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Abstract

Many aspects influence the economic sustainability of a software architecture, such as
modularization, technology choices, and design decisions facilitating evolutionary changes. Relevant
information is spread across many artifacts and the software architects. An approach to sustainability
measurement focusing on a single artifact or perspective is likely to neglect important factors. At
ABB, we are measuring and tracking the architecture sustainability of a large-scale industrial control
system under development. We have applied a multi-perspective approach called MORPHOSIS. It
focuses on requirements, architecture design, and source code. It includes evolution scenario
analysis, architecture compliance checks, and tracking of architecture-level code metrics. This article
reports our experiences from tracking the selected sustainability measures for two years.
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Introduction

In many application domains software systems are maintained and evolved over decades. For
example, in industrial automation, longevity is a necessity as industrial devices have long life-cycles.
Software architectures are a major factor for sustainability (i.e., the economical longevity) of large-
scale systems, influencing maintenance and evolution costs vastly. It is thus desirable to measure the
sustainability of a software architecture in order to derive refactoring actions and avoid poor
evolution decisions.

Information concerning sustainability is spread across requirements, architecture design documents,
technology choices, sources code, system context, and the implicit knowledge of the software
architects. Many aspects influence economic sustainability, such as design decisions facilitating
evolutionary changes, adherence of good modularization practices, and technology choices. An
approach focusing on a single artifact or perspective is likely to neglect important factors.

At ABB, we are measuring and tracking the architecture sustainability of a large-scale industrial
control system currently under development. It is a distributed system based on Microsoft
technologies and includes a layered architecture. A former version of the system grew to several
million lines of code and suffered from architecture erosion and high maintenance costs [1]. We use
a multi-perspective approach called MORPHOSIS [2], which intends to avoid such a situation. It
focuses on requirements, architecture design, and source code. It includes evolution scenario
analysis, scoring of technology choices, architecture compliance checks, and tracking of architecture-
level code metrics. This article reports our experiences from tracking the selected sustainability
measures for two years.



Perspectives of Architecture Sustainability
Software architecture sustainability should be viewed from multiple perspectives including change-
prone requirements, technology choices, architecture erosion, and modularization best practices.

Volatile requirements disregarded in architecting may lead to poor design decisions. As stated by
Parnas [3], software modules should be designed around potentially changing requirements to limit
ripple effects, i.e. changes to modules triggering changes to other modules. This may allow
renovating a system by localized module replacement. For example, security requirements are
frequently changing for industrial software systems [4]. Encapsulating security-related concerns into
modules can limit according ripple effects. Thus, one measure for architecture sustainability is the
degree to which an architecture is prepared for the change of volatile requirements [5].

Technology choices during design are another important dimension of architecture sustainability.
The chosen frameworks, third-party components, and programming languages are significant
sustainability factors. If built on a fashionable but transient technology whose support is stopped
soon, a system may later need expensive renovations. For example, in the nineties ABB incorporated
Visual Basic 6 into several products, which was subsequently discontinued by Microsoft, and required
costly replacements. A second measure for architecture sustainability is thus the expected longevity
of included technologies [6].

When being evolved, long-living software system frequently suffer from architecture erosion. Then,
the implementation violates architectural constraints, such as prescribed module dependencies or
separation of concerns. This situation can render a whole architecture design invalid as it becomes
economically infeasible to replace modules. The architecture is no longer useful to understand a
system on a higher abstraction level. For example, architectural analyses at ABB [1] revealed layering
violations and unwanted component dependencies in long-term evolved, large-scale industrial
software, which prompted costly architecture refactoring. Thus, a third measure for architecture
sustainability is the degree of architecture erosion.

Finally, if a system implementation starts to violate best practices for software modularization, this
indicates decreasing architecture sustainability. These best practices for example concern acyclic
dependencies, layering organization, APl usage, encapsulation, concern dispersion, and testability
[7]. While architecture erosion usually refers to violations of the explicitly prescribed architecture,
such best practices are sometimes not explicitly encoded in architecture documents. Numerous
architecture-level code metrics have been proposed (see sidebar “Architecture-level Code Metrics”).
A fourth measure of architecture sustainability is thus the degree to which a software system is
within desirable thresholds of such architecture-level code metrics.

Architecture-level Code Metrics

Most work in the area of architecture-level metrics derived from the module concept described by
Parnas® and the notions of coupling and cohesion®. We categorized more than 40 architecture-level
code metrics in another article®.

For example, Lakos® defined a metric called Cumulative Component Dependency (CCD), which is the
sum of required dependencies by a component within a subsystem: CCD provides a numerical
measure of the module coupling in a system, where low values represent better maintainability and
testability. Derived metrics are the average component dependency (ACD) and the normalized CCD
(NCCD). They can be determined by tools such as SonarJ or STAN.

Martin®> defined several metrics for software packages, i.e., groups of related classes (e.g., Java
packages, C++ projects). These include afferent coupling, efferent coupling, abstractness, instability,



distance from main sequence, and package dependency cycles. For example, the distance from main
sequence measures how usable and maintainable a module is. Several tools support these metrics
(e.g., CppDepend, STAN).

Sarkar et al.° created a set of twelve API-based and information-theoretic metrics for modularization
quality. The metrics rely on the definition of APIs between modules, module size thresholds, and
concept term maps.

Sangwan et al.” introduced the complexity measurement framework Structure 101, which uses a
metric called Excessive Structural Complexity (XS). It is computed as the product of the degree of
cyclic dependencies violations (metric ‘tangled’) and a multi-level complexity metric (‘fat’), which
can also be determined on package or module level.

Bouwers et al.® proposed a metric called Component Balance, which combines the number of
components and their relative sizes.
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The measures for architecture sustainability described so far mainly refer to requirements,
architecture design, and source code. There are further indirect measures for architecture
sustainability, such as the documentation quality and the development process maturity. Another
important factor is the sustainability of the development organization, after which a software
architecture is often modeled. Organizational changes may compromise architecture sustainability if,
for example, teams working on specific modules are restructured. However, these indirect and
organizational measures for architecture sustainability are out of the scope of this article.

For the analyzed industrial control system by ABB, we first assessed volatile requirements and
technology choices with an evolution scenario analysis. Then we prepared for architecture erosion by
setting up architecture compliance checks. Finally we set up a metrics dashboard to track
modularization best practices in the source code. These steps are detailed in the following.

Evolution Scenario Analysis

To analyze the architecture’s sustainability regarding volatile requirements and technology choices,
we created evolution scenarios at the architecture level, i.e., changes regarding important interfaces
and components in the system. Such scenarios can be assessed for their impact on the architecture



and ranked according to their likelihood to give a measure on the architecture sustainability. It allows
identifying sustainability sensitivity points and preparing architectural mitigation measures, such as
creating abstraction layers to decouple the system from expected changes.

To elicit scenarios, we applied an extended version of the ALMA method [5]. Another popular
method is ATAM [8], which we ruled out since we were not able to conduct a stakeholder workshop.
In our case, we first interviewed eight domain experts for top-down scenario elicitation according to
ALMA. The domain experts worked on similar products and had a background in software
engineering. Besides their experiences from former systems, they also pointed to business trends
and technical trends which could require changes in the system under analysis. In total, this analysis
yielded short descriptions of 31 evolution scenarios that were categorized according to multiple
criteria, such as the kind of change (e.g., 13 perfective and 18 adaptive scenarios), the source of the
change, and the potentially affected subsystems. We also requested an initial ranking from the
domain experts on the likelihood and expected impact of each scenario to aid prioritization.

For bottom-up scenario elicitation, we interviewed managers, architects, and developers in the
development unit. We analyzed requirements specification, architecture documentation, and initial
parts of the source code. For example, we traced specific evolution scenarios to requirements to
enable impact analysis in case the requirement would be changed. Additionally, we used dependency
analyzer tools, such as NDepend® and CppDepend, to trace evolution scenarios to the code and
reveal potential ripple effects. Thus, for several scenarios we could state the directly affected amount
of source code and the indirectly affected modules due to dependencies. We documented numerous
criteria per evolution scenario, such as change history, architecture sensitivity points, occurrence
probability, and potential risks involved in the change (details in [2]).

After the top-down and bottom-up scenario elicitation, seven evolution scenarios had a medium to
high assessment for the combination of impact and occurrence probability over the next five years.
We analyzed these seven in detail. Table 1 lists these scenarios anonymously with a condensed
assessment statement. A more detailed scoring was documented in our internal assessment report.

For example, in 2011, the operating system implementation for one of the subsystems was expected
to change in the near future. This change was already foreseen: A portability layer had been added to
affected subsystem. However, by dependency analysis with CppDepend we found that some parts of
the code already circumvented the layer in 2011. We recommended automatically checking the
compliance of the code to the portability layer in the build process.

Other scenarios concerned changes in system workload, hardware components, platforms, APls, and
GUI. Although not all of these scenarios are highly likely to occur, some of the less likely ones would
considerably impact the system. Several of these scenarios were extrapolated from the evolution
histories of similar former systems.

! http://www.ndepend.com



Evolution Scenario

Assessment 2011

Assessment 2012

Assessment 2013

Change of operating
system
implementation
Increase of system
workload

Integration of a new
hardware component

Change of the

Highly likely, but
limited impact
(preparation done)
Likely, high impact

Likely, limited impact

Scenario recognized,

Change occurred,
limited impact

Internal testing done,
impact on architecture
lower than expected
Change occurred,
project started

Scenario refined,

No further changes
expected in the near
future

Still likely, but no
additional measures
implemented

Under development

Large research project

but no immediate likelihood increased started
preparation desired
Unlikely, but impact

would be high

deployment platform

Change of a client-
facing plug-in
interface

Change of the third-
party middleware
implementation
GUI framework
change

Did not occur,
still possible

Did not occur,
still possible

Medium likelihood,
limited impact

Did not occur,
still possible

Did not occur,
still possible

Planned as an
extension

Unlikely, but impact
would be high

Research project
executed

Table 1: Periodic evolution scenario assessment as a measure for architecture sustainability

We reassessed the evolution scenarios from 2011 again in 2012 and 2013. We found that two of the
2011 scenarios actually occurred in 2012. The anticipated changes of three other scenarios were
being mitigated by corresponding test, refinement, and research activities (see Table 1). The
remaining evolution scenarios did not occur, but are still possible. We were not able to identify
additional evolution scenarios to the ones from 2011, suggesting that we were successful in covering
the most important potential architectural changes to the system.

Architecture Compliance Checking

As a measure to prevent architecture erosion, we decided to check the system’s implementation
against the prescribed architecture. The system under study has a layered architecture, where only
certain dependencies between modules are allowed. Violated dependency rules can severely
increase maintenance costs, as they negate the benefits of modularization and complicate
independent module compilability, extensibility, and testability [7].

Dependency violations usually stem from developers who are not aware of the prescribed
architecture or work under time pressure. The violations do not have an immediate impact on the
system functionality and are therefore sometimes neglected. Additionally, the architecture
documentation may be out of sync with the implementation. There are several tools for architecture
compliance checking and enforcement (e.g., SARTool, Bauhaus, DiscoTect, Symphony, Lattix) which
can check dependency rules, e.g. at build time. This way, violations show up early, do not accumulate
and can be fixed during regular refactoring.

For the system under study, we based architecture compliance checks on given dependency rules
defined in UML diagrams. The architects had specified allowed dependencies between layers and
modules and for example did not permit lower-level layers to call upper-level layers. We specified
corresponding dependency rules, e.g. between .NET assemblies, in the declarative Code Query



Language (CQL) from the tools NDepend (for C#) and CppDepend (C++). Based on fact databases
extracted from source code, these tools produce dependency graphs and design structure matrices
(DSM) enabling developers to visually check for violations. We integrated the rule checks into the
system’s weekly build process.

The tools initially identified multiple violations of the layering structure in the source code. One
violation was an undesired dependency from a lower to an upper architecture layer. Developers had
assigned classes to wrong modules and were then able to resolve the violation. Additionally, classes
from an upper layer directly accessed platform modules, although the architecture prescribed
routing all platform calls through an intermediate layer. We also experienced dependency violations
that resulted from an outdated architecture model after source code redesigns.

Architecture Metrics Tracking

To complement evolution scenario analysis and architecture compliance checking, we created a
dashboard to track best practices for modularization using architecture-level code metrics. Clean
modularization reduces system complexity, allows faster system understanding, and enables easier
replacement of modules during system evolution. It thus contributes to a system’s longevity [7]. We
applied the Goal/Question/Metric (GQM) approach (details in [2]), broke down sustainability into
modifiability, reusability/layering, modularity, and testability, and selected the subsequent metrics
that covered these aspects:

e Cyclic Dependency Index (to improve modifiability): percentage of modules with namespace
dependency cycles

e Well-sized Methods Index (to improve modifiability): percentage of well-sized (<30 lines of
code) methods in the code base.

e Distance from Main Sequence (to improve modifiability): fraction of modules that are either
concrete and stable (i.e., difficult to maintain) or abstract and unstable (i.e., difficult to use)

e Module Interaction Stability Index (to improve layering): percentage of modules that depend
on modules with higher instability

e Layer Organization Index (to improve layering): extent to which module dependencies skip
adjacent layers

e Normalized Testability Index (to make testing more efficient): extent to which modules are
independently testable

e Module Interaction Index (to improve API usage): effectiveness of how a module’s API
functions are used

e API Function Usage Index (to improve API usage): averaged percentage of the ratio of non-
API functions to API functions

e Module Size Uniformity Index (to limit the sizes of modules): extent of heterogeneously sized
modules

e Module Size Boundedness Index (to limit the sizes of modules): extent of module sizes
differing from a maximum size threshold

e State Access Violation Index (to reduce internal variable usage): extent to which state
variables are accessed directly across module boundaries

e Association-Induced Coupling (to reduce internal variable usage): extent of coupling between
modules due to class association



These metrics are formally defined in literature (e.g., [9],[10]) but have not been widely used in
practice. All metrics are normalized between zero and one, where one is the best achievable value.
Some of the metrics conflict with each other, i.e., blindly optimizing for one metric leads to the
decrease of the other metric. For instance, optimizing Module Size Uniformity with only two large
modules of similar sizes and poor inner structures yields worse Module Size Boundedness.

There was no tool available providing these metrics. We thus implemented a calculation tool and
reporting dashboard. NDepend and CppDepend provide basic statistics, such as the lines of code per
module, classes, and methods as well as raw module dependencies, stability, and abstractness
indices of modules. We added several custom CQL queries to provide intermediate results for
calculating the metrics. Our tool chain imports the XML output into an Excel workbook. Spreadsheets
combine the advantages of user familiarity, existing data import functions (e.g., from Team
Foundation Server), and reporting facilities (e.g., Kiviat diagrams). We calculate the architecture-level
metrics with Excel macros.

By the time of writing, we have tracked the architecture-level metrics for almost two years. Figure 1
exemplarily shows trends of selected metrics for the industrial system under study. We only included
the most interesting metrics in the figure. The omitted metrics did not reveal any interesting results
for the system under study. The Module Size Uniformity Index (MSUI, Figure 1, upper left) increased
slowly over the two years, similarly to the observations of other long-living systems [1], [7]. For the
system under study, several modules had been defined in the beginning as code stubs thus had small
sizes lowering MSUI. The MSUI increased over time because these stubs were filled with
implementations. While the MSUI has not yet required restructuring actions, this index can become
more important as the system grows and enters the maintenance phase.

The Module Interaction Stability Index (MISI) as well as the Cyclic Dependency Index (CDI) show only
limited variations (Figure 1, upper right). These indices are computed based on dependencies
between higher-level code modules, which do not change as often as module sizes. The MISI
increased after approximately half the measurement period, when one of the modules was removed
from the system. This altered the interaction stability. After some more time the index again
decreased when a new dependency was introduced, which is negative from a structural viewpoint.
The CDI increased after half the measurement period. At that point, approximately 1000 lines of code
and one cyclic module dependency were removed from the code base. Later a new cyclic
dependency was introduced, lowering the CDI again. However, both the MISI and the CDI had
comparably high values.
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Figure 1: Trends of architecture-level code metrics from the case study as a measure for architecture sustainability

On the lower left part of Figure 1, the trends of four additional architecture-level metrics are
visualized. The State Access Violation Index shows high and stable values as such violations were rare
in the code base. A slightly increasing trend is visible for the API Function Usage Index, which could
again be traced back to the progressing state of the implementation. The Module Size Boundedness
Index was rather stable with a decreasing trend. Finally, the Layer Organization Index penalizes cyclic
dependencies over layer boundaries and showed a positive trend.

The lower right part of Figure 1 shows another notable trend on code design level. The trend for lines
of code of one subsystem is shown in blue. Figure 1 also depicts an index measuring the percentage
of well-sized methods in the code base. The trend for the Well-sized Methods Index is decreasing.
The developers introduced multiple large methods into the system and did not refactor them. This
indicates a negative trend on code design level affecting sustainability.

Lessons Learned

When reassessing the evolution scenarios after one and two years, we found that some of them had
actually occurred, while the scenarios that did not occur were still valid for the near future. The
probabilities and impacts of some scenarios needed to be updated due to changing assumptions.
Contrary to former studies [11], we did not identify new likely evolution scenarios. While some
components had been replaced or extended to cover new features, the overall architecture
remained stable. Therefore, we learned that the scenario analysis findings were not as volatile as in
former studies and that the invested efforts for deeper analysis and requirements tracing paid off.
The architects acknowledged that the analysis gave them a frame of reference for the technical risks
they previously considered informally.



Checking the dependency rules for architecture compliance in 2012 and 2013, we did not find new
dependency violations in the source code. The developers now checked architecture compliance
regularly and fixed according problems after code reviews. The architecture compliance checks
created a higher awareness for the architecture specification. However, the maintenance of the
dependency rules remains a challenge. Currently, new dependency rules need to be specified
manually in the CQL language in addition to the specification in the UML model, which creates
overhead. It is useful to automate this step to save maintenance efforts.

Setting up our measuring dashboard for the system under study yielded some interesting effects. Our
early reports triggered the developers to schedule respective refactoring sessions. A couple of
months later the developers had cleaned up the source code for a number of class-level metrics. The
developers had restructured all classes with a cyclomatic complexity exceeding 20 or more than 20
methods and additionally assigned all classes to namespaces. Thus, the code quality improved on
design level simply because a measurement instrument was in place.

Although the architecture-level code metrics have not yet led to major restructurings, they are
regularly monitored by managers and architects and support architecture review meetings. We
learned that it is impractical to optimize each metric to the optimal value of one. Thus, there is still a
need to define target thresholds for the metrics. Currently, the stakeholders rather use the metrics
to show relative sustainability improvement or decline. The importance of the architecture-level
metrics is expected to increase once the system enters maintenance and evolves.

Our integrated approach of scenario analysis, compliance checks, and metrics tracking yielded
several synergies between the activities. During scenario analysis, we used the same dependency
checking tools as for the compliance checks to measure the impact of an evolution scenario and to
identify ripple effects. The evolution scenario analysis findings were additionally used to prioritize the
tracking of the dependency violations so that more critical sensitivity points received more attention.
The dependency rules for compliance checking were condensed into an architectural metric and
integrated into the metrics dashboard, so that they are considered in the context of other metrics.
Overall, the approach had a perceived good cost-benefit ratio: Scenarios analyses and architecture
compliance checks could be set up in a matter of several days. The effort for establishing a metrics
framework was considerably higher (4-5 person months), but the metrics and tools can be reused for
other systems.

Conclusions

The takeaway message from our study is that architecture sustainability needs to be measured and
controlled from multiple perspectives. This includes mining different sources of architecture
information, ranging from humans to highly automated code reporting. Focusing on scenario analysis
would not prepare for architecture erosion, while focusing on architecture-level code metrics would
neglect changing requirements and technologies.

Our MORPHOSIS method for measuring architecture sustainability can be applied with manageable
efforts. Still, the evolution of a complex software system can be planned only to a limited extent due
to rapid changes in the IT world. Besides methods focusing on technical factors, also organizational
and human factors are important.

For short-term future work, we will refine MORPHOSIS by applying it to other ABB systems, which
may improve the scenario analysis templates and lead to a revised set of architectural metrics. We



will also compare our findings on architecture metrics tracking to current empirical studies to gain an
overall understanding of their usefulness [12]. Longitudinal studies are required that correlate
software maintenance costs with the architectural metrics to enable quantitative cost-benefit
analyses. Another direction is to explore the augmentation of MORPHOSIS with constructive
methods for planning software architecture evolution [13].

References

[1] T. Kettu, E. Kruse, M. Larsson, and G. Mustapic, “Using Architecture Analysis to Evolve
Complex Industrial Systems,” in Proc. Workshop on Architecting Dependable Systems V, 2008,
vol. 5135, pp. 326-341.

[2] H. Koziolek, D. Domis, T. Goldschmidt, P. Vorst, and R. J. Weiss, “MORPHOSIS: A Lightweight
Method Facilitating Sustainable Software Architectures,” in 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software Architecture,
2012, pp. 253-257.

[3] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Communications of the ACM, vol. 15, no. 12, pp. 1053-1058, Dec. 1972.

[4] D. Dzung, M. Naedele, T. Von Hoff, and M. Crevatin, “Security for industrial communication
systems,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1152-1177, 2005.

[5] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-level modifiability analysis
(ALMA),” Journal of Systems and Software, vol. 69, no. 1-2, pp. 129-147, Jan. 2004.

[6] A. Jansen, A. Wall, and R. Weiss, “TechSuRe - A Method for Assessing Technology
Sustainability in Long Lived Software Intensive Systems,” in 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, 2011, pp. 426—-434.

[7] S. Sarkar, S. Ramachandran, G. S. Kumar, M. K. lyengar, K. Rangarajan, and S. Sivagnanam,
“Modularization of a Large-Scale Business Application: A Case Study,” IEEE Software, vol. 26,
no. 2, pp. 28-35, Mar. 2009.

[8] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures: Methods and Case
Studies. Addison-Wesley Professional, 2001, p. 368.

[9] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices. Prentice Hall.

[10] S.Sarkar, G. M. Rama, and A. C. Kak, “APl-Based and Information-Theoretic Metrics for
Measuring the Quality of Software Modularization,” IEEE Trans. Softw. Eng., vol. 33, no. 1, pp.
14-32, 2007.

[11] N. Lassing, D. Rijsenbrij, and H. van Vliet, “How well can we predict changes at architecture
design time?,” Journal of Systems and Software, vol. 65, no. 2, pp. 141-153, Feb. 2003.

[12] E. Bouwers, A. van Deursen, and J. Visser, “Evaluating usefulness of software metrics: an
industrial experience report,” in Proc. International Conference on Software Engineering (ICSE
2013), 2013, pp. 921-930.



[13] D. Garlan, J. M. Barnes, B. Schmerl, and O. Celiku, “Evolution styles: Foundations and tool
support for software architecture evolution,” in Proc. Joint Working IEEE/IFIP Conference on
Software Architecture (WICSA2009), 2009, pp. 131-140.

Authors

Heiko Koziolek is a Principal Scientist with the Industrial Software Systems
program of ABB Corporate Research, Germany. He is ABB’s Global Research
Area Coordinator for Sustainable Software Architectures. His research interests
include performance engineering, software architecture, model-driven
software development and empirical software engineering. Koziolek has a PhD
in computer science from the University of Oldenburg, Germany.

Dominik Domis is a Scientist at the ABB Corporate Research Center in
Germany. He focuses on architectural approaches for the integration and
systematic reuse of industrial software systems. Dominik holds a PhD in
computer science from the University of Kaiserslautern, Germany.

Thomas Goldschmidt is a Principal Scientist at the ABB Corporate Research
Center in Germany. He focuses on domain-specific language engineering and
software architectures in the automation domain. Thomas holds a PhD in
computer science from the Karlsruhe Institute of Technology, Germany.

Philipp Vorst is a Scientist with ABB Corporate Research in Germany. His
research interests include software architecture methods with applications in
automation. Philipp holds a PhD degree in computer science from the
University of Tibingen, Germany.



