single database needs to be managed. Draw-
backs are potential security issues and complicated backup
procedures, because it is then desired to keep tenant-specific
backups. Using a shared databased with a single schema for
all clients results in even lower operational expenses because
of the reduced memory overheads and low administration
costs. However, ensuring security is even more complicated
and special mechanisms for query optimization and parti-
tioning are required to manage the potentially large tables.

Different schema mapping techniques (i.e., layouts) for
multi-tenant databases hosting the data of multiple clients
are shown in an information view of the SPOSAD style in
Fig. 4 (see also Aulbach et al. [4]). The same data is shown
for three different layouts.

In a private table layout, each tenant gets its own tables
with potentially tenant-specific columns and data types. In
Fig. 4a, the tenant ids are 27, 33, and 46 and each tenant
has its own table with proprietary columns. Because of
the memory overheads for storing tables, this layout is
unfavorable when hosting a large number of tenants (e.g.,
several thousands).

In an extension table layout, all common tenant data is
stored in a central table, while only tenant-specific exten-
sions are realised by additional tables (Fig. 4b). If many
tenants customize the schema, this again results in a high
number of required tables and additionally requires joins
when accessing the data.

The universal table layout stores all tenant data in a single
table. The table contains multiple columns with a generic
data type (e.g. varchar), which can be filled with tenant-
specific data (Fig. 4c). No expensive joins are needed to

Account27

AID Name Robot Speed Account33

1 ABC X 20 AID Name

2 DEF Y 50 1 GHI
Account46

AID Name Lines
1 JKM 12

(a) Private Table Layout
Industrial-Account

Account-Extension TenantID Row Robot Speed
Tenant ID Row AID Name 27 0 X 20
27 0 1 ABC 27 1 Y 50
27 1 2 DEF
3 0 ! GHI Telecommunication-Account
e 0 ! JKM Tenant|D Row Lines
46 0 12

(b) Extension Table Layout
Universal
TenantID Table Coll Col2 Col3 Col4 Col5 Col6
27 0 1 ABC X 20 - -
27 0 2 DEF Y 50 - -
33 1 1 GHI - - - -
46 2 1 JKM 12 - - -

(c) Universal Table Layout

Figure 4: Information view of the SPOSAD style showing
data layouts in the multi-tenant database

reconstruct the logical schema, but the table might store
many null values and type conversion might be required.

C. Architectural Constraints

The following constraints restrict the architectural ele-
ments introduced before and help to avoid design decisions
with a negative impact on the desired architectural proper-
ties.

Single code base: For the web content and application
logic components, there must be a single code base shared
among all tenants. Tenant-specific extensions to the code
are not allowed. Tenant-specific workflows or data must be
introduced using meta-data. The single code base including
a single configuration management and bug tracking system
improves the maintainability of the system. Patches only
need to be applied once to the shared code and are then
available for all tenants.

Shared resources in the database tier: Hosting a dedicated
database server per tenant with proprietary data schemas
does not comply to the SPOSAD style. Some sharing of
data resources as in Fig 4 is required, which also differ-
entiates the SPOSAD style from the n-tier style. Sharing

avoids memory overheads and wasted resources for hosting
underused database servers. It enables large scalability of
the system, because DBMS-specific facilities for partitioning
and distributing the data can be used.
Customizability via meta-data: The application logic
threads, the web content, and the data schema must be
customisable using meta-data. While resource sharing is
the most desirable property of the SPOSAD style, tenant-
specific customizations are a necessity from a business
perspective, as tenants will not accept standard solutions in
many cases.
Stateless application tier: The application tier must not
hold client-specific state, such as transactional data or inputs
of user forms. This constraint allows for efficient usage of
the processing resources, as the application threads do not
have to wait for user inputs of a specific client, but can
process requests by other users in the mean time.
Asynchronous interaction with the application tier: The
communication between the presentation tier and the appli-
cation tier, as well as between the application tier and the
database tier must be asynchronous where possible to avoid
waiting delays.

Besides the listed constraints, the SPOSAD styles inherits
all constraints of the multi-tier style [7] (e.g., prohibiting
clients from directly accessing the data tier).

D. Architectural Trade-offs

On the one hand, applying the SPOSAD style results
in several trade-offs, which should be carefully considered
before deciding to implement a multi-tenant system. On the
other hand, the SPOSAD style still leaves several design
options open, so that architects have to weigh different
requirements and determine their trade-offs themselves.
Complexity vs. Time-to-Market: A multi-tenant, hosted
application running a single instance for all tenants is sig-
nificantly more complex to implement than a multi-instance
application. Mechanisms for keeping the application cus-
tomizable have to be found and the database has to be
specially prepared. Therefore, a system according to the
SPOSAD style requires higher developer skills.
Security/Availability vs. Resource Sharing: Because mul-
tiple clients of multiple tenants share the same infrastructure
in a multi-tenant system, the architects needs to ensure that
the clients work in isolation and do not affect each other.
Hosting business-critical data of multiple tenants in the
same infrastructure or even the same database table requires
special measures for keeping the data logically isolated (e.g.,
using encryption). It has to be ensured that the application
threads of one tenant do not interfere with application
threads by other tenants and crash the underlying VM
or decrease the overall performance. Reliability measures
might include application thread replication and the isolation
of performance-intensive application tasks onto individual
VMs.

Customizability vs. Maintainability The architect has to
define the degree of customization that the application should
support. More customizability implies more complicated
development and makes the use of shared resources more
difficult. Thus, highly customizable applications are not
well suited for a multi-tenant architecture. The architect
should identify an adequate number of variation points in
the software.

E. Discussion

It is helpful to delimit multi-tenant architectures from
single-tenant, n-tier architectures to make their special fea-
tures better comprehensible. For example, an application
such as Hotmail hosts the data of multiple tenants in the
same infrastructure, but does not allow for tenant-specific
customizations using meta-data. The SaaS application by
SAP for small companies called BusinessByDesign hosts
the clients of each tenant on a dedicated physical machine'.
Thus, it can be considered a single-tenant solution.

Infrastructure-as-a-Service (IaaS) solutions, such as Ama-
zon EC22 offer virtualized servers, but no out-of-the box
support for application sharing. Hosted software on Amazon
EC2 is usually single-tenant, as dedicated virtual servers
and databases are set-up per tenant. Compared to a multi-
tenant application such an approach might lead to a waste
of resources, such as memory, disk space, and CPU power,
because underutilized servers cannot handle the requests of
other tenants. However, such a solution can be easier to
implement when dealing with legacy software.

Some issues are still open to complete the description
of the SPOSAD style and can be considered future work.
The role of application servers and middleware needs to
be discussed with greater detail. Special requirements for
the database in terms of query optimizations and backup
procedures need to be documented. Furthermore, facilities
for usage-based metering and payment of service per tenant
should be addressed with a dedicated component.

IV. EVALUATION

The evaluation of an architectural style is inherently
difficult [9], [10]. Its success depends on whether systems
complying to the style in fact show the promised architec-
tural properties, such as scalability or usability. Frameworks
need to be created to support developing according to the
style. Furthermore, the efforts for an ad-hoc development
of a multi-tenant system have to be compared with the
efforts for a development based on the style. This requires
expensive, repeated controlled experiments across multiple
development projects, where the interfering variables are be
hard to control.

To provide an initial form of evaluation in the scope of
this paper, we have investigated currently emerging PaaS

1g00.gl/CQWD
2aws.amazon.com/ec2/

environments for their architectural properties. We analyse
Force.com in Section IV-A, Windows Azure in Section IV-B,
and Google App Engine in Section IV-C.

These environments can ease the implementation of multi-
tenant systems and can be considered as frameworks, be-
cause their infrastructure is already prepared for high scal-
ability and resource sharing following some principles also
present in the SPOSAD style. However, they leave many
design options open for developers and do not enforce all
architectural constraints bundled in the SPOSAD style.

A. Force.com

T T
]]
Virtual £)
Load] &l ! &l Load &J ! Customized
Balancer User Screens 1> Cache Balancer Application] Oracle RAC
| Components
| y,
I
f | Runtime £] —O i
! e !
L L

Figure 5: Simplified view on the Force.com architecture

With the force.com platform developers may build ap-
plications on top of the salesforce.com infrastructure. On a
high level of abstraction, the platform is built according to
an n-tier architecture [3] comprising a presentation tier, an
application tier, and a data tier (Fig. 5).

Clients access the application tier of force.com according
to the REST style. Each tenant is served by application
instances originating from the same code base. Salesforce
manages updates of this code base centrally. Tenants can
customize the application user interface (forms), business
logic (workflows), and data (customized tables) by spec-
ifying meta-data stored in the so-called Universal Data
Dictionary (UDD). A runtime application generator creates
tenant-specific application logic from this meta-data. Thus,
the application is considered ’polymorphic’, as it appears
and behaves differently for the clients of each tenant.

Through the application tier, all tenants access the same
logical database in the data tier, which is a customized
version of an Oracle database. All tenant data is stored in
a single table, which can be partitioned among multiple
machines. Besides a tenant id column, the table contains
500 customizable columns (varchar datatype) for storing
arbitrary data (i.e., a universal table layout, cf. Fig. 4).

Salesforce has claimed that it hosts more than 50000 ten-
ants and 1.5 million subscribers on only 1000 servers [12],
thus demonstrating the scalability of the architecture. Fur-
thermore, patches are applied weekly to the single code
base and thus rolled out to all customers, thereby decreasing
maintenance costs.

B. Windows Azure

The Windows Azure platform by Microsoft allows de-
ploying and running ASP.NET and WCF applications in Mi-
crosoft data centers [13]. The data centers run the Windows
Azure Hypervisor and modified versions of Windows Server

T T
i i
&] &1 I &1 &1 5] i ! &1
Load Web Role g Cache Load Worker Role] Windows
Balancer ! Balancer ~177"2] Azure Storage
i
I
L ! g0 |
S e o Worker Rolé
[S G—— o
| |
. .

Figure 6: Simplified view on the Windows Azure architec-
ture

2008 on a large number of virtual machines. The platform
follows a three-tier structure (Fig. 6).

Clients, such as browsers or web services, access the
application tier using REST or SOAP. In the application
tier, applications with a Ul are implemented as so-called
’web-roles’, while background applications are implemented
as so-called *worker-roles’. Web-roles and worker-roles may
interact asynchronously using queues. Ideally, they are state-
less and may be run in a configurable number of instances.
Load balancers can distribute requests among those in-
stances. Tenants can implement UI customizations using MS
Silverlight and business logic customizations using Windows
Workflows.

Web/Worker-roles can either access the non-relational,
horizontal scalable Windows Azure storage or slightly cus-
tomized versions of the MS SQL server (SQL Azure). The
Windows Azure storage features blobs, non-relational tables
similar to the universal table layout, and queues for data
persistency. Queues handle interaction between web- and
worker roles by storing data portions.

Case studies reported on the Azure website® indicate that
the platform can support highly scalable applications. For
example, the online auction company Adslot successfully
ran simulations with more than 100 stateless worker roles
and more than 4000 users accessing the system without
experiencing performance problems. A single code basis
is not enforced by Windows Azure and thus needs to be
adhered by the SaaS providers themselves.

C. Google App Engine

T
|
! App Engine 2]
1| DataStore
T
|
|
|

T
i
&] &1 I &1 £] &]
Load JSP | Python g Cache Load Serviets
Balancer ! Balancer
|
A\ |
[N App Enginé] [0)
i Services | o~ Ao
| |
.

Figure 7: Simplified view on the Google App Engine archi-
tecture

Google’s App Engine (GAE) [14] enables developers to
run Java or Python applications in Google’s data centers.
Several web frameworks, such as Django, Cherrypy, or py-
lons run on GAE and assist developers in implementing their
applications. Again, the architecture features a presentation,
application, and data tier (Fig. 7).

3www.microsoft.com/windowsazure/

Clients access the application tier of GAE using REST.
Besides responding to web requests, GAE also allows to
run so-called ’scheduled tasks’ as possibly periodic back-
ground tasks. Web applications and background tasks might
interact asynchronously using queues. GAE features built-
in auto-scaling, load balancing, and fail-over mechanisms
between identical implementation instances in the applica-
tion tier. GAE also allows the management of multiple,
tenant-specific namespaces to ease the implementation of
multitenancy applications.

Applications may store data in a non-relational structure
called Google Big Table, which shall be able to handle large-
scale applications and store petabytes of data. The GAE
storage features a proprietary query engine with the Google
Query Language that allows transactions. The Big Table
does not have a schema, the structure of the contained data
entities must be provided and enforced by the application
code.

GAE has proven to be scalable during a town hall meeting
of US president Obama in 2009 [15]. Using Google Mod-
erator running on GAE, more than 100,000 questions were
asked by more than 90,000 users within 1.5 hours, which
did not result in significant performance degradation.

V. RELATED WORK

There is still limited scientific research on multi-tenant
architectures. The underlying concepts evolved in SaaS com-
panies and have been used as a competitive advantage. They
have hardly been analysed systematically by researchers.

Existing documentations of multi-tenant architectures are
often technology-specific. Chong and Carraro from Mi-
crosoft discuss the business rationale of SaaS applications
and describe their high level architectural concepts [2], [5].
However, they do not describe a reusable architectural style.

The description by Goldszmidt et al. [6] highlights some
architectural concepts of multi-tenant software applications,
but is centered around Java and IBM products, such as
the Websphere application server or DB2. Weissman [3]
provides an overview of the force.com architecture. His
description is not easily transferable to other multi-tenant
architectures.

Aulbach et al. [4] provide a database centric view on
multi-tenant architectures. They evaluate the performance
properties of different flexible schemas for multi-tenant
applications and propose a new, more efficient schema. Their
analysis lacks an evaluation of the scalable storage solutions
of current PaaS environments. Furthermore, they neglect the
application layer of multi-tenant applications.

Wang et al. [16] proposed a framework for implement-
ing multi-tenant applications. They describe patterns for
security, performance, and administrations isolation in such
architectures and sketch customization concepts. However,
they neglect the application tier in their investigation.

Kwok et al. [17] deal with capacity planning in multi-
tenant applications and propose a method for determining
the optimal allocation of application threads to physical
nodes. Mietzner et al. [18] extend the service component
architecture (SCA) to be able to describe multi-tenant appli-
cations.

VI. CONCLUSIONS

We have initially proposed a new architectural style called
SPOSAD for multi-tenant software applications. This paper
has defined architectural constraints, discussed trade-offs to
consider by the architect. We have analyzed our proposal
through a comparison with current PaaS environments.

The contribution of this paper is the application of soft-
ware architecture research concepts and methodologies, such
as architectural constraints and style descriptions, on the
current practices of efficiently scalable SaaS applications.
Ultimately, it shall help software architects to make more
informed design decisions and to implement multi-tenant
systems more efficiently.

The style description in this paper bears many directions
for future work. The role of application containers and
virtualization techniques needs to be discussed with greater
detail. Patterns for security, scalability, and reliability could
augment the style description.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the Clouds: A Berkeley View of
Cloud Computing,” UC Berkeley, Tech. Rep. 2009-28, 2009.

[2] F. Chong and G. Carraro, “Architecture Strategies
for Catching the Long Tail,” Microsoft Corporation,
http://msdn.microsoft.com/en-us/library/aa479069.aspx,
Tech. Rep., April 2006, last visited 2010-02-19.

[3] C. D. Weissman and S. Bobrowski, “The Design of the
Force.com Multitenant Internet Application Development
Platform,” in Proc. 35th SIGMOD International Conference
on Management of Data (SIGMOD ’09). New York, NY,
USA: ACM, 2009, pp. 889-896.

[4] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger,
“Multi-tenant databases for software as a service: schema-
mapping techniques,” in Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’08). New York, NY, USA:
ACM, 2008, pp. 1195-1206.

[5] F. Chong and G. Carraro, “Multi-tenant Data Architec-
ture,” Microsoft Cooperation, http://msdn.microsoft.com/en-
us/library/aa479086.aspx, Tech. Rep., June 2006,
last visited 2010-02-19. [Online]. Available:
http://msdn.microsoft.com/en-us/library/aa479086.aspx

[6] G. Goldszmidt and I. Poddar, “Develop and Deploy Multi-
Tenant Web-delivered Solutions using IBM middleware,”
April 2008, last visited 2010-02-19. [Online]. Available:
http://bit.ly/ahVZdp

[7]1 R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice. Wiley,
2009.

[8] H. Koziolek, “Towards an Architectural Style for Multi-tenant
Software Applications,” in Proc. Software Engineering 2010
(SE’10), Fachtagung des GI-Fachbereichs Softwaretechnik,
ser. LNI, vol. To appear. GI, February 2010.

[9] R. T. Fielding and R. N. Taylor, “Principled design of the
modern Web architecture,” ACM Trans. Internet Technol.,
vol. 2, no. 2, pp. 115-150, 2002.

[10] A. Mesbah and A. van Deursen, “A component- and push-
based architectural style for AJAX applications,” J. Syst.
Softw., vol. 81, no. 12, pp. 2194-2209, 2008.

[11] D. Perry and A. Wolf, “Foundations for the Study of Software
Architecture,” ACM SIGSOFT Software Engineering Notes,
vol. 17, no. 4, pp. 40-52, 1992.

[12] E. Schonfeld, “The efficient cloud: All of salesforce runs on
only 1,000 servers,” http://tcrn.ch/b35s9T, March 2009, last
visited 2010-02-19.

[13] D. Chappell, “Introducing the Windows
Azure Platform,” DavidChappell & Associates,
http://go.microsoft.com/fwlink/?LinkId=158011, Tech.

Rep., August 2009, last visited 2010-02-19.

[14] Google, “App engine,” http://appengine.google.com, last vis-
ited 2010-02-19.

[15] T. Janisch, “Obamas online town hall provides better data
than answers,” http://bit.ly/dwEXJd, May 2009, last visited
2010-02-19.

[16] Z. H. Wang, C. J. Guo, B. Gao, W. Sun, Z. Zhang, and
W. H. An, “A Study and Performance Evaluation of the
Multi-Tenant Data Tier Design Patterns for Service Oriented
Computing,” in Proc. Int. Conf. on E-Business Enigneering
(ICEBE’08). 1EEE, 2008, pp. 94-101.

[17] T. Kwok and A. Mohindra, “Resource calculations with
constraints, and placement of tenants and instances for multi-
tenant saas applications,” in Proc. 6th Int. Conf. on Service-
Oriented Computing (ICSOC’08), 2008, pp. 633-648.

[18] R. Mietzner, F. Leymann, and M. P. Papazoglou, “Defining
Composite Configurable SaaS Application Packages Using
SCA, Variability Descriptors and Multi-tenancy Patterns,” in
Proc. 3rd Int. Conf. on Internet and Web Applications and
Services (ICIW’08). 1EEE Computer Society, 2008, pp. 156—
161.

