
Towards Software Performance Engineering
for Multicore and Manycore Systems

Heiko Koziolek
Industrial Software Systems
ABB Corporate Research

Ladenburg, Germany

heiko.koziolek@de.abb.com

Steffen Becker
University of Paderborn
Paderborn, Germany

steffen.becker@upb.de

Jens Happe
SAP Research

Karlsruhe, Germany

jens.happe@sap.com

Petr Tuma
Faculty of Mathematics and Physics

Charles University Prague
Prague, Czech Republic

petr.tuma@d3s.mff.cuni.cz

Thijmen de Gooijer
Industrial Software Systems
ABB Corporate Research

Vasteras, Sweden
thijmen.de-gooijer@se.abb.com

ABSTRACT
In the era of multicore and manycore processors, a system-
atic engineering approach for software performance becomes
more and more crucial to the success of modern software
systems. This article argues for more software performance
engineering research specifically for multicore and manycore
systems, which will have a profound impact on software en-
gineering practices.

1. INTRODUCTION
Despite rapidly improving hardware, many recent soft-

ware systems are still suffering from performance problems,
such as high response times or low throughputs [1]. Hard-
ware is often not the limiting factor as powerful multicore
and manycore processors are readily available on the market
and modern software systems may run in huge data centers
with virtually unlimited resources. Performance problems
often stem from software architectures that are not designed
to exploit the available hardware. Instead, these software
architectures ignore the advances of distributed computing
and multicore and manycore processors.

Systematic approaches for engineering software systems
to achieve desired performance properties have been pro-
posed [2, 3]. They advocate modeling software systems dur-
ing early development stages, so that performance simula-
tions can validate design decisions before investing imple-
mentation effort.

The advent of multicore processors results in new chal-
lenges for these systematic software performance engineering
(SPE) methods. Modeling software running on thousands of
cores requires rethinking of existing approaches [4]. While
techniques and tools for parallelizing software are evolv-
ing [5], novel methods and tools need to be created to as-
sist software architects in designing systems that can exploit
the capabilities for parallel execution but do not overburden
software developers during implementation [6].

This article summarizes the results of a Dagstuhl Work-
shop on Multicore Software Performance Engineering held in

Copyright is held by author/owner(s).

early 2012. More than 20 researchers and practitioners from
different areas, such as software auto-tuning, compiler con-
struction, performance modeling, benchmarking, etc. dis-
cussed open research challenges and sketched a correspond-
ing research roadmap.

2. SOFTWARE PERFORMANCE ENGI-
NEERING

2.1 Foundations
Connie Smith introduced ’Software Performance Engi-

neering’ (SPE) in the mid 90s [2]. SPE defined a new
paradigm of considering performance throughout the soft-
ware development process. The process starts with the def-
inition of proper performance requirements, involves meth-
ods of architecture evaluation to identify problems early, and
requires regular performance tests during implementation.

Architects that practice SPE use software models (e.g.
UML models) plus additional performance related annota-
tions (e.g. UML MARTE) to analyze system performance
already in early design phases [7]. Existing tools trans-
form annotated software models into performance models,
such as Queuing Networks (QNs), Stochastic Process Alge-
bras (SPAs), or Stochastic Petri Nets (SPNs). Analysis of
performance models provides estimates of response times,
throughput and resource utilization that allow architects to
check whether a software design can fulfill given performance
requirements. This approach avoids late redesigns which
may become costly or even technically infeasible.

To follow SPE, developers should do regular performance
tests to check response times, throughput and resource uti-
lization of their software system under realistic conditions.
Despite an efficient and scalable architecture, implementa-
tion details strongly affect performance properties of soft-
ware systems. Constantly keeping an eye on a system’s
performance is essential to achieve high performance stan-
dards [8]. Ideally, performance tests are executed automat-
ically together with regular continuous integration builds of
the complete software system.

In the software model and the implementation, software
architects and developers can apply different performance



patterns and validate their impact [2] via prediction or mea-
surement. For example, they can check how the introduction
of a cache improves the overall system throughput. Addi-
tionally, software architects and developers can detect and
remove performance anti-patterns. For example, they may
identify an overloaded database lock and investigate the im-
pact of a different locking strategy.

2.2 State of SPE Research
Since the introduction of SPE, software tools supporting

both modeling and measurement have evolved. For mod-
eling and analysis, these are for example JMT1 (for QNs),
PEPA2 (for SPAs) or QPME3 (for SPNs). Additionally, in-
tegrated modeling and analysis environments, such as the
Palladio Bench4, exist. Many of these tools’ providers have
reported successful applications in prototypical industrial
settings. For performance measurements on early proto-
types or complete systems, there are for example automated
load drivers, benchmarking tools, and monitoring frame-
works (e.g. SoPeCo5, Kieker6).

SPE, however, never focused on multicore software de-
velopment explicitly [3]. As a consequence, many SPE ap-
proaches fail to produce accurate performance analysis re-
sults for modern multi-core systems. There are two reasons
for this. First, software designs are changing and use more
fine-grained parallelism that cannot be expressed in most
SPE approaches. Second, often the bottleneck in multicore
systems is not the processor but other shared resources such
as caches or memory buses. This creates a need for new
multicore models and measurement techniques. At the same
time, the ability to use a large number of cores may be an
opportunity for SPE tools and pave the way for more so-
phisticated solution techniques and simulations that were
formerly deemed infeasible.

3. OVERVIEW OF MULTICORE SPE
The new field of ’Multicore Software Performance Engi-

neering’ (MCSPE) must enhance the SPE methodology to
support and exploit the advent of systems that operate on
processors with a large number of cores. One way to struc-
ture the issues faced by MCSPE is to analyze the different
layers in a modern system, looking at how their performance
is affected by the advent of multicore and manycore proces-
sors and what layer-specific techniques exist to deal with the
issues. Fig. 1 depicts a simplified hierarchy of system layers,
the following subsections look at the relevant performance
issues in each layer, also listing the magnitude of observed
effects and the existing modeling approaches.

3.1 Hardware Layer
Starting from the bottom, the hardware layer is concerned

with hardware features such as the processor throughput,
the configuration of the processor cores, the architecture of
the memory subsystem, or the device configuration. In the
hardware layer, major MCSPE challenges stem from the
fact that the individual cores do not execute in isolation,

1http://jmt.sourceforge.net/
2http://www.dcs.ed.ac.uk/pepa/tools/plugin/
3http://descartes.ipd.kit.edu/projects/qpme/
4http://www.palladio-simulator.com/
5http://www.sopeco.org/
6http://kieker-monitoring.net/

but instead influence each other through multiple shared re-
sources.

With hardware thread support, one resource shared
among threads are the processor execution units. This
makes threads stall each other depending on the particu-
lar classes of executed instructions. Early work on thread
scheduling has shown the impact on instruction throughput
to be as high as 25% [9]. The effect has been modeled proba-
bilistically in [10] and [11], where the authors predict thread
instruction throughput from detailed thread behavior pro-
files.

Another significant performance effect is due to the shar-
ing of various elements of the memory subsystem. Work on
process scheduling [12] demonstrates over 50% impact on
execution time and suggests complex interactions on shared
caches, prefetchers, controllers and buses are to blame.
These issues are addressed by models constructed for process
scheduling purposes, which help distinguish better or worse
schedules, but do not address absolute modeling accuracy.
More accurate models for particular memory subsystem el-
ements may exist, such as [13] or [14] for cache sharing, but
these models again require detailed thread behavior profiles.

Yet another source of performance effects emphasized
with MCSPE is the adaptive power management, which can
change the speed or even power up and power down some
cores depending on software demand and thermal condi-
tions. Such management is likely to be an essential compo-
nent of future chips [15] with significant performance impact
– different combinations of management strategies and ther-
mal margins were shown to change application throughput
by factor of as much as four in [16]. Existing models of pro-
cessor behavior that include thermal considerations rely on
description of processor architecture and knowledge of how
the executing software exercises the processor units [17].

The outlined issues become especially pronounced when
systems with many cores are considered [4, 18]. Manufactur-
ing general purpose processors with hundreds or thousands
of cores may be feasible soon, and specialized manycore pro-
cessors already exist in graphic processing units (GPUs).
For example, the latest AMD graphic accelerator boards
sport 32 compute units (CUs) totaling 2048 arithmetic units
(ALUs). The computational power offered by these GPUs is
already used, for instance, in complex physical simulations.
Such computations are necessarily tailored to the complex
heterogeneous architectures of the GPUs, especially where
the data location constraints of the memory subsystem are
concerned. The intricacies of such architectures are in fact
still being investigated [19].

For MCSPE, the distribution of the work on the cores,
the amount of communication resulting from this distribu-
tion, and the access patterns on shared resources have to be
captured in the performance prediction models. System per-
formance becomes a result of complex interactions through
shared resources, which – although often well known – are
currently either not accurately modeled, or modeled only
in isolation and by models that require too detailed input
information. Combinations of existing detailed models re-
sult in huge state spaces that are difficult to solve. New
abstractions for representing large sets of cores, with good
performance prediction accuracy, need to be researched [20].

3.2 Operating System & Virtualization Layer
On the operating system layer, the impact of process



Hardware

Operating System 
& Virtualization

System Libraries

Runtime Environment

Middleware
& PaaS

Applications 
& Databases

Automated optimization, 
adaptation in self aware 
systems, distance from 
hardware ...

Communication 
optimizations, shared 
resource contention, 
black box models ...

Automated tuning to 
platform configuration, 
runtime optimizations ...

Parallel scalability of base 
libraries, allocation, 
adaptivity ...

Process scheduling over 
shared resources, 
virtualization ...

Contention in memory 
subsystem, thermal 
footprint, asymmetry ...

Layers Example MC challenges

Figure 1: System layers and challenges related to
multicore processors

scheduling on performance is of obvious interest. For gen-
eral purpose operating system schedulers, the effects of load
balancing and process priorities on process execution were
investigated in [21] and later modeled in [22]. In addi-
tion to allocating execution time, operating system schedul-
ing also has a major impact on how processes interact
through shared resources at both hardware and software
levels. Emerging schedulers provide mechanisms to opti-
mize such interaction [11, 12], but this optimized scheduling
behavior is yet to be captured by performance models, and
can in fact disrupt probabilistic models that assume process
independence.

An important feature that affects software performance
in many modern systems is virtualization. Although the
goal is to achieve performance isolation between virtualized
systems [23], performance interference between virtual ma-
chines is still significant [24]. The model in [24] can pre-
dict performance interference between two virtual machines
given detailed workload characteristics, however, in practice
the interfering workloads may be unknown. Recently, black
box models based on the Linear Parameter Varying (LPV)
framework were applied to performance modeling and man-
agement of services in virtualized hosting environments [25],
showing that it is possible to derive independent models for
individual cores with acceptable runtime overhead.

Better understanding of multicore and manycore systems
brings changes in the management of NUMA memory ar-
chitectures. Where past operating system support relied
mostly on static resource allocation, recent development
heads towards automated memory migration [26, 27]. Auto-
mated memory migration has been shown to deliver speedup
as high as 21% in [28].

The operating systems change to utilize the multicore and

manycore systems more efficiently and predictably. For MC-
SPE, many details on the operating system layer should be
hidden from the modeler, however, the complexity of the
mechanisms involved requires that they are taken into ac-
count. Ideally, a casual modeler would simply plug models
of operating system abstractions into more high level ap-
plication models to make fast predictions, whereas a more
demanding modeler would require facilities to tune the ab-
straction model features.

3.3 System Libraries Layer
The system libraries layer comprises generic functional-

ity, such as file handling, memory management, sorting, and
graphics routines. Many such libraries need to be optimized
for multicore and manycore systems – attention is paid for
example to memory allocation, which is an essential feature
provided by system libraries to most applications. Work on
memory allocation techniques that scale on multicore and
manycore systems [29, 30, 31, 32] demonstrates significant
performance impact. It has been reported to change the
performance of a particular server benchmark by a factor
of five [31], or even to cut by half the execution time of an
application that itself rarely allocates memory [32]. Interest-
ingly, where early research treats poor multicore and many-
core scalability as an allocator design problem that can be
remedied to achieve close to perfect scalability, more recent
work suggests there may be an inherent trade off between
achievable throughput, latency, and space efficiency [32].

Whether a design problem or an inherent property, per-
formance effects related to scalability of system libraries on
many cores are significant. Rather than assuming libraries
whose performance scales with the number of cores, MC-
SPE therefore needs to model the performance effects, possi-
bly using measurement-based models that might offer better
cost-accuracy trade off than manually constructed models.

Certain libraries may also offer a degree of adaptivity
when executing on multicore or manycore systems. This
may consist of common autotuning, such as done by the
Fastest Fourier Transform in the West (FFTW) library7, or
more complex decisions that trade e.g. response time for en-
coding quality in graphics processing. Since these functions
are common in a large class of systems, MCSPE must again
aim at providing standard model libraries for this layer,
which so far do not exist.

For reasons including lack of operating system support,
system libraries are also used to access specialized parallel
hardware, especially GPUs. Sharing such hardware among
applications and scheduling combinations of workloads has
been shown to provide performance improvements over se-
quential workload execution [33]. MCSPE would need to
treat such sharing as it does other workload scheduling
mechanisms.

3.4 Runtime Environment Layer
Modern systems often feature a runtime environment

layer, such as the Java Virtual Machine or the Common
Language Runtime. This layer necessarily performs numer-
ous decisions that affect multicore performance, such as siz-
ing thread pools, implementing allocation policies or opti-
mizing synchronization patterns. Facing the complex and
diverse nature of the runtime environments, the developer
community adopts mostly heuristic rather than systematic

7http://www.fftw.org/



approaches to performance tuning [34]. As far as MCSPE is
concerned, distilling and capturing this heuristic experience
may turn out to be more efficient than attempting to create
a comprehensive performance model.

Particularly notable features of this layer are automatic
memory management and just-in-time compilation. Au-
tomatic memory management is known to have signifi-
cant performance impact especially in low memory condi-
tions [35], however, models of garbage collection perfor-
mance are rare [36]. Furthermore, it is difficult to deter-
mine actual memory consumption, itself an essential factor
to garbage collection performance models [37]. The compiler
construction research is currently aiming at techniques to
automatically improve software for multicore environments,
for example by parallelizing loop executions [38]. Once such
techniques are commonly employed by compilers, MCSPE
models will need to take thus gained speedup into account,
e.g. by also introducing parallel actions in the system be-
havior model. Ideally, this can be realized by model trans-
formations on the prediction model.

3.5 Middleware & PaaS Layer
The communication services provided by middleware or

Platform-as-a-Service layer can take advantage of multicore
and manycore systems, where application message routing
can be optimized by tailoring it to the system architec-
ture [39]. Existing SPE models do not yet reflect such opti-
mizations [40].

A recent trend in SPE is the use of models at runtime [41,
25]. This is especially useful if the operational conditions of
the software, for example the usage profile or the hardware
environment, change at runtime. Models are constructed
on demand to reflect the runtime conditions and then ana-
lyzed at runtime to prepare dynamic system reconfiguration.
An example runtime optimization at this layer is the auto-
scaling feature of cloud service offerings [42].

MCSPE should provide guidelines for modeling impor-
tant middleware parameters and provide benchmarks which
specifically test middleware products for their multicore
scalability. Middleware performance has been addressed in
SPE by measurement-based performance exploration meth-
ods, e.g. [43], and by constructing model libraries, e.g. [44].
None of these provide explicit multicore or manycore sup-
port, adding such support would likely inflate the model pa-
rameter space and complicate the model calibration phase.

3.6 Application Layer
The highest system layer comprises software applica-

tions and databases. Databases are special kinds of soft-
ware applications that traditionally have been subject to
performance optimization. Query optimization, indexing,
caching, partitioning and many other techniques are em-
ployed. These techniques aim at dividing the work most
efficiently among the available cores. To this end, classical
algorithms are revised to support multi-/manycore environ-
ments more effectively. For example, Horikawa [45] devised
an approach to identify scalability bottlenecks in database
management systems and demonstrated the approach on a
16-core system increasing the maximum achievable through-
put by 60 percent. Unfortunately, there is still a lack of good
database performance models that reflect the number of pro-
cessor cores and do not suffer from hard assumptions [46].

For generic software applications, Tarvo and Reiss [47]

were able to derive accurate performance models for multi-
threaded programs. They used the models to determine
configurations of the analyzed programs that allowed to best
exploit the available multi-core hardware. The extension
of this work to automate building performance models for
arbitrary programs is planned.

SPE optimization methods have classically focused on the
system design time assuming an abstract, constant system
model [48]. For example, Li et al. [49] devised performance
and cost models for SAP Enterprise Resource8 planning sys-
tems. Their models can be used in multi-objective optimiza-
tion to find an optimal tradeoff between performance and
costs. de Gooijer [50] et al. used evolutionary algorithms
to determine the optimal number of cores with respect to
performance and costs for an industrial web-based architec-
ture.

Implementation time optimization has been carried out
by software developers manually by search for bottlenecks
in the code and then tuning the performance [3]. Devel-
opers are assisted in implementation time optimization by
tools, such as Intel’s Parallel Studio9, but they are typically
not integrated with higher level, architectural performance
models [5]. Sometimes, the discovered bottlenecks may be
out of developer control due to distance from hardware.

3.7 Summary
Multicore technologies have a complex impact on each de-

scribed layer. For some layers, there are performance mod-
els of decent accuracy, which, however, are often themselves
complex, making them difficult to solve. For other layers or
particular techniques used on these layers, there are hardly
any accurate performance models. A direct approach to
whole system modeling, where the individual models would
be combined, is therefore not likely to succeed. Some con-
stituent models do not exist yet, and even if they did, it
would be hard to maintain, solve, and interpret their com-
bination efficiently.

4. CHALLENGES AND RESEARCH DI-
RECTIONS

In this section, we focus on selected challenges in MCSPE
which raised special interest during the Dagstuhl workshop
this article is based on. For each category, we first discuss
the challenges and then suggested research directions. We
have combined the research suggestions into a MCSPE re-
search roadmap in Fig. 2. Each of the remaining subsections
describes one lane of Fig. 2. For each research direction, we
also estimate how difficult it will be to address the high-
lighted challenges based on the existing research results.

4.1 MCSPE Modelling

4.1.1 Challenges
As elaborated in Section 3, multicore and manycore has

a profound impact on different system layers. The perfor-
mance influences and interdependencies in a multicore world
are much more complex than in a single-core environment.
For example, memory accesses and caching are often safely
disregarded in today’s modeling notations, but they gain in
importance for multicore systems.

8http://www54.sap.com/pc/bp/erp.html
9http://software.intel.com/en-us/intel-parallel-studio-xe



Systematic experiments
and measurement guidelines

Multi/many-core engineering: 
design patterns and guidelines

Performance 
multi/many-core
knowledge base

MCSPE models Reusable models

Multicore
WCET

Manycore
WCET

Self-adaptive systems Self-tuning systems

Performance 
decision support 

systems

Short term Mid term Long term

Self-
coordinating 

systems

• Higher complexity in system 
layers due to multicore 

• Mismatching abstraction levels
• High costs to build models

• Higher error-proneness of 
multicore measurements

• Need to understand memory 
accesses and caching

• Lack of knowledge how to 
specify and design for multicore

• Unknown effect of design 
decisions in multicore systems

• Prevalent embedded designs for 
single-core environments

• Need to understand contention, 
memory accesses, caches

• Unclear abstraction levels and 
model granularity

• Contradicting local self-
optimizations in system layers

Challenges Research Directions

Parallel embedded 
systems concepts

Figure 2: A potential roadmap for multicore software performance engineering research

Many modeling approaches tackle the multicore trend on
a single, isolated system level, disregarding other levels. For
example, detailed hardware models may exist for certain
multicore processors, but they are difficult to combine with
the scheduler models on the operating system layers or the
database models on the application layer. There is a mis-
match of abstraction levels that complicates building valid
predictive models combining different layers.

In general, it is still expensive to build predictive per-
formance models [50], and this is even more true for mul-
ticore models, which are more complicated than classical
single core performance models. Besides the need for well-
educated and experienced performance experts, who are able
to find suitable abstractions and have a feeling for the im-
portant performance issues in a system, it is also necessary
to reduce the overheads for manually creating models based
on measurements.

4.1.2 Research Directions
To tackle these challenges several steps are necessary

(Fig. 2, top lane). In step 1, novel MCSPE models need
to be researched. For example, it is conceivable to integrate
higher-level concurrency patterns, such as map/reduce, into
todays models to avoid the need to model parallelization
using low-level abstractions, such as control flow forks and
locking of passive resources [51, 52]. For manycore proces-
sors, it might be necessary to find different predictive ab-
stractions as the complexity of such technologies is likely
overwhelming to be modeled with classical abstractions.

Future SPE models must be capable of valid predictions
in multi- and manycore scenarios incorporating the effects

from the different system layers. There is a need to integrate
models and avoid the mismatch of abstraction levels. There
also might be multiple models provided with single software
components, but on different granularity levels (e.g., one for
scenarios in the range of milliseconds and one for scenarios
in the range of seconds). Software architects could choose an
adequate model depending on the context, e.g., early/late
design time or short/long performance scenario.

In step 2, MCSPE models must be made reusable across
products, companies, and application domains. This would
address an important roadblock for broader adoption of SPE
practices in industry. Ideally, MCSPE models must be cost-
effective to create even by non-performance experts. Similar
to the SPE software execution models, they should be writ-
ten in a notation familiar to the developer or architect (e.g.
UML).

Ultimately, in step 3, a multicore/manycore performance
knowledge base could evolve [3], where performance experts,
software architects, and developers share models, measure-
ments, experience, and pitfalls to avoid specifically in mul-
ticore settings. This could support an engineering approach
towards performance of software systems and overcome to-
days error-prone craftsmanship approaches. Such knowledge
bases could reside inside companies, between collaborating
organizations, or even specific technical domains (e.g., en-
terprise Java, real-time embedded) and application domains
(e.g., banking, 3D graphics).

We estimate the difficulty of the modeling research direc-
tions to be medium to high. Some initial models, e.g., for
multicore scheduling or database systems, already exist. It



is conceivable that such effort will be extended and linked
with other system model layers. However, it is still hard to
find good abstractions across all system layers that respect
the complex interdependencies.

4.2 MCSPE Measurements

4.2.1 Challenges
Measuring, comparing, and evaluating software perfor-

mance is a challenging and error-prone task. Experiments
that fail to address the complex interactions in multicore
and manycore environments have been shown to deliver po-
tentially misleading results [53], and while some techniques
emerge to address these issues, they are still too cumbersome
to be deployed in production environments [54].

Making correct performance observations is but one chal-
lenge of measurements in multicore and manycore systems.
When the performance impact of workload interaction is to
be modeled, various characteristics of the workload need to
be measured – for example, to extrapolate how an applica-
tion will perform on a platform with a different number of
cores, it may be important to understand its instruction mix
composition or its memory access pattern. The data from
such measurements can be used to calibrate models that
allow assessing the performance on a different platform, an-
other usage profile, or more data. Current measurement
techniques still wrestle with the issues of setup costs and
overhead disruptions when collecting such data.

Yet another set of challenges to measurement arises in
the cloud environments, where novel metrics are adopted to
characterize elasticity, and where the closed nature of the
platform and the presence of competing workloads further
complicates measurements [55].

Measurements also need to play a role in discovering
and characterizing new interactions. Clearly, not all per-
formance relevant interactions in multicore and manycore
systems can be anticipated, and it is up to explorative mea-
surements, possibly coupled with expected behavior models,
to discover when and what interactions occur.

4.2.2 Research Directions
Following the roadmap sketch in Fig. 2, step 1 calls for

methods and tools that use systematic experiments and
measurements to help developers and architects understand
the performance properties of their applications in multi-
core and manycore settings. They can systematically search
for performance problems or identify parts in their appli-
cation where parallelization yields the largest performance
improvement. There is a need to define performance mea-
surements in a goal-driven manner, focusing on specific mul-
ticore aspects to answer specific questions.

Portable MCSPE models require measurements to pop-
ulate the model with parameters reflecting particular con-
current usage profiles on particular platforms, collected for
example by systematically exploring parameter spaces or by
relying on measurements on multiple reference platforms.
Besides documented systematic experiment setups, multi-
core measurement guidelines can evolve. Best practices and
common mistakes in multicore performance measurements
need to be communicated. Knowledge from this work can
contribute to the multicore/manycore performance knowl-
edge base described earlier.

Judging by the gradual emergence of sophisticated mea-

surement tools, the measurement research directions ap-
pears relatively less difficult – the challenge lies not in the
research topics themselves, but in the need to accompany
the research with robust tool development that will provide
shared experimental environments. The diversity of plat-
forms where measurements need to be taken, together with
the necessarily tight coupling between the platforms and the
tools, can make this a significant effort.

4.3 MCSPE Design Support

4.3.1 Challenges
Multi- and manycore processors affect all phases of the

software development process and also the way software is
developed [5]. Performance and scalability requirements be-
come more important to guide design, development and test-
ing. Especially the design of software architectures has to
take into account effects of data volume and load to sup-
port partitioning of data, definition of independent tasks
running on individual cores, and to define proper synchro-
nization points. It is often hard for developers and architects
to identify those parts of an application where concurrency
yields the largest benefit. Future designs and implementa-
tions must be created with more emphasis on concurrency
awareness.

The effect of design decisions on the overall performance
of an application is difficult to anticipate given multicore
technologies. Parallelizing existing software is difficult and
not a matter of local changes, instead it requires a structured
approach [56]. There is a lack of proper tool support for
these tasks.

4.3.2 Research Directions
Fig. 2 shows two steps for future research. In step 1,

both developers and architects require adequate support to
increase their performance awareness due to increased con-
currency and to assess the trade-off between complexity and
performance. Existing multi-/manycore design patterns and
design guidelines should be tested and need to be tailored for
domain specific support [51]. For example, design patterns
such as Map-Reduce [57] can help developers to systemat-
ically parallelize data processing thus leading to increased
concurrency. These guidelines will support architects and
developers alike in building scalable architectures that make
effective use of the available resources.

A subtle but important impact of distributing perfor-
mance relevant information through patterns and guidelines
is the improved communication between the authors and the
users of the documented artifacts (e.g. libraries). This will
help remedy the current situation, where the performance
relevant information often has to be derived by the users
through experimental measurements and reverse engineer-
ing.

Eventually, in step 2, a performance decision support sys-
tem could arise that software architects use during require-
ments engineering, architecture design, and implementation.
Developers need to be informed about the effect of their de-
cisions on the overall performance of their application. For
example, feedback on the speedup achieved by their code on
different processors [58] can guide decisions and focus devel-
opment efforts. Architecture trade-offs between multicore
performance and other quality attributes, such as reliabil-
ity, maintainability, and security need to be made visible by



decision support system in order to guide well-rationalized
design decisions.

We estimate the difficulty of the design support research
directions to be low, because the initial work is ongoing
and first books and pattern collections for multi-core de-
sign already exist. Based on such patterns, models enriched
with measurements are currently investigated, leading to
systematic design decision support in the future. However,
the complexity of the various interactions among cores in
a many-core system still leads to gaps between the models
and realistic measurements.

4.4 MCSPE in Embedded/Real-time Systems

4.4.1 Challenges
Multi- and manycore systems will also change the way

embedded systems are designed [59, 60, 61]. Due to the
cost efficient production of multi-core CPUs, their use in
embedded systems will increase. Today, many embedded
system are based on single-core architectures, and their mi-
gration to multi-core architectures will require a pervasive
paradigm shift in design, implementation, engineering, and
testing. In parallel systems which run on multicore CPUs,
this requires new analysis methods that cope with sources
of uncertainty introduced through contention over processor
caches or memory buses.

Deterministic functional and timing behavior is often cru-
cial for realtime systems and there is a need to determine
worst-case execution times (WCET) for the certification of
safety-critical systems. A significant challenge exists in re-
working WCET estimation technology, as much of its theo-
retical foundation assumes single-core systems and both the
formal methods and current attempts at WCET for multi-
core have not yet been shown to scale to realistic examples
(e.g., [62]).

4.4.2 Research Directions
Based on the existing and on-going work for engineer-

ing general purpose multicore systems, concepts for parallel
embedded and real-time systems will have to be developed.
The concepts will have to take into account domain specific
non-functional requirements such as safety and be developed
for different (older) languages and embedded/real-time soft-
ware engineering tools.

There is a big potential and need for research work
for tackling the worst-case execution time (WCET) prob-
lem [63] for embedded and/or real-time systems in the mul-
ticore era. Scheduling algorithms, worst-case executing time
predictions, or soft-real time analyses need to take the new
uncertainty due to multicore hardware into account to gain
reliable results. As shown in Fig. 2, in a first step multicore
WCET estimation need to be tackled, whereas future ap-
proaches may also develop approaches for manycore WCET
estimation.

Software engineering concepts for parallel embedded sys-
tems will be relatively straightforward to construct based on
the experience gained with general purpose systems. WCET
estimates for multi- and manycore systems on the other
hand seem to be a harder problem. The resource contention
in these systems is only one of many new uncertainties that
these systems introduce to a domain in which CPU caches
often were disabled to trade performance for predictability.
As a consequence, the difficulty of the embedded real-time

challenges appear to be high. Both models as well as tools
need to be evolved for full MCSPE support.

4.5 MCSPE in Self-Adapting Systems

4.5.1 Challenges
One particular approach to the development of multi-core

software systems and the migration of existing legacy code
to multi-core systems is the use of self-adaptation [64]. Ex-
amples for this include automated allocation of processes
on cores, auto-tuning of data partitioning and thread use,
as well as an adaptive middleware and application layer.
Automated allocation of processes decides on the use of sin-
gle cores operated at higher frequencies with increased heat
production versus the use of parallel processing on multiple
cores at lower temperatures. Auto-tuners inspect executing
programs with parallel parts and try to adapt the number
of parallel threads to the system’s number of cores, cache
structure or bus layout. Adaptive middleware and applica-
tion layers try to allocate at runtime an optimal number of
cores to dynamic workloads.

Several issues arise for MCSPE. First, it is necessary to
answer the question which of the details of each of the self-
adaptation layers need to be included into the performance
analysis model to get sufficient accuracy. Second, the over-
all system may turn into a stack of self-adaptive layers. In
current approaches, each layer tries to self-optimize inde-
pendent of other layers. However, this may result in one
layer’s optimization to negatively impact the optimization
on a different layer. Here, a federated self-adaption in which
each layer’s adaptation coordinated with other layers could
improve the overall, global result. In this setting, MCSPE
could help to give insights into the data and models needed
to achieve this federated self-adaptation.

4.5.2 Research Directions
Three steps could be envisioned to structure this research

(Fig. 2, bottom lane). Self-adaptive systems need to be
supported by MCSPE through modeling and measurement
techniques that account for the performance effects. The
next step is to use the techniques and their performance
predictions and evolve them into self-tuning systems that
are capable of automatically learning the impacts of opti-
mizations on different abstraction levels and eventually op-
timizing overall system performance by self-coordination in
the last step.

We estimate the difficulty of the self-adaptation research
directions to be high. The reason is that new models for
MCSPE need to be created, which also demands new anal-
ysis techniques. As self-adaption often leads to transient
phases in the behavior of software systems (i.e., phases in
which a system adapts), the demand for transient analy-
ses arises. This requirement conflicts with the wide-spread
use of steady-state average-response-time analyses dominat-
ing MCSPE today. Hence, new analysis techniques need
to be developed and tested, making full support for self-
adaptation in MCSPE difficult.

5. CONCLUSIONS
Classical software performance engineering from the single

core era has brought forward methods, tools, and develop-
ment guides. All these techniques help to avoid performance
problems, thereby saving cost and preserving company rep-



utation. Now multicore processors have become a perva-
sive technology and MCSPE is a major concern. This ar-
ticle has outlined the challenges that came with the advent
of multicore and structured the field of multicore software
performance engineering. From the identified challenges it
becomes clear that many classical SPE techniques need to
evolve to become applicable in MCSPE. To support this
evolution, our article points out open issues which require
further research and proposes an MCSPE research roadmap.

Acknowledgements
We are grateful to the team at Schloss Dagstuhl for hosting
the seminar that led to this paper. We thank all participants
for their contributions and the engaging discussions.

6. REFERENCES
[1] http://highscalability.com/, last checked 2013-01-10.

[2] C. U. Smith and L. G. Williams, Performance
Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison-Wesley, 2002.

[3] M. Woodside, G. Franks, and D. C. Petriu, “The
Future of Software Performance Engineering,” in Proc.
Future of Software Engineering (FOSE’07). IEEE
Computer Society, 2007, pp. 171–187.

[4] W. Hwu, S. Ryoo, S.-Z. Ueng, J. Kelm, I. Gelado,
S. Stone, R. Kidd, S. Baghsorkhi, A. Mahesri, S. Tsao,
N. Navarro, S. Lumetta, M. Frank, and S. Patel,
“Implicitly parallel programming models for
thousand-core microprocessors,” in Proc. 44th
ACM/IEEE Design Automation Conference (DAC
’07), june 2007, pp. 754 –759.

[5] H. Vandierendonck and T. Mens, “Techniques and
tools for parallelizing software,” IEEE Softw., vol. 29,
no. 2, pp. 22–25, 2012.

[6] C. A. Schaefer, V. Pankratius, and W. F. Tichy,
“Engineering parallel applications with tunable
architectures,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1, ser. ICSE ’10. ACM, 2010, pp. 405–414.

[7] D. Petriu and M. Woodside, “An intermediate
metamodel with scenarios and resources for generating
performance models from uml designs,” Software and
Systems Modeling, vol. 6, no. 2, pp. 163–184, 2007.

[8] http://velocityconf.com/, last checked 2013-01-10.

[9] A. Snavely and D. M. Tullsen, “Symbiotic
Jobscheduling for a Simultaneous Multithreading
Processor,” in Proceedings of ASPLOS 2000, 2000.

[10] X. E. Chen and T. M. Aamodt, “A first-order
fine-grained multithreaded throughput model,” in
Proceedings of HPCA 2009. IEEE, 2009, pp. 329–340.

[11] S. Eyerman and L. Eeckhout, “Probabilistic Job
Symbiosis Modeling for SMT Processor Scheduling,”
2010.

[12] S. Zhuravlev, S. Blagodurov, and A. Fedorova,
“Addressing Shared Resource Contention in Multicore
Processors via Scheduling,” in Proc. International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’10).
ACM, 2010, pp. 129–142.

[13] D. Eklov, D. Black-Schaffer, and E. Hagersten, “Fast
Modeling of Shared Caches in Multicore Systems.”

ACM, 2011, pp. 147–157.

[14] V. Babka, P. Libič, T. Martinec, and P. Tůma, “On
the accuracy of cache sharing models,” in Proceedings
of the 3rd ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’12. New York,
NY, USA: ACM, 2012, pp. 21–32. [Online]. Available:
http://doi.acm.org/10.1145/2188286.2188294

[15] H. Esmaeilzadeh, E. Blem, R. S. Amant,
K. Sankaralingam, and D. Burger, “Power challenges
may end the multicore era,” Commun. ACM, vol. 56,
no. 2, pp. 93–102, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2408776.2408797

[16] J. Srinivasan and S. V. Adve, “Predictive Dynamic
Thermal Management for Multimedia Applications,”
in Proceedings of ICS 2003. ACM, 2003.

[17] Y. Li, D. Brooks, Z. Hu, and K. Skadron,
“Performance, Energy, and Thermal Considerations
for SMT and CMP Architectures,” in Proceedings of
HPCA 2005. IEEE, 2005.

[18] A. Vajda, “Debugging and performance analysis of
many-core programs,” in Programming Many-Core
Chips. Springer US, 2011, pp. 117–126.

[19] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi,
and A. Moshovos, “Demystifying GPU
Microarchitecture through Microbenchmarking,” in
Proceedings of ISPASS 2010, 2010.

[20] V. Babka and P. Tuma, “Can linear approximation
improve performance prediction ?” in Computer
Performance Engineering, ser. Lecture Notes in
Computer Science, N. Thomas, Ed., vol. 6977.
Springer Berlin Heidelberg, 2011, pp. 250–264.

[21] J. Happe, H. Groenda, and R. H. Reussner,
“Performance Evaluation of Scheduling Policies in
Symmetric Multiprocessing Environments,” in
Proceedings of the 17th IEEE International Symposium
on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’09),
2009. [Online]. Available:
http://sdqweb.ipd.uka.de/publications/pdfs/happe2009b.pdf

[22] J. Happe, H. Groenda, M. Hauck, and R. H. Reussner,
“A prediction model for software performance in
symmetric multiprocessing environments,” in
Proceedings of the 2010 Seventh International
Conference on the Quantitative Evaluation of Systems,
ser. QEST ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 59–68. [Online].
Available: http://dx.doi.org/10.1109/QEST.2010.15

[23] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat,
“Enforcing performance isolation across virtual
machines in xen,” in Proceedings of MIDDLEWARE
2006. Springer, 2006, pp. 342–362.

[24] Y. Koh, R. Knauerhase, P. Brett, M. Bowman,
Z. Wen, and C. Pu, “An Analysis of Performance
Interference Effects in Virtual Environments,” in
Proceedings of ISPASS 2007, 2007.

[25] D. Ardagna, M. Tanelli, M. Lovera, and L. Zhang,
“Black-box performance models for virtualized web
service applications,” in Proceedings of the first joint
WOSP/SIPEW international conference on
Performance engineering, ser. WOSP/SIPEW ’10.
New York, NY, USA: ACM, 2010, pp. 153–164.
[Online]. Available:



http://doi.acm.org/10.1145/1712605.1712630

[26] A. Arcangeli, “AutoNUMA Linux Kernel Patch Set,”
http://lwn.net/Articles/488686.

[27] P. Zijlstra, “SchedNUMA Linux Kernel Patch Set,”
http://lwn.net/Articles/486850.

[28] J. A. Lorenzo, J. C. Pichel, F. F. Rivera, T. F. Pena,
and J. C. Cabaleiro, “A Flexible and Dynamic Page
Migration Infrastructure based on Hardware
Counters,” Journal of Supercomputing, vol. 65, no. 2,
2013.

[29] E. D. Berger, K. S. McKinley, R. D. Blumofe, and
P. R. Wilson, “Hoard: A Scalable Memory Allocator
for Multithreaded Applications,” ACM SIGPLAN
Notices, vol. 35, no. 11, pp. 117–128, 2000.

[30] M. Michael, “Scalable Lock-Free Dynamic Memory
Allocation,” in Proceedings of PLDI 2004, 2004.

[31] S. Schneider, C. D. Antonopoulos, and D. S.
Nikolopoulos, “Scalable Locality-Conscious
Multithreaded Memory Allocation,” in Proceedings of
ISMM 2006, 2006.

[32] S. Kahan and P. Konecny, “MAMA: A Memory
Allocator for Multithreaded Architectures,” in
Proceedings of PPOPP 2006, 2006.

[33] V. T. Ravi, M. Becchi, G. Agrawal, and
S. Chakradhar, “Supporting gpu sharing in cloud
environments with a transparent runtime
consolidation framework,” in Proceedings of HPDC
2011, 2011.

[34] E. Andreasson, “JVM Performance Optimization
Series,” http://www.javaworld.com/javaworld/jw-08-
2012/120821-jvm-performance-optimization-
overview.html.

[35] S. M. Blackburn, P. Cheng, and K. S. McKinley,
“Myths and realities: The performance impact of
garbage collection,” in Proceedings of SIGMETRICS
2004. ACM, 2004.

[36] D. Vengerov, “Modeling, analysis and throughput
optimization of a generational garbage collector,” in
Proceedings of ISMM 2009, 2009.

[37] G. S. Nick Mitchell, “The causes of bloat, the limits of
health,” in Proceedings of OOPSLA 2007, 2007.

[38] C. Dave and R. Eigenmann, “Automatically tuning
parallel and parallelized programs,” in Proceedings of
the 22nd international conference on Languages and
Compilers for Parallel Computing, ser. LCPC’09.
Berlin, Heidelberg: Springer-Verlag, 2010, pp.
126–139.

[39] S. Ramos, G. L. Taboada, J. T. Roberto R. Exposito,
and R. Doallo, “Design of scalable java
communication middleware for multi-core systems,”
The Computer Journal, 2013. [Online]. Available:
http://dx.doi.org/10.1093/comjnl/bxs122

[40] K. Sachs, S. Kounev, and A. Buchmann,
“Performance Modeling and Analysis of
Message-Oriented Event-Driven Systems,” Software
and Systems Modeling, 2012.

[41] D. Ardagna, C. Ghezzi, and R. Mirandola,
“Rethinking the use of models in software
architecture,” in Proceedings of the 4th International
Conference on Quality of Software-Architectures:
Models and Architectures, ser. QoSA ’08. Springer,

2008, pp. 1–27.

[42] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes,
“Cloudscale: Elastic resource scaling for multi-tenant
cloud systems,” in Proceedings of SOCC 2011. ACM,
2011, pp. 5:1–5:14. [Online]. Available:
http://doi.acm.org/10.1145/2038916.2038921

[43] Y. Liu, I. Gorton, L. Bass, C. Hoang, and S. Abanmi,
“Mems: a method for evaluating middleware
architectures,” in Proc. 2nd International Conference
on the Quality of Software Architectures (QoSA’06),
ser. LNCS. Springer, 2006, pp. 9–26.

[44] J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and
R. H. Reussner, “Parametric Performance
Completions for Model-Driven Performance
Prediction,” Performance Evaluation, vol. 67, no. 8,
pp. 694–716, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.peva.2009.07.006

[45] T. Horikawa, “An approach for scalability-bottleneck
solution: identification and elimination of scalability
bottlenecks in a dbms,” in Proceedings of the 2nd
ACM/SPEC International Conference on Performance
engineering, ser. ICPE ’11. New York, NY, USA:
ACM, 2011, pp. 31–42. [Online]. Available:
http://doi.acm.org/10.1145/1958746.1958756

[46] R. Osman and W. J. Knottenbelt, “Database system
performance evaluation models: A survey,” Perform.
Eval., vol. 69, no. 10, pp. 471–493, Oct. 2012.

[47] A. Tarvo and S. P. Reiss, “Using computer simulation
to predict the performance of multithreaded
programs,” in Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering,
ser. ICPE ’12. New York, NY, USA: ACM, 2012, pp.
217–228. [Online]. Available:
http://doi.acm.org/10.1145/2188286.2188320

[48] A. Martens, H. Koziolek, S. Becker, and R. Reussner,
“Automatically improve software architecture models
for performance, reliability, and cost using
evolutionary algorithms,” in Proc. 1st Joint
WOSP/SIPEW International Conference on
Performance Engineering (WOSP/SIPEW’10).
ACM, January 2010, pp. 105–116.

[49] H. Li, G. Casale, and T. Ellahi, “Sla-driven planning
and optimization of enterprise applications,” in
Proceedings of the first joint WOSP/SIPEW
international conference on Performance engineering,
ser. WOSP/SIPEW ’10. New York, NY, USA: ACM,
2010, pp. 117–128. [Online]. Available:
http://doi.acm.org/10.1145/1712605.1712625

[50] T. de Gooijer, A. Jansen, H. Koziolek, and
A. Koziolek, “An industrial case study of performance
and cost design space exploration,” in Proc. 3rd Int.
Conf. on Performance Engineering (ICPE’12).
ACM, April 2012, pp. 205–216.

[51] J. Zheng and K. E. Harper, “Concurrency design
patterns, software quality attributes and their
tactics,” in Proceedings of the 3rd International
Workshop on Multicore Software Engineering, ser.
IWMSE ’10. New York, NY, USA: ACM, 2010, pp.
40–47. [Online]. Available:
http://doi.acm.org/10.1145/1808954.1808964

[52] H. Koziolek, “Performance evaluation of
component-based software systems: A survey,”



Perform. Eval., vol. 67, no. 8, pp. 634–658, 2010.

[53] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney, “Producing Wrong Data Without Doing
Anything Obviously Wrong,” in Proceedings of
ASPLOS 2009, 2009.

[54] C. Curtsinger and E. D. Berger, “Stabilizer:
Statistically Sound Performance Evaluation,” in
Proceedings of ASPLOS 2013, 2013.

[55] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann,
“C-meter: A framework for performance analysis of
computing clouds,” in Proceedings of CCGRID 2009.
IEEE, 2009, pp. 472–477. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2009.40

[56] K. E. Harper, J. Zheng, and S. Mahate, “Experiences
in initiating concurrency software research efforts,” in
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp.
139–148. [Online]. Available:
http://doi.acm.org/10.1145/1810295.1810316

[57] J. Dean and S. Ghemawat, “Mapreduce: simplified
data processing on large clusters,” Communications of
the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[58] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou, “Cilk: an
efficient multithreaded runtime system,” in
Proceedings of the fifth ACM SIGPLAN symposium on
Principles and practice of parallel programming, ser.
PPOPP ’95. ACM, 1995, pp. 207–216.

[59] J. Yan and W. Zhang, “WCET Analysis for
Multi-Core Processors with Shared L2 Instruction
Caches,” in Proc. IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’08).
IEEE, 2008, pp. 80–89.

[60] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund,
C. Maiza, J. Reineke, B. Triquet, and R. Wilhelm,
“Predictability considerations in the design of
multi-core embedded systems,” in Proceedings of
Embedded Real Time Software and Systems
(ERTS’10), 2010, pp. 36–42.

[61] M. Oriol, M. Wahler, R. Steiger, S. Stoeter,
E. Vardar, H. Koziolek, and A. Kumar, “FASA: a
scalable software framework for distributed control
systems,” in Proc. 3rd Int. ACM SIGSOFT
Symposium on Architecting Critical Systems
(ISARCS’12). ACM, June 2012, pp. 51–60.

[62] A. Gustavsson, A. Ermedahl, B. Lisper, and
P. Pettersson, “Towards wcet analysis of multicore
architectures using uppaal,” in Proceedings of the 10th
International Workshop on Worst-Case Execution
Time Analysis. Österreichische Computer
Gesellschaft, July 2010, pp. 103–113.

[63] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, “The
worst-case execution-time problem - overview of
methods and survey of tools,” ACM Trans. Embed.
Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, May 2008.
[Online]. Available:
http://doi.acm.org/10.1145/1347375.1347389

[64] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,

and J. Magee, Eds., Software Engineering for
Self-Adaptive Systems, ser. Lecture Notes in Computer
Science, vol. 5525. Springer, 2009.


