
Experiences from Identifying Software Reuse
Opportunities by Domain Analysis

[Industrial Experience Report]

Heiko Koziolek, Thomas Goldschmidt, Thijmen de Gooijer,
Dominik Domis, Stephan Sehestedt

ABB Corporate Research
Industrial Software Systems

Ladenburg, Germany
heiko.koziolek@de.abb.com

ABSTRACT
In a large corporate organization there are sometimes simi-
lar software products in certain subdomains with a perceived
functional overlap. This promises to be an opportunity for
systematic reuse to reduce software development and main-
tenance costs. In such situations companies have used differ-
ent domain analysis approaches (e.g., SEI Technical Probe)
that helped to assess technical and organizational potential
for a software product line approach. We applied existing
domain analysis approaches for software product line engi-
neering and tailored them to include a feature analysis as
well as architecture evaluation. In this paper, we report our
experiences from applying the approach in two subdomains
of industrial automation.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering ; D.2.11 [Software Engineering]: Soft-
ware Architectures—Domain-specific architectures; D.2.9
[Software Engineering]: Management—Life cycle

Keywords
Software Product Lines, Domain Analysis, Business case

1. INTRODUCTION
ABB is one of the largest engineering companies in the

world mainly operating in the areas of power and automa-
tion technology. In general, systematic software reuse is dif-
ficult to achieve in large corporate companies with several
divisions and dozens of business units. Company mergers
add software products with functional overlap to the exist-
ing portfolio. The benefit of merging such products using a
software product line approach is often hard to assess. Ad-
ditionally, due to the size and global distribution of a large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

corporate company, it is challenging to identify all functional
overlaps that provide a high potential for a successful soft-
ware product line (SPL).

Although functional overlap between different software
products in a company’s portfolio is often perceived infor-
mally [2, 16], this is not sufficient to start a costly SPL initia-
tive. Features might be similar on a high abstraction level,
but often there are subtle difference that require a deeper
technical analysis involving software architecture evaluation.
Besides the technical analysis, there is the need for proper
scoping, analysis of organizational constraints, and assess-
ment of the development organization’s maturity for SPL
engineering. The value for SPL engineering needs to be
communicated to various involved stakeholders taking into
account the technical and organizational analysis.

Analysts use numerous methods in industry to assess
product line potential given a set of software products. For
example, the SEI applies its ’Product Line Technical Probe’
method [6] to examine readiness for product line adoption.
The Family Evaluation Framework (FEF) [22] provides a
four-dimensional evaluation profile to assess organizational
readiness. PulSE Eco [20] provide another approach for do-
main potential analysis. We do not introduce a new method
in this paper, but have tailored the existing methods into
our own approach that respects our company’s specifics and
lays special emphasis on software architecture evaluation.

This paper presents a seven step domain analysis approach
to assess SPL potential, which we have applied on two dif-
ferent sets of software products within ABB. The approach
includes product line scoping through identifying and ana-
lyzing a multitude of information sources, interviewing key
stakeholders for product feature support and architecture
analysis, as well as reuse potential assessment and the cre-
ation of SPL business cases. The approach is intended to
support the decision for starting a SPL initiative. It does
not result in a reference architecture, which would require
an additional approach.

We applied the approach in two subdomains of industrial
automation software, where ABB provides numerous soft-
ware products. Depending on the complexity and size of
the product the assessment becomes harder. In our cases
we experienced different results in both cases and report
our findings and lessons learned in the paper. The goal of
the paper is to support similar analysis approaches in other
companies by pointing out valuable experiences and avoid-

able pitfalls.
The remainder of this paper is structured as follows: Sec-

tion 2 briefly summarizes related work, before Section 3 in-
troduces our seven step domain analysis approach. Section
4 explains the special means of architectural reconstruction
we included in the approach. Section 5 and 6 present our two
application cases of the approach and the achieved results.
Section 7 provides lessons learned and Section 8 concludes.

2. RELATED WORK
A general overview of software product line engineering

can be found in several publications [6, 19]. Linden et al. [22]
provide an industrial perspective and the Software Engineer-
ing Institute (SEI) has cataloged numerous reports of indus-
trial case studies in the Product Line Hall of Fame [4].

Our paper focuses on domain analysis for identifying can-
didates for software product lines in a large and distributed
corporate organization. Khurum and Gorschek offer a com-
prehensive overview of domains analyses for software prod-
uct lines [14]. Our domain analysis is based on different
(mainly manual) approaches from literature.

The SEI Product Line Technical Probe [5] examines the
readiness of a company to succeed with a software product
line approach. The probe consists of a series of structured
interviews followed by data analysis. Our approach follows
similar steps, but additionally includes a high-level architec-
ture assessment.

The Family Evaluation Framework [22] follows the CMMI
philosophy and assesses an organization’s maturity for soft-
ware product line engineering along different dimensions
(e.g., business, architecture, process). In each dimension,
an organization is ranked within five levels, so that improve-
ment potential can be identified. Our approach has a tech-
nical focus and aims at supporting the decision for an SPL
approach.

The Reuse Capability Model (RCM) [7] includes a model
for assessing an organization’s strength and improvement
opportunities for reuse. Critical factors, such as manage-
ment, application development, and process factors, are
evaluated to implement reuse initiatives.

PulSE Eco from Schmid [20] intents to analyze functional
overlaps and consists of three steps: product line mapping,
domain potential assessment, and reuse infrastructure scop-
ing. Product line mapping summarizes relevant products
and their corresponding features, which are grouped into do-
mains, in a product or feature map. In the domain potential
assessment, the benefits and risks of reusing or sharing fea-
tures are assessed and used for selecting domains that could
be included in a software product line. The final decision
which features become part of the product line is done in
the reuse infrastructure scoping, which performs a quanti-
tative evaluation of the features w.r.t required effort and
business goals. John et al. [13] describe how PulSE is cus-
tomized for different contexts such as a light-weight scoping
for limited efforts, which we have applied.

For architecture reconstruction, we used a manual,
interview-based approach. There are many automated
and semi-automated approaches for identifying reusable
components and features: MAP [21] is an approach for
semi-automatically extracting architecture information from
code, identifying patterns / styles, and evaluating the po-
tential for software product lines. An experience report [3]
applies MAP for recovering the architecture of a web system.

Frenzel et al. [9] use reflexion and clone detection for
identifying ad-hoc copied code between different products.
Harhurin and Hartmann [12] apply a commonality analysis
on formal design models for extracting product lines from ex-
isting systems. Ganesan and Knodel [10] use object oriented
metrics for usefulness, readability, and testability to identify
reusable components. Eisenbarth and Simon [8] propose the
usage of the Bauhaus suite, a tool for different architecture
analysis, to identify features appropriate for a software prod-
uct line.

However, automated and semi-automated approaches are
hard to apply on the heterogeneous landscape of ABB’s
legacy systems considering diverse technologies and pro-
gramming languages. For successful systematic reuse, not
only the current architectures are important, but also fu-
ture plans. Thus, we decided to reconstruct product archi-
tectures manually based on interviews with system archi-
tects.

3. DOMAIN ANALYSIS
The goal of our domain analysis approach is to provide

technical and economical arguments for the feasibility of es-
tablishing a software product line. The analysis involves
feature modeling of the domain, comparing software archi-
tectures, mining candidate assets, and creating a business
case. The output is rather a technical risk assessment and
a ROI calculation, not a reference architecture or migration
strategy. The output can also be a set of smaller suggested
reuse scenarios, not a full-blown SPL design for a given do-
main. A business decision on further steps towards an SPL
or systematic reuse is needed after executing our analysis ap-
proach. Our approach is intended to support this decision
with a technical and economical assessment.

Our domain analysis approach comprises the following ac-
tivities, which are based on existing methods and is tailored
for use in our company and to focus on software architec-
ture evaluation. The activities do not have to be executed
linearly.

1) List products and information sources.
We assume that a number of similar products is already

available for a specific application domain. For ABB, this
is a common situation in many different application ar-
eas, for example due to company mergers or local differ-
ences [16]. The first step is thus to gather of a list of the
available products and record the respective information
sources (e.g., product managers, software architects, doc-
umentation archives, competitor products). For a smaller
company this step may be trivial. However, for a large
corporate company with many globally distributed business
units developing software for different market segments, this
step can be complicated and consume a lot of calendar time.
Some products might lack suitable documentation to decide
whether to include them into the scope. Other products
might be out of active development and only in a main-
tenance mode. The output of this step is an initial list of
products to analyze. From this list, the most promising can-
didates are chosen for further analysis based on experience
and expected analysis support.

2) Establish criteria for reuse potential.
In a second step, we first establish the criteria for evalu-

ating the reuse potential of the given products. The cri-
teria are software-related (e.g., feature support, architec-
ture, technologies, standards), process-related (e.g., release
management, development process maturity, change man-
agement), and organization-related (e.g., reuse knowledge,
reuse motivation, former reuse successes). Many criteria
are generic and can be directly used across different domain
analysis executions. However, some criteria depend on the
scope of the analysis. For example, if the software of a sin-
gle business unit is analyzed, collaborations with other units
are less relevant. The list of criteria is then used to create a
questionnaire that is used to interview the product managers
and architects of each product.

3) Create initial feature list.
As a first step of feature modeling, this step creates a list

of features in a given domain. This step is specific for each
domain analysis execution. Initially, a flat list of high-level
features is gathered and a short description of each feature
is provided. We usually create the initial list based on our
domain knowledge and experience with individual products.
Industry standards and current technology trends also serve
as input for the feature list. ABB’s industrial domains are
complex and can thus lead to complex feature models. For
our domain analysis approach we aim at limited number of
approx. 20 high-level features. Before further analysis, the
feature list is reviewed by several domain experts. Questions
on each feature are then integrated into the questionnaire
created in step 2. Some example answers are integrated into
the questionnaire as well to guide the interview partners and
speed up the process. In our experience, the feature list is
usually updated after each interview.

4) Collect and analyze documentation.
Besides interviewing product stakeholders, existing docu-

mentation on the products and development processes are
gathered. User manuals help to get an overview of the fea-
ture support. Architecture documentation provides hints
on the technology compatibility of the products as well as
the support for standard interfaces. Besides product-specific
documentation, it is also helpful to collect domain-specific
reports, recent technology surveys, and industry standards.
If possible, documentation on competitor products can com-
plement this step. A deep analysis of the documentation is
not needed, rather the documentation is screened for an-
swers to the questionnaire concerning feature support and
development process properties. This activity needs to be
time-boxed to avoid wasting efforts. In our experience, the
documentation is often not in a condition to answer all ques-
tions, which is why we conduct stakeholder interviews. A
deeper analysis of the documentation might be warranted
after the stakeholder interviews for specific issues.

5) Conduct interviews.
In this step, we travel to the development site of the soft-

ware product and conduct a one-day interview with the soft-
ware architect and product manager. We structure the in-
terview with the questionnaire prepared in steps 2-4 and
try to answer all the included questions. During the inter-
view we note down the raw answers and re-formulate the
included questions or provide examples for understanding if
needed. Besides information on the features, architecture,
and process, we also sketch the high-level architectures (Sec-

tion 4) and ask for future plans and roadmaps. Roadmaps
are instrumental in defining easy to implement reuse or SPL
scenarios across business units. Our interviews are executed
per product and we do not conduct workshops with multiple
stakeholders at this stage to be time- and cost-efficient. Such
workshops are executed after the initial domain analysis was
completed successfully.

6) Identify opportunities.
With the information from the questionnaires gathered

in step 4 and 5, we analyze the reuse potential between the
products. For each product, we summarize the answers from
the questionnaire in a report. We create a matrix illustrat-
ing the feature support per product. This matrix is com-
plemented with technical comments about the extent of the
feature support in a particular product. The matrix serves
to find commonalities and variabilities among the products.
We then compare the architecture sketches from step 5 pair-
wise to identify technology compatibilities, standard inter-
faces, reusable assets, and matching non-functional require-
ments. Furthermore, we classify the SPL maturity of each
business unit with a list of criteria. The outputs of this
step are the identification of SPL assets and/or scenarios
for merging features or products.

7) Create business case.
In a final step, we create a business case for the estab-

lishment of a SPL in the given application domain with
the existing products. Our calculation is based on develop-
ment and maintenance costs provided by the business units
and roughly follows the calculation described by Boeckle et
al. [1]. We calculate the net present value and return on
investment, which requires a number of assumptions, e.g.,
for the higher development effort for the reusable assets, or
the ratio of generic software parts in the products. These
assumptions can be criticized but are at least substantiated
with the findings of our formerly conducted domain analysis
in step 6. This eases defending the calculation.

At this stage our domain analysis is complete. The next
steps are getting a decision for a particular reuse scenario or
a full systematic software product line development. Stake-
holder workshops across the available products need to be
held and champions for the SPL need to be found in the
business units. The subsequent steps of domain engineer-
ing including the design of a reference architecture and the
sketching of migration roadmaps can be executed. These
steps are out of scope for this paper.

4. ARCHITECTURE RECONSTRUCTION

4.1 Goals and Constraints
The goal of the architecture reconstruction in our domain

analysis is to identify candidate assets for a SPL from ex-
isting software products. The reconstruction shall point out
the major subsystems and interfaces of a product. It shall
focus on logical structures and functionality and abstract
from the binary representation of the code. Additionally,
the communication patterns (e.g., request/response, pub-
lish/subscribe) and the data storage facilities shall be illus-
trated to evaluate technological compatibility. Finally, se-
lected important extra-functional properties or constraints
of an architecture and its components (e.g., performance

constraints, security considerations) shall be analyzed.
The architecture reconstruction is complicated because

there is no standard notation for architecture documenta-
tion. While UML is the de-facto standard for the docu-
mentation of software systems, architectural UML diagrams
are hardly available for legacy systems. Even if UML is
used, the diagrams for different systems might be incom-
parable because the language is usually applied differently
for each product. From our experience some business units
have no adequate architecture documentation or use seman-
tically ambiguous PowerPoint presentations which are hard
to understand on their own.

Our architecture reconstruction thus uses additional infor-
mation sources besides the existing architecture documen-
tation. During the domain analysis interview, we include a
1-2 hour slot where we let the architects sketch and explain
the architecture on a whiteboard. We use this session to ask
about architectural features that relate to our analysis, but
cannot be derived from the available documentation. In our
experience this is the quickest way to get to an up-to-date
bird’s eye view of the architecture that can serve as input
for our domain analysis.

4.2 Selection of a Notation
To allow for a comparison of the architectures in the do-

main analysis, we aim at a common documentation nota-
tion. We ruled out using UML for several reasons: Despite
the availability of component diagrams, UML is still tied to
programming level concepts, such as classes and methods.
There is no default representation of data storages. It is dif-
ficult to integrate multiple levels of abstraction into a single
diagram, which is sometimes useful for a domain analysis.
Integrating more information into UML with stereotypes of-
ten generates visual clutter, because UML tools usually do
not support non-standard graphical shapes for stereotypes.

Architecture description languages (ADLs) are mainly
used in the academic community and often lack robust tool
support. Their semantical soundness is useful, but the added
overhead for specification is usually not compensated with
valuable analysis methods [17]. Woods and Bashroush [23]
successfully used their own proprietary shapes for architec-
ture documentation in a similar context as our domain anal-
ysis. However, these shapes lack a formal reference specifi-
cation and maturity.

Finally, we decided to use simple block diagrams for a
common architectural documentation in our domain analy-
sis according to the Fundamental Modeling Concepts (FMC)
notation reference [15]. FMC block diagrams are highly ab-
stracted and do not use class-level elements. Thus, they are
hardly suited to implement a design, but useful to commu-
nicate an architectural overview. They condense the infor-
mation needed for a domain analysis and allow for a com-
mon documentation according to a notation reference. It
is also possible to hierarchically refine such block diagrams
or have different refinement levels for different subsystems
in the same diagram. The notation has been used in other
industrial contexts, e.g., at SAP [11]

4.3 Fundamental Modeling Concepts (FMC)
FMC provides block diagrams for compositional struc-

tures, Petri nets for dynamic structures, and entity rela-
tionship diagrams for value range structures. For our do-
main analysis, we only used block diagrams for simplicity.

Web Browser Web Browser

...

TCP/IP Communication ServerSockets

Child Server 1

Child Server 1

.
.

.

Child Server Activity

State Table
Mutex

Server

Generation

Master

Server

Files

Documents

Scripts

HTTP Server

Admin

Files

Global

Config.

Data

R

RHTTP RHTTP

Bidirectional
Channel

Request /
Response
Channel

Storage

Part of
Storage

Structure
Variance
Location

Shared
Storage

Read / Write
Access

Read
Access

Human
Agent

Agent

Client Client

Figure 1: Fundamental Modeling Concepts (FMC)
notation example[18]

Fig. 1 shows a notation overview. Squared rectangles repre-
sent active components (also called ’agents’). They comprise
software components as well as human actors. Rounded
rectangles represent passive components, i.e., data storages
or communication channels. Directed and undirected edges
represent read or write operations between active and pas-
sive components. To draw these diagrams, we used available
stencils for the drawing tool MS Visio 1.

In order to express data flows, we added our own path
overlays to the block diagram notation. While FMC allows
to use Petri nets for dynamic structure, we wanted to show
the data flow within the architecture overview, i.e. using the
block diagram notation. We used coloured, directed lines to
represent a usage scenario flow. These flow paths are addi-
tionally annotated with extra-functional information, such
as latencies or data volumes, where available. The path
overlays need to be added with care to avoid visual clutter.
We used MS Visio layers to be able to activate/deactivate
multiple levels of path overlays.

The actual FMC block diagrams for the candidate assets
in the scope of a domain analysis are aligned to a similar
layout per product so that they are easily comparable when
shown side-by-side. For example the components realizing
a specific feature are placed at the same position in each
diagram.

5. APPLICATION CASE 1: INDUSTRIAL
CONTROL SYSTEMS

We applied our approach in two cases in different domains
at ABB. Section 5 describes the application to industrial
control systems and Section 6 describes the application to
conditioning and monitoring PC tools.

1http://www.fmc-modeling.org/fmc stencils

5.1 Domain and Challenges
Industrial control systems monitor and control automa-

tion processes in a variety of different industrial sectors (e.g.,
power generation, chemical plants, or substations). ABB has
several such systems in its portfolio, which address specific
industrial subdomains and have been incorporated in former
company mergers.

Industrial control systems can include millions of lines of
code and with a plethora of different features and subsys-
tems. Many features are slightly different from one indus-
trial sector to another one. However, the basic functionality
is still comparable. Currently mainly opportunistic reuse is
realized among ABB’s products. Therefore, the goal of this
application case was to apply our approach to identify op-
portunities for systematically reusing subsystems between
products within ABB. We analyzed several different control
systems with our domain analysis method.

5.2 Domain Analysis and Architecture Re-
construction

1) List products and information sources.
As a first step we surveyed existing products in the con-

trol system domain within ABB. The initial survey resulted
in a list of over 20 products. We excluded products that
are no longer in active development. We gathered readily
available documentation and identified contact persons for
each product.

2) Establish criteria for reuse potential.
The criteria for assessing the reuse potential were based

on the Reuse Capability Model [7] and the SEI Technical
Probe [4]. However, as these approaches did not entirely fit
our purpose and domain we adapted them accordingly. The
following list gives an overview on the selected criteria.

• High-level features

• Architecture and technologies

• Use of industry standards (e.g., protocols, interfaces,
components)

• Development process readiness (e.g., release manage-
ment, change management)

• Organizational fit (e.g., subunits, development roles,
funding models)

• Market fit (e.g., market size, amount of installed prod-
ucts)

• Reuse culture (e.g., knowledge on reuse, commitment
for Reuse, etc.)

• Future outlook (e.g., roadmaps, future trends, tech-
nologies)

Some criteria are specific to the domain of industrial con-
trol systems. For example, as these kinds of systems have
a long life-cycle it is useful to know how many installations
there are (installed base), because many existing installa-
tions might prevent exchanging certain components. The
high-level features are specific to the domain and as well the
granularity of the targeted reuse. Since these are large-scale

systems, there is no fine-granular break-down of the features
as the analysis rather targets the systematic reuse of whole
subsystems.

3) Create initial feature list.
We based the selection of the features to analyze on our

own domain knowledge. Then, after review by experts and
experiences during the interview process, we extended it to
take into account features missing or needing refinement.
For example, we included features, such as data monitor-
ing, alarm handling, and operational historians. We finally
ended up with 30 high-level features. Figure 3 provides an
excerpt of the feature map.

4) Collect and analyze documentation.
For each of the products we gathered user documentation

and architecture documentations from the architects. For
some of the systems an extensive architectural documenta-
tion was available. We used this information to come up
with a sketch of the architecture in our common, high-level
notation (cf. Section 4). These basic sketches then helped in
the interviews as they reduced the time needed for the archi-
tecture reconstruction and served as a cross check whether
we understood the architecture correctly.

5) Conduct interviews.
We scheduled interviews with the lead architects of the

products to get answers for the prepared questionnaires and
learn the architectures. The interviews ranged from half a
day to three days depending on the size of the system, our
previous knowledge on the system, as well as the availability
of the interviewees.

During the interview we filled out the questionnaire, went
through the feature list, and created and extended the ar-
chitecture sketches. Due to the different sizes of the systems
and the varying depth of the interviews, the architecture il-
lustrations created during the interviews had different gran-
ularity. In subsequent document analyses and clarifications
via phone the architecture illustrations of all systems were
brought to a comparable level.

Figure 2 gives an overview on the architecture illustrations
of some of the products under analysis. For confidentiality
reasons, the figure lacks numerous details, such as the com-
ponent and connector names as well as quality attribute and
technology annotations. Based on the architecture illustra-
tions we were capable of visualizing the data flows through
the components, which are omitted here for confidentiality.
For example, one data flow included a sensor value read from
an industrial device and propagated through the system to
be shown on the operator screen.

6) Identify opportunities.
The next step was to identify reusable features and subsys-

tems based on the information from system documentation
and the interviews transcripts. We used a product feature
support matrix (Figure 3). The matrix shows for each prod-
uct whether a feature from the feature list is supported. A
feature can either be fully supported according to our defi-
nition, partially supported, or not supported.

We also indicated whether a new implementation of a fea-
ture or a replacement of an existing subsystem is currently
realistic. In this case, we marked the product as a poten-

System A

Connects

Power Historian Server

Operations Client
Operations Client

Power

Operations

Server

Power

Operations

Server

Connects

R

R

System B

Operations Client
Operations Client

Connects

Connects

R

RTSRTS

R

´

Digivis
Digivis

System C

PID
PID

R
R

R

Legend

Subsystem

Storage

Comm.

Channel

Data Read/

Write

Deployment

Unit

Client

Server

Client

Server

Client

Controller

Figure 2: Architecture map for three of the analyzed systems in application case 1 (simplified)

Figure 3: Anonymized excerpt of the feature sup-
port matrix for the control systems case study

tial reuse consumer for that feature. Products that have
a high-quality and generic implementation of a feature are
highlighted as potential reuse providers. The feature sup-
port matrix is augmented by explanatory notes based on
the interviews and document analysis.

To identify the reuse potential of certain feature imple-
mentations we not only rely on the interviewee judgment,
but also on the architecture illustrations. For example, we
analyzed the cohesion and coupling of the subsystems that
implement a feature. We also colored subsystems in different
products that implement similar features.

Given the potential reuse providers and consumers in the
matrix we identified several realistic new reuse opportunities
among the products. For some features a reuse consumer
can be directly mapped to a provider. For other cases, there
are several consumers that could collaborate on a new SPL-
based implementation of a feature.

The technical feasibility for each reuse opportunity was
documented based on the information from the interviews
and the available documentation. The organizational feasi-
bility of each reuse opportunity was also analyzed similarly.

7) Create business case.
Creating a business case calculation (e.g., as in [1] for

the reuse potential in this application domain) is not triv-
ial. Besides the development and maintenance cost of each
product, also the migration costs for existing installations
need to be considered if a subsystem is replaced. This is
especially critical in the industrial control system domain,
since these system include numerous hardware devices and
engineering work to customize the system.

We were thus not able to create a reasonable business
calculation in this domain yet, because the inputs for such
a calculation are difficult to gather. At this point, the focus
of the analysis shifted to novel or planned features for the
future. High potential lies in the collaborative development
of modern features for control systems, such as interfaces
tailored for mobile devices.

5.3 Results
Our approach enabled us to create a thorough, albeit high-

level, assessment of reuse opportunities at reasonable cost.
It showed to scale to complex systems and still provides
useful results despite the relatively short feature list.

In one case, the high-level architecture overviews provided
by our architecture illustrations made the respective busi-
ness unit rethink architectural trade-offs. The architecture
illustrations also were instrumental in stimulating discus-
sions among the product architects and visualize the func-
tional overlap.

Our initial hypothesis that there is functional overlap be-
tween the various system was confirmed by our analysis.
However, an actual re-engineering of the systems towards
reusing subsystems still seems difficult. Therefore, the focus
of reuse opportunities in this domain lies more in guiding
current and future development towards a better alignment
and reuse of subsystems.

6. APPLICATION CASE 2: AUTOMATION
PC TOOLS

6.1 Domain and Challenges
In the second application case, we analyzed a set of PC-

based commissioning and monitoring tools for industrial au-
tomation systems. Commissioning tools are used to load
software applications onto a device and to set application
parameters. Monitoring tools are used to observe an au-
tomation system, check and predict its operating conditions,
and raise alarm events.

The analysis comprised two tool families, each consisting
of around ten tools, and four individual tools. Each tool
family is based on a platform and the products are derived
by using different components and libraries. Both tool fam-
ilies have not been planned as software product lines. One
originated from a single product that was extended several
times. The other family resulted from integrating different
tools, which had similar functionality.

During their development history, the developers of the
tools have changed. The product management was aware
of the tools in the families as well as of the potential func-
tional overlaps, which could provide a potential for a soft-
ware product line and for reducing future development and
maintenance efforts. Thus, there was interest in analyzing
the SPL potential in more detail and calculating the prob-
able business case for reusing components or merging the
tools into a single product line. For this purpose, we instan-
tiated our domain analysis approach.

6.2 Domain Analysis and Architecture Re-
construction

The time frame for this domain analysis was three working
weeks. We used one week for preparation (step 1-4), one
week on site for interviews with the developers (step 5), and
one week for wrap-up (step 6-7) and documentation of the
results.

1) List products and information sources.
The developers provided an initial list of all tools. We

excluded tools, for which a low reuse potential could be as-
sumed or which are no longer maintained. The identification
of information sources was trivial in this step as for each tool
we could contact the responsible developer.

2) Establish criteria for reuse potential.
We used similar reuse potential criteria as in application

case 1 (Section 5). In this application case the number of
considered products was larger, but they were of smaller
size and complexity. As the tools are owned by only two
business units, there was less emphasis on organizational
criteria during the assessment.

3) Collect and analyze documentation.
During preparation, we gathered documentation about

the tools. This mainly includes user manuals, coarse-grained
architectural documentation, as well as internal power point
presentations about the architecture and functionality of the
tools. The power point presentations helped to gain insight
into the current status of the tool development and future
plans, which are important for planning reuse or a software
product line.

4) Create initial feature list.
Before the interviews, we had limited knowledge about

the tools and their application domain. Because of this, we
based the initial feature list on the user manuals. However,
due to our limited domain knowledge at the beginning, the
value of this initial feature list was limited and we made
several changes during the interviews.

5) Conduct interviews.
During the week on site, we interviewed three project

managers and developers. With each interviewee, we filled
out the questionnaire and created the architecture illustra-
tions. We used a feature map [20] immediately in the inter-
views (Figure 4). A feature map groups low-level features
such as store data into subdomains and domains, which are
high level features such as data management.

For each product the feature map shows all supported
(”x”) or partially supported (”(x)”) features and (sub-
)domains. The last column of our feature map gives an
assessment of the reuse potential. This is based on the cov-
erage of the features of a domain by the product under con-
sideration for reuse as well as other factors such as technical
challenges and customer acceptance, which are denoted as
notes. Compared to Schmid’s approach [20], we only per-
formed product line mapping and a short domain potential
assessment, but no quantitative reuse infrastructure scoping,
due to effort limitations.

After the individual interviews, we consolidated the list
and made a first assessment of the reuse and SPL potential
for each domain or sub-domain. We discussed this prelimi-
nary assessment with the interview partners in a 30 minute
meeting on site and noted down several comments in the
feature map.

The last step of each interview, was the architecture re-
construction as described in section 4. We started from a
black box view of a tool with its interfaces, refined this into
a view showing clients and servers, for example, and mod-
eled the next levels of components and internal data flow.
The data-flow oriented view of FMC was a new notation
for the developers. After a short learning phase, modeling
worked quite well and supported an active discussion about
the architecture and its concepts, such as used patterns and
styles.

After completing the architecture illustration for all tools,
we gained a good overview showing many parallels as well as

Do
m

ai
n

Su
bd

om
ai

n

Fe
at

ur
e

Pr
od

uc
t 1

Pr
od

uc
t 2

Pr
od

uc
t 3

Pr
od

uc
t 4

Pr
od

uc
t 5

Pr
od

uc
t 6

 R
eu

se

Po
te

nt
ia

l

A x x x x x x
B x x x
C x x x x x
D x x x x

x x x (x) (x) (x) high
E x x
F x
G x
H x

x low
(x) x (x) (x) (x) medium

I x x x x
J x x
K x x x x
L x x x x
M x x
N x x

x (x) x (x) (x) medium
O x x x
P x x

(x) x (x) (x) medium
x (x) x (x) (x) medium

Subdomain
2.2

Do
m

ai
n

1
Do

m
ai

n
2

Subdomain
1.2

Subdomain
1.1

Subdomain
2.1

Figure 4: Example Feature Map

variations and potentially new interfaces. As for the feature
map, the architecture illustration was discussed in a short
workshop-style session with the interviewees. All agreed on
the results and ranked the value of the architecture illustra-
tions high for discussions, communication, and documenta-
tion. They were very interested in maintaining and extend-
ing them in their future work.

6) Identify opportunities.
After completing the interviews, we finalized the assess-

ment of the reuse potential for each domain and subdomain
in the feature map. We added a rational for each potential
rating of low, medium, and high. In the end the feature
map consisted of more than 300 features grouped into 50
subdomains and 19 domains. The reuse potential of ten
subdomains, e.g., data management, are ranked high.

The architecture illustration was then used to cross-check
the technical feasibility of creating shared components for
the identified subdomains. However, some of the subdo-
mains would require deeper technical investigations before
deciding on reuse. In the end, we identified three short-term
reuse scenarios that can be implemented in the next releases.
Additionally, six domains and subdomains are long-term
reuse candidates, but require more technical investigations.

7) Create business case.
For the three identified short-term reuse scenarios, we cre-

ated a business case calculation. In parallel to the preceding
steps of the analysis, we collected numbers for the current
development and maintenance costs of the tools, which re-
quired some calendar time. Then we used the formulas sim-
ilar to the ones provided by Boeckle et al. [1] to calculate
the return on investment for each reuse scenario.

As originally defined, the formulas [1] were only applica-
ble to one reuse scenario without changes. In one scenario,
the calculation was simpler, because a new service (compo-

nent) is implemented and used by many tools. In this case,
the development and maintenance costs for the new compo-
nent are lower than the maintenance costs of the existing
solutions. In another scenario, some individual products are
integrated into the existing platform of a tool family.

6.3 Results
The results of the domain analysis were documented

and discussed in an additional meeting with the responsi-
ble stakeholders from the business unit. The six subdo-
mains identified as potential long-term reuse candidates were
agreed upon and planned to be followed-up on. The develop-
ers were particularly interested in the three short-term reuse
scenarios and their business cases. Not the exact numbers
were important, but the trend that is expected for imple-
menting a scenario. Because this was positive for all three
scenarios, the developers planned to discuss them with the
other relevant stakeholders of the tools for implementation.

7. LESSONS LEARNED
In the following we report on several lessons learned from

the two application cases of our domain analysis approach.
The lessons are intended to support similar, future investi-
gations.

Start with business case and size feature mining.
Considering the size and complexity of the systems un-

der analysis, one important question for a domain analysis
is: how much effort shall be spent for feature mining and
technical investigation? This relates to how much detail
is necessary to support decisions for further SPL investi-
gation. We learned during the application cases that it is
most efficient to start with an initial mock-up business case
calculation and to identify which information is needed to
support its assumptions. This may include assumptions for
the percentage of functional overlap or the overhead for cre-
ating reusable components. The goal is to be able to defend
these assumptions with corresponding feature maps and ar-
chitecture illustrations. All remaining activities, such as the
feature analysis and architecture reconstruction, should be
sized accordingly.

Consider migration costs in SPL business cases.
Existing business case calculations that we found in the

literature often did not incorporate the costs for migrating
existing installations to new reusable components. While
these costs might be marginal in some domains where sim-
ple software updates are required, this factor is especially
crucial in the domain of industrial automation. The soft-
ware products are integrated into complex hardware envi-
ronments and require significant engineering work that is
sometime expensive to adapt to new software versions. Nev-
ertheless we learned that a defendable business case calcu-
lation is a valuable argument to facilitate the discussions on
SPL adoption with higher management.

Do not rely on code analysis for reconstruction.
When we started the domain analysis, we expected that

a static or dynamic code analysis could be helpful for archi-
tecture reconstruction. Besides a picture of the dependen-
cies among the high-level subsystems, it would also give an
up-to-date view and overcome outdated architecture doc-

uments. However, several factors counted against this in
our case. First, there is a different level of abstraction
needed for domain analysis, i.e., a logical, feature-oriented
view, compared to an implementation-oriented view. Sec-
ond, industrial software systems are implemented with di-
verse programming languages, technologies, and third-party
components thus complicating tool-supported code analy-
sis. Third, in our case there are no code clones between
the products since the development units operate rather in-
dependently. Fourth, it is more efficient to interview the
architects about the architecture than setting up a working
build environment, configuring a static analysis tool, and in-
terpreting the results. For future domain analyses, we would
thus abstain from automated code analysis.

Use FMC for architecture reconstruction.
We learned in our domain analysis that FMC is a valu-

able notation for high-level architecture illustration suitable
for initial technical reuse assessments. The unified notation
forces architects to re-formulate their architecture descrip-
tions in common terms, which is by itself already a benefit.
The visualization is more streamlined than the UML, thus
more suitable to compare multiple complex systems visually.
The notation resonated well with the participating architects
who liked to think in predefined templates. The documen-
tation gave a fresh view on the products and is useful for
communication purposes even beyond the domain analysis
and SPL assessment. For some suggested reuse case, the
diagrams proved to be helpful to analyze the technical chal-
lenges and required adaptations.

Create a shared understanding as important result.
In general, when analyzing a number of similar software

products which have been developed rather independently,
it is a value by itself to create a shared understanding
about the products between the domain analysis stakehold-
ers. This is facilitated in a domain analysis through the
uniform treatment of each product and the alignment of
domain-specific terminology. Certain terms might be used
different in different products although they represent sim-
ilar concepts. During our interviews we had numerous dis-
cussions about the feature terminology, which proved to be
valuable to create a shared understanding and see similari-
ties that were unclear before.

Consider cost and benefits.
For conducting a domain analysis towards a SPL product

it is useful to have reference numbers for the required ef-
forts to plan similar projects. We learned that the domain
analysis effort varies heavily depending on the size and com-
plexity of the products under analysis. In application case
1, we needed about 1 person month (PM) for preparation,
1 PM for the actual interviews, 3 PM for the analysis, and
2 PM for documentation. In application case 2, we invested
1 person week (PW) for preparation, 1 PW for the inter-
views, and 1 PW for analysis and documentation. Due to
the heavy involvement of architects and developers, calendar
time is an issue for our domain analysis approach, as it is
sometime difficult to arrange interviews with these persons
given other development duties. Nevertheless, considering
the potential impact of migrating towards a SPL approach
with saved development and maintenance costs, the busi-
ness case for the domain analysis itself is comparably easy

to create.

Keep in mind the human factor.
Our approach is heavily depended on the input provided

from the interviews. This might distort the analysis results,
if the interview partners do not share relevant information.
This might be intentional out of fear of the impact of the
domain analysis on the current development. But it also
might be unintentional, because the interviewees have be-
come blind for certain relevant issues that they take for
granted. Thus, the interviews require experienced moder-
ators who can challenge given answers and call for clarifi-
cations. In general the output from the interviews must be
reflected critically given other information sources, such as
documentation, source code, or third parties.

8. CONCLUSIONS
We have created a domain analysis approach based on ex-

isting methods and applied it in two application cases on
numerous ABB software products from the industrial au-
tomation domain. This paper summarizes the experiences
from applying the approach and reports on several lessons
learned. We found that a domain analysis should be driven
by a business case calculation that needs to consider migra-
tion costs. Furthermore, we experienced that code analyses
were not helpful in our cases, but that high-level architecture
illustrations based on architect interviews using the FMC
notation proved to be a valuable tool. In general domain
analyses can be sped up by involving stakeholders with the
relevant expertise early.

Our lessons learned are intended to improve future domain
analysis investigations in similar complex domains at other
companies. We encourage to use similar tools and notations
as in our analyses to support a decision for SPL engineer-
ing efficiently. Our results can also stimulate researchers to
improve existing domain analysis methods. Such methods
should recognize strict cost constraints in industry as well
as technical constraints such as legacy systems complicating
automated code analyses.

In future work, we will extend and refine our domain anal-
ysis approach and apply it on additional cases in different
subdomains of industrial automation. We intent to create
templates and models that can be reused to speed up future
applications. The approach should be extended to design
an SPL reference architecture for the analyzed domain to
enable implementation of the found reuse potential.

9. REFERENCES
[1] G. Boeckle, P. Clements, J. McGregor, D. Muthig,

and K. Schmid. Calculating roi for software product
lines. Software, IEEE, 21(3):23 – 31, may-june 2004.

[2] H. P. Breivold, S. Larsson, and R. Land. Migrating
industrial systems towards software product lines:
Experiences and observations through case studies. In
Proceedings of the 2008 34th Euromicro Conference
Software Engineering and Advanced Applications,
SEAA ’08, pages 232–239, Washington, DC, USA,
2008. IEEE Computer Society.

[3] R. Capilla. Using map for recovering the architecture
of web systems of a spanish insurance company.
Software Technology and Engineering Practice,
International Workshop on, 0:92–101, 2005.

[4] Carnegie Mellon University - Software Engineering
Institute. Product Line Hall of Fame.
http://splc.net/fame.html, 2013. last visited
2013-01-21.

[5] Carnegie Mellon University - Software Engineering
Institute. Software Product Lines.
http://www.sei.cmu.edu/productlines/, 2013. last
visited 2013-01-21.

[6] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[7] T. Davis. The reuse capability model: a basis for
improving an organization’s reuse capability. In
Software Reusability, 1993. Proceedings Advances in
Software Reuse., Selected Papers from the Second
International Workshop on, pages 126 –133, mar 1993.

[8] T. Eisenbarth and D. Simon. Guiding feature asset
mining for software product line development. In
Proceedings of the International Workshop on Product
Line Engineering: The Early Steps: Planning,
Modeling, and Managing, Erfurt, Germany,
Fraunhofer IESE, pages 1–4, 2001.

[9] P. Frenzel, R. Koschke, A. P. J. Breu, and
K. Angstmann. Extending the reflexion method for
consolidating software variants into product lines. In
Proceedings of the 14th Working Conference on
Reverse Engineering, WCRE ’07, pages 160–169,
Washington, DC, USA, 2007. IEEE Computer Society.

[10] J. Ganesan, D.; Knodel. Identifying domain-specific
reusable components from existing oo systems to
support product line migration. In Proceedings First
International Workshop on Reengineering towards
Product Lines, R2PL 2005, Pittsburgh, Pennsylvania,
USA, pages 16–20, 2005.

[11] B. Groene. Introducing architecture modeling at a big
software product company. In Proceedings Praxisforum
Modellierung 2012, 2012.

[12] A. Harhurin and J. Hartmann. Service-oriented
commonality analysis across existing systems. In
Software Product Line Conference, 2008. SPLC ’08.
12th International, pages 255 –264, sept. 2008.

[13] I. John, J. Knodel, T. Lehner, and D. Muthig. A
practical guide to product line scoping. In Software
Product Line Conference, 2006 10th International,
pages 3 –12, 0-0 2006.

[14] M. Khurum and T. Gorschek. A systematic review of
domain analysis solutions for product lines. J. Syst.
Softw., 82(12):1982–2003, Dec. 2009.

[15] A. Knoepfel, B. Groene, and P. Tabeling.
Fundamental Modeling Concepts: Effective
Communication of IT Systems. Wiley, 2006.

[16] H. Koziolek, R. Weiss, and J. Doppelhamer. Evolving
Industrial Software Architectures into a Software
Product Line: A Case Study. In Proc. 5th Int. Conf.
on the Quality of Software Architecture (QoSA’09),
volume 5581 of LNCS, pages 177–193. Springer, July
2009.

[17] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and
A. Tang. What industry needs from architectural
languages: A survey. IEEE Transactions on Software
Engineering, TBD, 2013.

[18] Peter Tabeling. Home of Fundamental Modeling

Concept. http://www.fmc-modeling.org/home, 2013.
last visited 2013-01-21.

[19] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, 2005.

[20] K. Schmid. A comprehensive product line scoping
approach and its validation. In Proceedings of the 24th
International Conference on Software Engineering,
ICSE ’02, pages 593–603, New York, NY, USA, 2002.
ACM.

[21] C. Stoermer and L. O’Brien. Map - mining
architectures for product line evaluations. In Software
Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on, pages 35 –44, 2001.

[22] F. J. van der Linden, K. Schmid, and E. Rommes.
Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Springer, 2007.

[23] E. Woods and R. Bashroush. Using an architecture
description language to model a large-scale
information system–an industrial experience report. In
Proceedings of the Joint 10th Working IEEE/IFIP
Conference on Software Architecture & 6th European
Conference on Software Architecture, Helsinki
Finland. IEEE Computer Society, 2012.

