
Tool-Driven Technology Transfer
to Support Software Architecture Decisions

Heiko Koziolek, Thomas Goldschmidt

Industrial Software Systems
ABB Corporate Research

Wallstadter Str. 59
68526 Ladenburg, Germany
heiko.koziolek@de.abb.com

thomas.goldschmidt@de.abb.com

Abstract: Software architecture design decisions are key drivers for the success of
software systems. Despite awareness for their criticality, software architects often
rationalize and document their decisions poorly. On this behalf, ABB Corporate
Research initiated a technology transfer project to integrate an architecture decision
framework from the University of Groningen into ABB software development pro-
cesses. The project involved close communication between university researchers,
industry researchers, and ABB software architects and resulted in the implementation
of a plug-in for the UML tool Enterprise Architect. This paper summarizes success
factors for the technology transfer, such as strong buy-in from the stakeholders, short
feedback cycles, and seamless integration into existing tool-chains.

1 Introduction

ABB Corporate Research faces the issue of transferring software engineering technolo-
gies into a large number of diverse ABB business units, which develop software for
power systems and industrial automation. In recent years, we have adopted a tool-driven
strategy for several software engineering technology transfer projects joint with Univer-
sity partners. This involves for example the creation of Visual Studio plug-ins or Team
Foundation Server extensions for ABB’s often Microsoft-centric development environ-
ments [SDRF12]. Packaging research results into seamlessly integrated development tools
can help to make advanced research concepts available to regular developers. This results
in a bottom-up, developer-driven transfer and improves the acceptance of the results in the
development units.

This paper reports from a tool-driven technology transfer project in the area of software
architecture. Architecture design decision research has gained substantial academic inter-
est in the last ten years [BDLV09] (cf. Section 2). Our tooling originates from a published
conceptual framework [vHAH12] and was developed in close collaboration with ABB
software architects (cf. Section 3). The article summarizes lessons learned while conduct-
ing the technology transfer (cf. Section 4).



2 Research on Architecture Decision Modeling
Despite the growing complexity of modern software systems and the higher awareness for
software architecture concerns, there is still limited, systematic architecture decision docu-
mentation in practice [TBGH06]. Decision documentation is seen as time-consuming and
not immediately rewarding, as its true value may be realized only in the maintenance phase
of a system when decisions need to be changed or augmented. If software architects use
UML diagrams to document structural or behavioral aspects of their systems, it is usually
cumbersome to annotate these diagrams with rationale for the decisions made. Common
UML tools only allow informal textual annotations, which are difficult to manage and
maintain if the documentation gets more complex.

A recent stream of research advocates treating architectural decisions as first class entities
of the architectural documentation on the same level as components and interfaces [JB05].
Tang et al. [TBGH06] surveyed how architecture design rationale is treated in practice.
Kruchten et al. [KLvV06] argued for a repository of architecture knowledge explicitly
documenting decisions and their rationale. A couple of knowledge management tools
spanning from Wikis, UML profiles, and programming language extensions have been
proposed [TAJ+10]. Zimmermann et al. created reusable decision models for SOA sys-
tems [ZGK+07]. The international standard for architecture description (ISO/IEC/IEEE
42010) added architecture decision documentation to its framework in its 2011 revision.

Our technology transfer project originated from one of the recent approaches to ar-
chitecture decision modeling. van Heesch et al. [vHAH12] proposed a documentation
framework for architectural decisions spanning five viewpoints using the conventions of
ISO/IEC/IEEE 42010. The relationship viewpoint shows dependencies between decisions,
the chronology viewpoint shows different states of decision over time, the stakeholder
viewpoint connects stakeholders and decisions, and the detailed viewpoint contains a de-
tailed description and rationalization for a single decision. Finally, the forces viewpoint
published in a separate paper shows the decision forces affecting architecture decisions.

As an open problem for the technology transfer, tool support for architecture decision is
still limited. Existing tools [TAJ+10] have been developed in academic, non-commercial
contexts, and are often not well embedded into architecture design processes or existing
tool chains. Although there is the ISO/IEC/IEEE 42010 standard, it provides only coarse-
grained guidance what attributes of a decision could be documented, but gives no concrete
guidelines. For architecture documentation, usually informal diagrams or sometimes UML
models are used in practice. The lack of specific tool support for documenting architec-
ture design decisions makes some software architects reluctant to document their decision
rationale at all. For the conceptual decision framework from van Heesch et al. [vHAH12],
no tool support existed at all.

3 From Research to Practice

The goal of our technology transfer project for architecture decision modeling was
twofold. First, we wanted to better understand the current practices of software architec-
ture documentation and decision documentation. This included not only finding out what



information was important for software architects to document, but also under what orga-
nizational and technical constraints such documentation was created. Second, we wanted
to improve the current practice of explicit decision documentation. Therefore, the goal
was to create a documentation tool that seamlessly integrated into existing ABB software
development processes in order to lower the barrier to document decisions in the future.
Besides the concrete tool implementation, involving ABB software architects into the re-
quirements engineering process for the tooling was intended to disseminate the idea of
explicit decision modeling from research into practice.

The overall project team consisted of one PhD student and two Master students from the
partnering University as well as two researchers from ABB Corporate Research. The
project duration was one year. We involved five practicing ABB software architects in
our study, which had 10 to 24 years of experience in software development and were
all working in projects where they made architecture design decisions. The architects
worked in the domain of industrial process automation systems and each designed different
products.

To gather requirements for the tooling and better understand the constraints under which
the software architects worked, we first conducted a series of semi-structured phone in-
terviews. We asked each architect for the current practice of architecture decision docu-
mentation, gave a brief preview of the planned tooling, and asked for specific functional
and non-functional requirements. Additionally, we analyzed existing architecture decision
documentation from two projects. This for example involved spreadsheet templates, slide
sets, and architecture design documents. There was also a document giving architecture
modeling guidelines, which we analyzed to find a good way of integrating the decision
documentation.

We found that all architects were familiar with the concepts of architecture decision docu-
mentation, but that there was no standard way of doing this. Some architects documented
decisions in presentation slides or spreadsheets. Others provided decision rationale in in-
formal texts accompanying UML diagrams. Decision rationale was also sometimes only
kept in e-mails between different stakeholders or meeting minutes without being integrated
into the standard architecture documentation at all.

Most architects used the tool Enterprise Architect from Sparx Systems to model in UML.
Some of them had created tool chains (e.g., to generate documents), trainings, and mod-
eling guidelines. Introducing a Wiki- or web-based tooling for documenting architectural
decisions was not desirable as it would have added another tool, which required admin-
istration as well as synchronizing with the UML models. Therefore, we decided to im-
plement the architecture decision tooling as an add-in to Enterprise Architect. Besides
the software architects’ familiarity with Enterprise Architect, one reason was to be able
to seamlessly connect existing UML models with the decision documentation, which was
seen as a great benefit by the software architects.

The software architects added a number of requirements for the tooling, which for ex-
ample included generation of presentation slides from the model, automatic creating of
the chronological decision viewpoint, or the ability to create trace-links between decision
alternatives and complete diagrams. The architects also agreed that the tooling should



be flexible and not force the user to document each decision with the same detail. As
a major constraint, the architects work under time pressure and are usually not immedi-
ately rewarded for complete and high quality documentation. Therefore, complex decision
documentation templates were seen critical.

Figure 1: Decision Viewpoint Add-in for Enterprise Architect

Once we had implemented a prototype of the Enterprise Architect add-in, we sent it to
the architects and asked them to test it. We then arranged five interview and tool demon-
stration sessions with each architect each lasting half a working day. We presented the
current version of the tooling and asked the architects to document a few decisions from a
current project. We observed the participant in using the tool to uncover usability issues.
Afterwards, we interviewed the architects for their feedback.

Each architect was generally positive about the tooling, but had different emphasis re-
garding the different viewpoints. Some favored the forces viewpoint, which allowed a
table-like comparison of multiple decision alternatives. Others saw the stakeholder view-
point as interesting, as it allowed them to trace decisions to particular stakeholders. After
using the tooling, the architects requested a change of the decision meta-model, so that the
issue, alternatives, and outcome of a decision were captured more explicitly. Besides, they
came up with a number of usability improvements.

The final version of the tooling incorporating the software architects’ requirements is still
under development. After its release, the software architects will use the tooling in their
project to retroactively document a number of important decisions. We plan a third inter-
view session with the architects in order to improve the tooling further. Once the Enterprise
Architect add-in is a mature state, it is planned to be released as open source software, so
that it can be used by other Enterprise Architect users and be extended for additional fea-
tures by an interested community.



4 Lessons Learned
From our technology transfer project, we learned a number of generic lessons that are
helpful for similar situations.

Beneficial to center technology transfer around tooling: In our case it was very useful
to drive the technology transfer through the implementation of a software tool. It forces
researchers to make former conceptual work applicable for a larger audience. The tooling
pre-packages knowledge on how to structure architecture decision documentation and can
provide immediate value to a software architect in a given project. It makes the concepts
more accessible than through a research paper. The tooling is still generic and can be used
for many projects inside and outside of ABB. ABB is following this tool-driven approach
to technology transfer for other concepts as well (e.g., for code search [SDRF12]).

Different emphasis in academic vs. technology transfer tool development: The em-
phasis of tool development in academic contexts is often on creating a proof-of-concept
solution that suffices to carry out an empirical validation in a well-protected setting. In-
stead, the emphasis of tool development in technology transfer projects is rather on process
integration and robustness. Existing artifacts (e.g., models), workflows, and tool-chains
need to be respected in order to get a buy-in for the tooling. Many of the implemented
features provide no academic value (e.g., document generators), but are of high interest
for the practitioners. The reliability and usability of the tooling is more important than a
comprehensive list of features.

Short feedback cycles important to get buy-in from users: It proved very valuable
to closely collaborate and communicate with the eventual users of the approach, i.e., the
software architects. We presented some of the most promising concept to the software
architects early to get their buy-in. The architects valued that we considered their docu-
mentation guidelines and templates. We included the architects already in early require-
ment gathering phases and made sure that their inputs were addressed. The architects
were motivated when they saw that the tooling respected their particular issues. We not
only presented the tooling to the architects, but also had them experimenting with early
prototypes so that they became more familiar with the overall idea.

Technology transfer as a source for research problems: While technology transfer per
se does not provide novel publishable results besides potential empirical validations, its
role in finding new research problems may be underestimated. Through the process of col-
laboration between researchers and software architects, pointers for future research can be
identified. For example, we found that architecture decision documentation is still focused
mainly to single products and that a knowledge transfer about decision rationale seldom
happens between products. Therefore, it is desirable to enable cross-product decision doc-
umentation in the future. Understanding better the issues in practice and the constraints
(e.g., time, budget, skills) under which a software engineering approach is applied creates
a bi-directional knowledge transfer between research and practice.

Tool support requires long-term commitment: If a technology transfer project creates
tooling, it must ensure its proper maintenance and evolution after the project has ended.
This is often a problem in academic settings, where research projects typically last only
1-3 years and there is little interest in maintenance after the project has finished. The



university collaborations at ABB are usually funded only for a single year, so that the
same problem applies. We are thus aiming at making the developed software open source
and creating a developer community around it to ensure its evolution. The tooling can also
serve as a platform for future tool development for technology as it allows extensions with
new concepts. Nevertheless, we deem long-term tool support after technology transfer
projects have ended still a hard problem that needs attention from funding committees.

5 Conclusions
We have presented the tool-driven technology transfer process ABB Corporate Research
applies in selected software engineering University collaborations. As an example, we
have created an add-in to a popular UML tool and developed the tooling in close interac-
tion with the target users. Centering the technology transfer around tool implementations
brings many benefits such as the need to make conceptual contributions applicable and the
ability to quickly benefit from the new concepts. A challenge to this form of technology
transfer is the long-term commitment to the maintenance of the tooling, which we try to
address by creating an open developer community. In the future we will carry out more
such tool-driven technology transfer projects, which have proven to be valuable instrument
of bringing advanced software engineering technologies into our organization.

References

[BDLV09] Muhammad Ali Babar, Torgeir Dingsyr, Patricia Lago, and Hans Vliet, editors. Software
Architecture Knowledge Management: Theory and Practice. Springer, 2009.

[JB05] Anton Jansen and Jan Bosch. Software Architecture as a Set of Architectural Design
Decisions. In Proceedings of the 5th Working IEEE/IFIP Conference on Software Ar-
chitecture, WICSA ’05, pages 109–120, Washington, DC, USA, 2005. IEEE Computer
Society.

[KLvV06] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up and reasoning about
architectural knowledge. In Proc. 2nd Int. Conf. on the Quality of Software Architectures
(QoSA’06), QoSA’06, pages 43–58, Berlin, Heidelberg, 2006. Springer-Verlag.

[SDRF12] David Shepherd, Kostadin Damevski, Bartosz Ropski, and Thomas Fritz. Sando: an
extensible local code search framework. In Proc. 20th Int. Symp. on the Foundations of
Softw. Eng., FSE ’12, pages 15:1–15:2, New York, NY, USA, 2012. ACM.

[TAJ+10] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad Ali Babar.
A comparative study of architecture knowledge management tools. J. Syst. Softw.,
83(3):352–370, March 2010.

[TBGH06] Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. A survey of architecture
design rationale. J. Syst. Softw., 79(12):1792–1804, December 2006.

[vHAH12] Uwe van Heesch, Paris. Avgeriou, and Rich. Hilliard. A documentation framework for
architecture decisions. J. Syst. Softw., 85(4):795–820, April 2012.

[ZGK+07] Olaf Zimmermann, Thomas Gschwind, Jochen Küster, Frank Leymann, and Nelly
Schuster. Reusable architectural decision models for enterprise application develop-
ment. In Proc. 3rd Int. Conf. on the Quality of Softw. Architectures (QoSA’07), QoSA’07,
pages 15–32, Berlin, Heidelberg, 2007. Springer-Verlag.


