
MORPHOSIS:
A Lightweight Method Facilitating Sustainable Software Architectures

Heiko Koziolek∗, Dominik Domis∗, Thomas Goldschmidt∗, Philipp Vorst∗, Roland J. Weiss†
∗Industrial Software Systems Program

ABB Corporate Research, Ladenburg, Germany
†ABB Power Generation, Genova, Italy

heiko.koziolek@de.abb.com

Abstract—Managing the cost-effective evolution of industrial
software systems is a challenging task because of their complex-
ity and long lifetimes. Limited pro-active evolution planning
and software architecture erosion often lead to huge main-
tenance costs in such systems. However, formerly researched
approaches for evolution scenario analysis and architecture
enforcement are only reluctantly applied by practitioners due
to their perceived overhead and high costs. We have applied
several recent sustainability evaluation and improvement ap-
proaches in a case study to the software architecture of a large
industrial software system currently under development at
ABB. We combined our selection of approaches in a lightweight
method called MORPHOSIS, for which this paper presents
experiences and lessons learned. We found that reasonable
sustainability evaluation and improvement is possible already
with limited efforts.

I. INTRODUCTION

Software systems in the industrial automation domain
often have a lifetime of more than ten years after being
deployed to a customer. Distributed control systems feature
millions of lines of source code and challenging extra-
functional requirements. During their lifetime, they have to
be adapted to new platforms with typically shorter life-cycle.
They have to incorporate new requirements to stay competi-
tive. To cost-effectively evolve such software systems during
their long lifetimes is an enormously challenging task [1].

Researchers have proposed a variety of approaches to
evaluate and improve the sustainability of software architec-
tures [2]. Recent approaches are for example scenario-based
evaluation methods [3], architecture enforcement meth-
ods [4], and architecture-level code metrics frameworks [5].
These methods, however, have gained only limited adoption
in practice [6]. Many practitioners are reluctant to apply
them because the return on investment is unknown. Some
methods are perceived as heavy-weight and intrusive, thus
delaying the development process without providing imme-
diate benefits.

At ABB we were in charge with evaluating the architec-
tural design and initial implementation of a novel system
from the industrial automation domain. The system is based
on a considerable re-design of a former system, which grew
to several million lines of code during its lifetime. At the

end, the former system suffered from significantly growing
maintenance costs and the difficulty to add new features.

To assure the sustainability of the new architecture, we
applied several state-of-the-art approaches, which had not
been used in such a setting before. We combined them
in a holistic method called MORPHOSIS. The included
approaches concerned the following activities: We analyzed
the architecture against a number of future evolution scenar-
ios [7]. Further, we integrated architecture enforcement into
the build process of the system. Finally, we set up a reporting
framework for several novel architecture-level code metrics
from recent literature [5].

The contributions of this paper are experiences and
lessons learned from applying the approaches underlying
MORPHOSIS. Contrary to the perceived heavy overhead of
the included approaches, we argue that our method needs
limited resources and thus is lightweight. Although we can
currently not provide a quantified return on investment of the
method, we found initial evidence of the promised benefits.

II. MORPHOSIS

Our analysis team was involved in consulting an ABB
software development unit in improving the sustainability
of their product. The product had undergone an extensive
architecting phase and the implementation had started for
several months. The architectural design featured a better
modularization than the former version and had already been
prepared for several potential changes. Still, the development
unit did not systematically plan the evolution of the system
and was concerned about how to keep the implementation
compliant to the architecture design.

After an extensive literature search [2] we followed an ap-
proach from different perspectives to achieve sustainability
improvement on different levels (Fig. 1). To deal with the
challenge of technology changes and unexpected re-designs,
we conducted an evolution scenario analysis based on the
software architecture design (Section II-A).

To avoid architecture erosion, we set up tools for ar-
chitecture enforcement, which ensure compliance of the
source code to the designed architecture (Section II-B).
Finally, we installed an architecture-level metric tracking

Architecture
Design Phase

Software
Architecture
Description

Implementation
Phase

Source Code

Iterate

Must comply to

Requirements
Specification

concerns

Abstract Development Process
[...] [...]

MORPHOSIS
Evolution

Scenario Analysis
Architecture
Enforcement

Architecture-level
Metrics Tracking

Scenario
evaluation report

concerns concerns concerns concerns

Automatically
checked code rules

Periodic
metric report

Figure 1. Overview of the MORPHOSIS activities: different phases and
artifacts are covered in a holistic approach

framework based on state-of-the-art architectural metrics,
which helps to assess trends of sustainability over the course
of development and evolution (Section II-C).

A. Evolution Scenario Analysis

The analysis of exploratory scenarios is especially difficult
because future changes are difficult to predict [8]. Existing
case studies often identify a high number of scenarios but
do not evaluate each of them in depth [7]. In our study,
we focused on a limited number of scenarios, which we
evaluated on multiple levels (e.g., requirements, architecture,
code).

We conducted an evolution scenario analysis according to
an extended version of the ALMA method [7]. As suggested
by ALMA, we performed a combined top-down, bottom-up
scenario elicitation. After an initial literature search (step 1),
we interviewed eight experts from the business domain of
the system under study for emerging business and technol-
ogy trends (step 2, top-down elicitation). This investigation
resulted in a list of 31 categorized evolution scenarios for
generic systems in the business domain. The list contained
a subjective evaluation of the importance of each scenario
w.r.t. maintainability, which helped in prioritization.

Next, for bottom-up elicitation, one of our team members
visited the target ABB development unit (step 3). We ana-
lyzed the most important development artifacts, such as the
requirements specification, the architecture documentation,
the initial version of the source code, and the process
documentation. We discussed trends and anticipated changes
to the system with selected members of the development
team.

From the list of generic scenarios and the knowledge
gained from bottom-up elicitation, we then selected a
number of scenarios most important for the system under
study and analyzed their impact based on the available
development artifacts (step 4). This included tracing the
impact of each evolution scenario to the requirements, to the

architectural design, and to the source code. We identified
the most affected components in the architectural design.
Then, we applied dependency management tools, such as
NDepend1 and CppDepend2 to assess the amount of affected
source code as well as potential ripple effects to other
components.

Seven evolution scenarios were selected to be analyzed
in detail. They concern different changes, such as technical
changes (e.g., changing or updating the operating system),
business-motivated changes (e.g., increasing the capacity
of the system) and industry-standard related changes (e.g.,
implementation of a new protocol).

Our scenario description template consists of the fol-
lowing 13 items: Besides describing (1) business goals of
a scenario, (2) impacted requirements, and (3) impacted
components, we also analyzed the (4) change history of a
similar former system to better understand and motivate each
scenario. The extrapolation of trends shows that some sce-
narios are simply instances or next steps of more long-term
underlying trends. We also identified (5) sensitivity points
in the architecture (i.e., especially critical elements) as sug-
gested by ATAM. We discussed (6) alternatives for dealing
with the scenario and then evaluated the scenario according
to the following criteria: (7) 5-year occurrence probability,
(8) abstract cost estimate (scale 1-10) for implementing
the scenario, (9) risks for ABB and (10) customers, (11)
sales benefits, and (12) mitigation effort. Each scenario was
accompanied by four to five (13) concrete recommendations
on how to improve the architecture to cope with the change.

Figure 2 shows a summarizing high-level diagram which
provides a condensed view on the evolution scenarios. The
size of each bubble indicates the impact of the scenario on
the architecture and thus correlates with the estimated costs.

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 1

Scenario 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2011 2012 2013 2014 2015 2016 2017

O
cc

u
rr

e
n

ce
 P

ro
b

ab
ili

ty

Year when the evolution scenario becomes relevant

Figure 2. Evolution scenario ranking (the size of a bubble indicates the
expected impact of the scenario on the system)

1http://www.ndepend.com
2http://www.cppdepend.com

B. Architecture Enforcement
Module layers define allowed dependencies between a

system’s modules. Over time this structure may erode
and layering rules may be broken. Violated layering rules
severely impact maintenance costs, as they negate the bene-
fits of modularization and complicate module compilability,
extensibility, and testability [5].

Researchers have proposed several tools for architecture
conformance checking and enforcement (e.g., SARTool,
Bauhaus, DiscoTect, Symphony, Lattix) [4]. They are often
used on legacy systems for refactoring.

Often the architectural documentation contains the infor-
mation necessary for architecture enforcement in a module
architecture view. In our case, the ABB software devel-
opment unit supplied us corresponding architecture models
specified in UML using Enterprise Architect.

For most cases, modules are allowed to refer only to ele-
ments in lower layers (non-strict layering) or even only the
directly adjacent lower layer (strict layering). Additionally,
some more explicit dependency relations may be defined.

The tools NDepend (for C#) and CppDepend (for C++)
check generic dependency rules out-of-the-box, such as
disallowed dependency cycles between .NET assemblies.
Based on fact databases extracted from the source code,
they produce dependency structure matrices (DSMs) for
easily analyzing module dependencies and identifying cyclic
dependencies. Additionally, developers can specify custom
queries to the fact databases using the declarative Code
Query Language (CQL). We used this extension mechanism
to define CQL queries, checking allowed dependencies from
the architecture model.

For each module (i.e., a .NET assembly), we created a
specific CQL rule. Listing 1 shows an example with the rule
for the User Interface module from the Presentation
Layer. According to the layer diagram, modules from that
layer are allowed to access modules from the business logic
layer as well as from the portability layer.

We integrated NDepend/CppDepend runs including our
custom CQL queries (approx. 15 queries per subsystem) into
the weekly builds of the development unit’s build server (Mi-
crosoft Team Foundation Server). Hence, dependency rules
are checked regularly. Developers can then immediately
identify illegal dependencies. This may provoke adapting
the source code, the architectural model, or even the CQL
rules to comply with a new version.

During the first build runs we already identified multiple
violations of the layering structure, although only a fraction
of the system had been implemented up to that point.
One violation in a subsystem was an unwanted dependency
from a lower layer to an upper layer. This issue origi-
nated from classes that had been assigned to the wrong
module. Mitigation measures could be triggered to move
the classes and restructure them into the correct modules.
Another violation was found in a different subsystem, where

1 / / <Name>Presen ta t ion Layer Dependencies for module :
2 / / User In t e r face </Name>
3 WARN IF Count > 0 IN
4 SELECT ASSEMBLIES WHERE IsDirectlyUsedBy
5 ”ASSEMBLY: User I n t e r f a c e ”
6 AND ! (
7 / / a l l modules contained in the same layer :
8 (NameIs ”UI C o n t r o l l e r ”)
9 OR (

10 / / a l l modules contained in the Business Logic layer :
11 NameIs ” Cl i en t Serv ices ”
12)
13 OR (
14 / / a l l modules contained in the P o r t a b i l i t y layer :
15 NameIs ” . Net Framework WPF” OR
16 NameIs ” . Net Framework WCF” OR
17 NameIs ” . Net Framework Core”
18)
19)

Listing 1. Example CQL rule for layer dependency checking.

dependencies from an upper layer directly accessed platform
modules, although the architecture prescribed routing all
calls through an intermediate layer. Identifying these issues
proved the necessity and validity of our approach. The early
identification likely avoided future maintenance costs.

We also found that parts of the architectural model,
which were used to define the CQL rules, were out of
date considering the design that was implemented in the
source code. Thus corresponding dependency rules showed
violations. This led the developers to update the architectural
model.

C. Architecture-level Metric Tracking

Software metrics [9] have been introduced in many soft-
ware development organizations to assure code quality.

We found more than 40 architecture-level code metrics
in literature [2]. They measure different aspects of sustain-
ability, but most of them are related to the modularization
quality of the system. Such modularization metrics concern,
for example, similarity of purpose within modules, encap-
sulation, compilability, extensibility, testability, and module
size.

In the following, we describe how we selected a reason-
able number of state-of-the-art metrics and integrated them
into a fully automated metric tracking framework.

We started by systematically deriving suitable metrics
based on our goal to improve the maintainability of the sys-
tem on the architectural level. We used the Goal Structuring
Notation (GSN) [10] to break down maintainability into sub-
characteristics according to ISO/IEC 25010.

We emphasize that the selected metrics concern the higher
level structures of the source code. These metrics have been
introduced recently in literature [5] and have not been widely
used in practice yet. For example, the ”Module Interaction
Stability Index” is normalized between zero and one and
promotes the use of stable modules in lower architecture
layers. It is calculated for each module based on its fan-in

Argument by improving the sub-
characteristics of modularity

Improve the
maintainability
 of the system on
assembly level

Improve the layering
of the architecture

Reduce Internal
Variable Usage

Decrease coupling
between modules

Improve cohesion
of modules

Implicit
Dependency

Index = 0

Cyclic
Dependency

Index

Layer
Organization

Index

Module
Interaction

Stability Index

Common
use of
module
classes

Afferent
coupling

Efferent
Coupling

Improve similarity
of purpose

Concept
Domination

Metric

Concept
Coherency

Metric

Instability

Relational
cohesion

Level

Normalized
Testability

Index

Association
-Induced
Coupling

State
Access

Violation
Index

Abstract-
ness

Rationale:
State of the art

[Sarkar 2007, 2008,
IEEE TSE]

Argument by improving
the sub-characteristics

of maintainability

Rationale:
ISO/IEC 25010

without maintainability
compliance

Improve the
modularity

of the architecture

Improve the
 modifiability

of the architecture

Improve the
reusability

of the architecture

Improve the
testability

of the architecture

Distance
from main
sequence

=1

Improve
API usage

Module
Interaction

Index

Non API-
Function

Closedness
Index API

Function
Usage
Index

API
Cohesiveness

and
Segragation

Increase
Encapsulation

Limit Size of
Modules

Module Size
Uniformity

Index

Module Size
Boundedness

Index

Goal Strategy

Justification /
Assumption

Aggre-
gated
Metric

Metric by
NDepend

“is fulfilled by“

LEGEND

Figure 3. Derivation of complementing, assembly-level code metrics for improving maintainability (Goal Structuring Notation)

and fan-out to other modules and then aggregated for the
whole system [5].

Some of the metrics conflict with each other, i.e., blindly
optimizing for one metric easily leads to the reduction of
the other metric. As a simple example, the ”Module Size
Uniformity Index” favors similarly sized modules to ensure
a clean distribution of concepts in the system structure. This
metric can be optimized by having only two large modules
of similar size with poor inner structures. Therefore, the
”Module Size Boundness Index” checks whether modules
are larger than a given threshold in order to avoid too large
modules.

NDepend and CppDepend analyze the source code and
the compiled assemblies of the system at each weekly build.
They generate a number of basic statistics, such as LOC
per assemblies, types, and methods as well as dependencies,
stability, and abstractness indices of modules.

The analysis results in a detailed HTML report and a
number of XML files, which are selectively imported into
an Excel workbook. Using a spreadsheet provides the ad-
vantages of user familiarity and the reuse of data importing
(e.g., from Team Foundation Server via OLAP) and report-
ing facilities (e.g., Kiviat diagrams). The Excel workbook
also calculates the architecture-level metrics, which are not
directly provided by NDepend/CppDepend.

We applied our metrics tracking tool to the system under
study to analyze a period of five months early in the
implementation phase. This allowed us to provide first trends

of the metrics to the development team. As an example,
more than 96 % of types had correctly been assigned to
namespaces. In addition, the graph of the module interaction
stability index [5] shows that over time the subsystem had
gained stability of participating modules (assemblies). An
opposite trend would indicate that an architect might revise
the distribution of responsibilities among modules of the
subsystem.

Some of our early reports triggered the developers to
schedule respective refactoring sessions. This significantly
improved the values for the affected metrics. Regular refac-
toring activities are currently being integrated in the agile
development process of the development unit.

III. LESSONS LEARNED

• Cost/Benefit: We were able to analyze each evolu-
tion scenario within two to four person days. For the
architecture enforcement, deriving CQL rules from the
architectural model took another two person days per
subsystem. Considering that refactoring projects to restore
layering structures of similar-sized systems took several
person years [5], this initial effort is easily justifiable. We
plan to conduct a longitudinal study to better evaluate the
benefits of these methods over a longer period of time.
Initially setting up the architecture-level tracking con-
sumed a considerable amount of time (approx. 4-5 person
months). Main efforts were spent for metric selection,
integrating the tools, and calculating the architecture-level
metrics. Based on former maintenance efforts, we expect

that the cost for setting up the tools will pay off in 1-2
years.

• Quantifying the financial impact of an evolution
scenario is hard: Initially, we tried to estimate the finan-
cial impact of each scenario based on the lines of code
of the affected subsystems. However, we did not have
enough data to make reasonable estimations. Therefore
we decided to revert to a more abstract cost estimate on
a scale from 1 to 10. While this estimate is not useful
for business calculations, it still helps to compare the
scenarios and prioritize them.

• Extrapolating former trends is helpful in defining
evolution scenarios: Reviewing the evolution history of
former systems in the same domain was instrumental
in defining some of the evolution scenarios. There are
patterns of scenarios, such as replacing the user interface
technology or increasing the capacity of the system. These
trends are likely to continue in the future.

• Externalizing and prioritizing evolution scenarios
provides focus: The participating architects had already
informally considered some of the evolution scenarios,
but the scenarios were only indirectly made explicit.
The ability to focus on the most critical and immediate
scenarios as well as to prepare corresponding mitigation
measures early was viewed as valuable.

• Architecture enforcement raises developer awareness:
Installing tools for architecture enforcement led devel-
opers to put more emphasis on the architectural model.
Whereas formerly some developers disregarded the archi-
tecture description, the reports of architectural violations
helped to raise the awareness for architectural issues.

• High developer interest in metrics: Although the met-
rics could be misused to assess developer performance,
there was a high interest from the developers in the results
for the metrics. We had not expected this initially. The
developers had a high interest in improving the quality of
their code and were thankful for an instrument revealing
potential deficiencies.

IV. DISCUSSION

To better put our method and experiences into perspective,
this section critically reflects on our approach. In our case,
a sophisticated architectural model was already available. It
was possible to directly derive layering rules and informa-
tion necessary for the architectural metrics. Other projects,
especially involving grown legacy applications, might need
to reconstruct the architectural design and the layering
structures beforehand.

Furthermore, MORPHOSIS will in many cases rather lead
to a refinement of an architecture than a substantial redesign.
Because of the required artifacts (i.e., requirements, archi-
tecture, parts of the implementation), major changes to a
system at that stage are costly and hard to justify.

A limitation of our approach is that some effects can be
judged at earliest in several years. Most of the recommended
measures and thresholds for the architectural metrics are
based on experience with former systems, where they could
have avoided maintenance costs.

V. CONCLUSION

We have applied several state-of-the-art methods for dif-
ferent kinds of architecture sustainability evaluations and
improvements to a large-scale industrial software system
by ABB. We found that evolution scenario analysis is
possible with limited effort. We also found that architecture
enforcement can be quickly set up based on an architectural
model, but that more automation support would be desirable.

As short-term future work, we will refine our metrics
tracking framework and apply it to other systems. As long-
term future work, we plan to conduct a longitudinal study
correlating the values of architecture metrics to maintenance
costs.

REFERENCES

[1] T. Kettu, E. Kruse, M. Larsson, and G. Mustapic, “Using
architecture analysis to evolve complex industrial systems,”
in Proc. Workshop on Architecting Dependable Systems V,
ser. LNCS, vol. 5135. Springer, 2008, pp. 326–341.

[2] H. Koziolek, “Sustainability evaluation of software architec-
tures: A systematic review,” in Proc. 7th Int. ACM/SIGSOFT
Conf. on the Quality of Software Architectures (QoSA’11).
ACM, June 2011, pp. 3–12.

[3] P. Clements, R. Kazman, and M. Klein, Evaluating software
architectures: methods and case studies. Addison-Wesley
Reading, MA, 2002.

[4] S. Ducasse and D. Pollet, “Software architecture reconstruc-
tion: A process-oriented taxonomy,” IEEE Trans. Softw. Eng.,
vol. 35, pp. 573–591, July 2009.

[5] S. Sarkar, G. M. Rama, and A. C. Kak, “API-based and
information-theoretic metrics for measuring the quality of
software modularization,” IEEE Trans. Softw. Eng., vol. 33,
pp. 14–32, January 2007.

[6] M. A. Babar and I. Gorton, “Software architecture review:
The state of practice,” Computer, vol. 42, pp. 26–32, July
2009.

[7] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet,
“Architecture-level modifiability analysis (ALMA),” J. Syst.
Softw., vol. 69, no. 1-2, pp. 129–147, 2004.

[8] N. Lassing, D. Rijsenbrij, and H. van Vliet, “How well can we
predict changes at architecture design time?” J. Syst. Softw.,
vol. 65, pp. 141–153, February 2003.

[9] N. E. Fenton and S. L. Pfleeger, Software metrics - a practical
and rigorous approach (2nd ed.). International Thomson,
1996.

[10] T. Kelly and R. Weaver, “The goal structuring notation - a
safety argument notation,” in Proc. of Dependable Systems
and Networks 2004 Workshop on Assurance Cases, 2004.

