
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Assessing Software Product Line Potential: An
Exploratory Industrial Case Study

[Industrial Experience Report, Special Issue on Empirical
Evidence in Software Product Line Engineering]

Heiko Koziolek · Thomas Goldschmidt ·
Thijmen de Gooijer · Dominik Domis ·
Stephan Sehestedt · Thomas Gamer ·
Markus Aleksy

November 25, 2014

Abstract Corporate organizations sometimes offer similar software products in
certain domains due to former company mergers or due to the complexity of the
organization. The functional overlap of such products is an opportunity for future
systematic reuse to reduce software development and maintenance costs. There-
fore, we have tailored existing domain analysis methods to our organization to
identify commonalities and variabilities among such products and to assess the po-
tential for software product line (SPL) approaches. As an exploratory case study,
we report on our experiences and lessons learned from conducting the domain
analysis in four application cases with large-scale software products. We learned
that the outcome of a domain analysis was often a smaller integration scenario
instead of an SPL and that business case calculations were less relevant for the
stakeholders and managers from the business units. We also learned that architec-
ture reconstruction using a simple block diagram notation aids domain analysis
and that large parts of our approach were reusable across application cases.

Keywords Software Product Lines, Domain Analysis, Business case

1 Introduction

ABB is one of the largest engineering companies in the world mainly operating
in the areas of power and automation technology. In general, systematic software
reuse is difficult to achieve in large corporate companies with several divisions
and dozens of business units [27]. Company mergers add software products with
functional overlap to the existing portfolio. The benefit of merging such products
using a software product line approach is often hard to assess.

Although functional overlap between different software products in a com-
pany’s portfolio is often perceived informally [8,35], it is not sufficient to start a

ABB Corporate Research
Industrial Software Systems Programm
68526 Ladenburg
E-mail: heiko.koziolek@de.abb.com

2 Koziolek et al.

costly SPL initiative. Features might be similar on a high abstraction level, but
often there are subtle differences that require a deeper technical analysis involving
software architecture evaluation. Besides the technical analysis, there is the need
for proper scoping, analysis of organizational constraints, and assessment of the
development organization’s readiness for SPL engineering. The value for SPL en-
gineering needs to be communicated to various involved stakeholders taking into
account the technical and organizational analysis.

Analysts use numerous methods in industry to assess product line potential
given a set of software products. For example, the SEI applies its ’Product Line
Technical Probe’ method [14,39] to examine readiness for product line adoption.
The Family Evaluation Framework (FEF) [37] provides a four-dimensional evalu-
ation profile to assess organizational readiness. PulSE Eco [46] provides another
approach for domain potential analysis. We do not introduce a new method in
this paper, but have tailored the existing methods into our own approach that re-
spects our company’s specifics and lays special emphasis on software architecture
evaluation [34].

The contribution of this paper are experiences (Section 5.1, Appendix) and
lessons learned (Section 5.3) from executing a domain analysis method in four
cases on more than 20 industrial software systems. In our study the result of the
domain analyses were often smaller integration scenarios due to high migration
costs in the industrial domain. We understood that business flexibility is often
an argument against an SPL approach in the analyzed domains. The business
cases could only be executed in two cases, where they showed a positive return on
investment after three and seven years, respectively. The goal of the paper is to
support similar domain analysis approaches in other companies by pointing out
valuable experiences and avoidable pitfalls.

The remainder of this article is structured as follows: Section 2 summarizes
foundational work on domain analysis, SPL potential analysis, and architecture
reconstruction, before Section 3 introduces our seven-step approach to assess SPL
potential . Section 4 states research question and working hypotheses for our em-
pirical study. Section 5 discusses the answers to the research questions, threads
to validity, and lessons learned. Related studies are discussed in Section 6, before
Section 7 concludes the paper and discusses future work. The application cases
are described in a condensed manner in the appendix, more detail is availabe in
other articles [34,16].

2 Foundations

A general overview of SPL engineering can be found in several publications [14,41].
Linden et al. [37] provide an industrial perspective and the Software Engineering
Institute (SEI) has cataloged numerous reports of industrial case studies in the
Product Line Hall of Fame [11]. Recently, Ahnassay et al. [1] reviewed 79 empirical
evaluations for software product line approaches, but found that the studies often
lacked proper design and reporting.

Exploratory Case Study on Domain Analysis 3

2.1 Domain Analysis

To assess the potential for implementing an SPL, a domain analysis can be instru-
mental. In this context, a domain is ”an area of business/technology processes or
knowledge, which is characterized by a set of concepts and terminology understood
by stakeholders in that area” [2]. Domain analysis can then be defined as ”the pro-
cess by which information used in developing software systems within the domain
is identified, captured, and organized with the purpose of making it reusable (to
create assets) when building new products” [2]. In this paper the domain analysis
process is used to identify commonalities and variabilities among a given set of
software products in order to facilitate future common software development.

Domain analysis was first proposed by Neighbors [38] and later integrated into
modern SPL techniques. Prieto-Diaz and Arango [43] provide additional seminal
work on domain analysis for software systems. Simos [48] presents Organization
Domain Modeling (ODM), which is a systematic domain analysis method struc-
tured along a core domain modeling life cycle.

Khurum and Gorschek offer a comprehensive overview of domains analyses for
software product lines [31] citing 89 studies from the literature, 25 of which were
authored by practitioners. However, according to Khurum and Gorschek many of
the domain analysis studies lack rigorous empirical validation. While our study
is an exploratory case study, we try to improve rigor by formulating distinctive
research questions and discussion the study’s threats to validity.

2.2 Product Line Potential

There are also several recent approaches for analyzing the potential for software
product line engineering. The SEI Product Line Technical Probe [12] (PLTP)
examines the readiness of a company to succeed with a software product line ap-
proach. The PLTP consists of three phases: Preliminary Phase, Technical Probe
Phase, Follow-on Phase. In the Preliminary Phase, the goals and preconditions of
the Probe are elaborated and documentation is collected in a one day workshop
together with the (customer) organization to prepare the Technical Probe Phase.
The Technical Probe Phase is an interactive process of data gathering (mainly
done by interviews), data analysis, result consolidation, and reporting. Each iter-
ation usually focuses on one of the 29 SPL Practice Areas defined by the SEI and
the interviews are performed with the corresponding stakeholders for each Practice
Area. The aim of the Follow-on Phase is the development of an action plan for
addressing the issues identified in the Technical Probe Phase and proceeding with
the software product line effort. The Practice Areas are divided into Software En-
gineering Practice Areas such as Architecture Definition, Technical Management
Practice Areas such as Scoping, and Organizational Management Practice Areas
such as Building a Business Case. Northrop et al. have reported experiences with
this method [39].

The Family Evaluation Framework [37] has been influenced by the SEI PLTP
and CMMI [13] for assessing an organization’s maturity for software product line
engineering along four different dimensions: Business, Architecture, Processes, and
Organization. Each dimension is divided into several aspects such as Vision and
Business Objectives and Organizational Structure similar to the SPL Practice

4 Koziolek et al.

Areas used by the SEI Technical Probe. For each of the four dimensions, the
Family Evaluation Framework defines five levels similar to the capability levels
of CMMI to assess the readiness of an organization to succeed with a software
product line and to identify improvement potentials.

The Reuse Capability Model (RCM) [15] includes a model for assessing an
organization’s strength and improvement opportunities for reuse. Critical factors,
such as management, application development, and process factors, are evaluated
to implement reuse initiatives.

As a part of the PulSE method [3] for SPL engineering, PulSE-Eco from
Schmid [46] intends to analyze functional overlaps and consists of three steps:
product line mapping, domain potential assessment, and reuse infrastructure scop-
ing. Product line mapping summarizes relevant products and their corresponding
features, which are grouped into domains, in a product or feature map. In the
domain potential assessment, the benefits and risks of reusing or sharing features
are assessed and used for selecting domains that could be included in a software
product line. The final decision which features become part of the product line is
done in the reuse infrastructure scoping, which performs a quantitative evaluation
of the features w.r.t required effort and business goals. John et al. [28] describe
how PulSE-Eco is customized for different contexts such as a light-weight scoping
for limited efforts.

2.3 Architecture Reconstruction

Software architecture reconstruction is a reverse engineering approach to extract
architecture views of a sofware application and can help to better assess the tech-
nical feasibility of an SPL approach for existing products. For architecture recon-
struction, there are many automated and semi-automated approaches [17]. For
example, Guo et al. [24] propose a method for architecture reconstruction based
based on the recognition of patterns. Kazman et al. [30] extract information from
software system implementations and use this for architectural reasoning. They
also provide guidelines for architecture reconstruction.

To identify reusable components and features [42], the MAP [49] approach al-
lows semi-automatically extracting architecture information from code, identifying
patterns / styles, and evaluating the potential for software product lines. An ex-
perience report [10] applies MAP for recovering the architecture of a web system.
Pinzger et al. [40] apply architecture recovery in the context of product families,
and perform a semi-automated, pattern-supported reconstruction.

Frenzel et al. [21] use reflection and clone detection for identifying ad-hoc copied
code between different products. Harhurin and Hartmann [25] apply a common-
ality analysis on formal design models for extracting product lines from existing
systems. Ganesan and Knodel [22] use object oriented metrics for usefulness, read-
ability, and testability to identify reusable components. Eisenbarth and Simon [18]
propose the usage of the Bauhaus suite, a tool for source code analysis, to identify
features appropriate for a software product line. Hariri at al. [26] mined numerous
online product descriptions and used various clustering mechanisms to identify
common features across products and their relationships.

Exploratory Case Study on Domain Analysis 5

3 Software Product Line Potential Analysis

3.1 Methodology

The goal of our SPL potential analysis approach is to provide technical and eco-
nomic arguments for the feasibility of establishing a software product line for a set
of separated products.

The analysis comprises a domain analysis and and an economical analysis
(Fig. 1). The domain analysis includes feature modeling of the domain, comparing
software architectures, mining candidate assets. The economic analysis includes
calculating the return on investment for an SPL based on the outputs of the
domain analysis. The overall output is rather a technical risk assessment and a
ROI calculation, not a reference architecture or migration strategy. After executing
our analysis, a business decision is needed on further steps towards an SPL or
systematic reuse.

Our SPL potential analysis approach is mainly based on the SEI PLTP [12]
and has been iteratively updated during the different application cases. The major
differences are our more limited resources and that our main goal is to assess the
appropriateness of a set of independent products for the transition towards a
Software Product Line.

Therefore, we aim at an 1-2 days interview (steps 5 and 6) only with an ar-
chitect and product manager for each product instead of a one day preparation
phase meeting plus the iterative set of interviews, data analysis, consolidation and
reporting for each Practice Area of the PLTP. Instead of the PLTP’s one day
preparation phase meeting, we perform a video conference or phone meeting with
our sponsors in order to agree on the list of products to be analyzed, correspond-
ing information sources (step 1), and reuse potential criteria (practice areas) (step
2) to be considered in the analysis. In order to get an overview and compare the
different products we focus on the PLTP’s Practice Areas Architecture Defini-
tion, COTS Utilization, Mining Assets, Understanding the Relevant Domain and
Scoping. These are usually complemented by Technology Forecasting, Process Def-
inition, Organizational Structure, Market Analysis, Funding, and Business Case.
However, aspects can be added or removed based on the goals and requirements
of the sponsors. Note, Practice Areas that are not covered by our SPL potential
analysis need to be considered in follow-up activities, if the result of our analysis
is to go further into the direction of a software product line.

Before the interviews, we already collect and analyze the available documen-
tation (step 3) in order to prepare a questionnaire, an initial feature list, and an
architecture sketch (step 4) for focusing the interviews (step 5) on the important
open issues. For Product Line Scoping and creating the feature list we follow a
lightweight variant of PulSE-Eco from Schmid [46] as descibed by John et al. [28].

In contrast to the PLTP, we focus with our analysis more on identifying the
products, feature (sub-)domains and components that have the potential for being
merged into a software product line (step 6) and try to create a business case
calculation (step 7) for these identified reuse potential scenarios.

The following subsection describe the steps of our domain and economic anal-
ysis in more detail.

6 Koziolek et al.

1) Gather products
and information

sources

2) Establish criteria
for reuse

3) Collect and
analyze

documentation

4) Prepare initial
interview

documents

Detail feature list
and organization

assessment

6) Evaluate results
and identfiy
opportunities

List of
products and

persons

Interview
questionaire

Updated
questionaire

Initial feature
list and

architectures

Detailed
feature list

Commented
feature matrix

Detail architecture
reconstruction

Detailed
architecture

sketches

Software Product Line Potential Analysis

7) Create business
case calculation

5) On-site interview sessions

Domain Analysis

Economic Analysis
Return on
Investment

Decide on SPL
implementation

Decide on SPL
Analysis

Legend

Activity

Artifact

Control flow

Iterate

Data flow

Step 1) – 7)
based on

SEI PLTP

Step 5) includes
Architecture
Definition,

COTS Utilization,
Mining Assets,

Understanding the
relevant Domain,

and Scoping
from SEI PLTP

Step 4/5) integrate
elements of PulSE-

Eco

Step 7) integrates
elements of Boeckle

et al. (2004)

Sources

Fig. 1 Domain analysis process

3.2 Steps of the Domain Analysis

This section introduces in more detail the different steps of the domain analysis
part of our Software Potential Analysis as sketched in Fig. 1. The order and sepa-
ration of steps is not necessarily fix and complete, but provides a guideline to be
utilized and adapted for future application cases.

1) List products and information sources We assume that a number of similar prod-
ucts is already available for a specific application domain. For ABB, this is a com-
mon situation in many different application areas, for example due to company
mergers or local differences [35].

The first step is thus to gather a list of the available products and their re-
spective information sources (e.g., product managers, software architects, docu-
mentation archives, competitor products). The initial list of products is given by
product stakeholders and project sponsors such as product or technology managers
and architects, who are interested in analyzing an intuitively perceived functional
overlap. Often they can also provide pointers to similar products and we also ask
domain experts from other units. In addition, the intranet can be searched for po-
tentially similar products to get a more comprehensive list. In the end, we decide
together with the involved product stakeholders and project sponsors about the
final list of products to be analyzed.

In practice, the scoping analysis however can sometimes not aim at complete-
ness, but is instead restricted by stakeholder interest and the availability of re-
quired contact persons. The list of products can of course be extended over the
course of the analysis as more information becomes available.

For a large corporate company with many globally distributed business units
developing software for different market segments, gathering the list of products

Exploratory Case Study on Domain Analysis 7

and information sources can be complicated and time-consuming. Some products
may lack suitable documentation to decide whether to include them into the scope.
Other products may be out of active development, therefore complicating reusing
parts of them.

Therefore, this scoping step is often a best effort activity driven by organiza-
tional and budget constraints. The output of this step is an initial list of products
and information sources.

2) Establish criteria for reuse potential In a second step, we first establish the criteria
for evaluating the reuse potential of the given products. We draw these criteria
from a generic list that we have assembled. The Reuse Capability Model [15]
and the SEI Technical Probe [11] inspired our list of criteria and can also help
other practitioners in defining their own criteria. Our criteria are software-related,
process-related, and organization related and include the following elements:

– High-level features: the major functionalities of a product are a main source
and required ingredient to identify reuse potential.

– Architecture and technologies: if the architecture of different products are
aligned there is usually a higher potential for reuse. The architecture consists
of components, interfaces, and their interaction. The existing component and
connector structure of a product can, but does not need to be, important for the
reuse potential. The technologies include programming languages and third-
party components, such as operating systems, graphic libraries, communication
middleware, encryption components, etc. They also include the implemented
communication protocols, whose compatibility is often a critical factor for dis-
tributed systems. The use of industry standards (e.g., for protocols, interfaces,
components) can facilitate reuse in certain domain, but is not applicable in
any domain.

– Development process readiness: To participate in a software product line de-
velopment, the development processes of the participating units can be a crit-
ical factor influencing the reuse potential. Thus, it can be useful to evaluate
each unit’s release management strategies and change management processes
and rate them according to their suitability for an SPL approach. For exam-
ple, it is beneficial, if certain fixed release cycles are established that could be
synchronized across units. Additionally, well-established requirements manage-
ment and change tracking processes can facilitate an SPL approach.

– Organizational fit: this can be assessed by analyzing organizational structures,
development roles, and funding models. If a unit’s organizational structure
already allows a seamless development of reusable components, it contributes
to a higher SPL potential. Likewise, if their are established developer roles, such
as software architects and reuse coordinators this is a again beneficial. Finally,
appropriate funding model for the development teams can be a contributing
factor, e.g., if there are already models in place that allow a shared development
between different units.

– Market fit: if the business market of the products under scope is expected to
increase or decrease significantly in the near future, this can be a crucial factor
for an SPL approach. For industrial, long-living software systems controlling
critical infrastructures, migration costs to a SPL can be prohibitively high,

8 Koziolek et al.

because the installed base of products cannot be easily updated. Therefore,
this can also be an important factor.

– Reuse culture: a development unit’s reuse culture comprises their knowledge,
commitment, and past experiences on software reuse. If a unit has already
established reuse processes both for providing and consuming external compo-
nents, it is easier migrate to an SPL approach.

– Future outlook: an important criteria for future common software development
between units is the alignment of the business roadmaps. If there are overlap-
ping elements in the plans for different products it positively contributes to
reuse potential. This may include upcoming trends or domain-specific tech-
nologies that expected to be used within many products in the future.

Many criteria are generic and can be directly used across different domain
analysis executions. However, some criteria depend on the scope of the analysis.
For example, if the software of a single business unit is analyzed, collaborations
with other units are less relevant. We generally do not use quantitative scores for
the criteria but rather rely on qualitative assessments.

3) Collect and analyze documentation We gather existing documentation on the
products and development processes. User manuals help to get an overview of
the feature support. Architecture documentation provides hints on the technology
compatibility of the products as well as the support for standard interfaces.

Besides product-specific documentation, it is also helpful to collect domain-
specific reports, recent technology surveys, and industry standards. If possible,
documentation on competitor products can complement this step. Besides the
analysis team, additional domain experts participating in this step are often re-
searchers from ABB’s corporate research labs, who are not necessarily from the
IT domain. Because they usually have worked on multiple products within an in-
dustrial domain, they can provide valuable product-independent information for
a domain analysis. Since they monitor market and technology trends, they can
further point to analytical reports that can be added to the documentation under
analysis.

A deep analysis of the documentation is not needed; rather the documentation
is screened for answers to the questionnaire concerning feature support and devel-
opment process properties. In our experience, the documentation is often not in a
condition to answer all questions, which is why we conduct stakeholder interviews.
A deeper analysis of the documentation might be warranted after the stakeholder
interviews for specific issues.

4) Prepare initial interview documents Based on the reuse potential criteria defined
in step 2 and the documentation analyzed in section 3, we create a questionnaire
for the interviews in step 5. In order to accelerate the interview process and using
the time for addressing the most important open issues, we already include answers
from the document analysis in the questionnaire and prepare an initial feature list
and architecture sketch.

To start feature modeling, in this step the analysis team creates a list of fea-
tures in a given domain. The analysts carry out this step based on the available
documentation and their own domain knowledge. Architects or developers of the

Exploratory Case Study on Domain Analysis 9

products under analysis are not yet involved to save time. Additional persons, such
as ABB researchers or external consultants, may be contacted if needed.

This step is specific for each domain analysis execution. Initially, a flat list of
high-level features is gathered and a short description of each feature is provided.
We usually create the initial list based on our domain knowledge and experience
with individual products. User manuals are often a good starting point for the
list as they usually include sections on individual features. Industry standards and
current technology trends also serve as input for the feature list. This step can
already include an initial alignment of terms for certain features between products,
as different user manuals may describe the same feature under a different term.

Before further analysis, domain experts from within our company (e.g., product
managers, researchers, external experts) review the feature list. The number of
reviewers depends on the domain, the availability of domain experts, and may
vary from at least one up to three or four, because we need to keep the effort of
the entire analysis low.

We then integrate questions on each feature into the questionnaire created in
step 2. The questions ask whether the feature is supported at all, in which sense is it
supported, and if there are any sub-features which are subsumed under this feature.
We already try to adjust the feature terminology according to our findings from
step 3. We also integrate some example answers to guide the interview partners
and speed up the process. In our experience, the feature list usually needs to be
updated after each interview as new information becomes available.

If we received a sufficient documentation of a product architecture in step 3,
we start drawing a first architectural sketch as starting point for the architecture
reconstruction in the interviews. Such documentation does not necessarily include
UML models, but most often power point presentation with own proprietary nota-
tions. The goal of the architecture reconstruction in our domain analysis is to iden-
tify candidate assets for a SPL from existing software products. The reconstruction
shall point out the major subsystems and interfaces of a product. It shall focus
on logical structures and functionality and abstract from the binary representa-
tion of the code. Additionally, the communication patterns (e.g., request/response,
publish/subscribe) and the data storage facilities shall be illustrated to evaluate
technological compatibility. Finally, selected important extra-functional properties
or constraints of an architecture and its components (e.g., performance constraints,
security considerations) shall be analyzed.

To allow for a comparison of the architectures in the domain analysis, we aim at
a common documentation notation. We ruled out using UML for several reasons:
Despite the availability of component diagrams, UML is still tied to programming
level concepts, such as classes and methods. There is no default representation of
data storages. It is difficult to integrate multiple levels of abstraction into a single
diagram, which is sometimes useful for a domain analysis. Integrating more infor-
mation into UML with stereotypes often generates visual clutter, because UML
tools usually do not support non-standard graphical shapes for stereotypes. Similar
consideration ruled out SysML block definition and internal block diagrams.

Finally, we decided to use simple block diagrams for a common architectural
documentation in our domain analysis according to the Fundamental Modeling
Concepts (FMC) notation reference [33]. FMC block diagrams are highly ab-

10 Koziolek et al.

stracted and do not use class-level elements. Thus, they are hardly suited to
implement a design, but useful to communicate an architectural overview. They
condense the information needed for a domain analysis and allow for a common
documentation according to a notation reference. It is also possible to hierarchi-
cally refine such block diagrams or have different refinement levels for different
subsystems in the same diagram. The notation has been used in other industrial
contexts, e.g., at SAP [23].

While FMC allows to use Petri nets for dynamic structure, we wanted to
show the data flow within the architecture overview, i.e. using the block diagram
notation. We used coloured, directed lines to represent a usage scenario flow similar
to the use case maps notation [9]. These flow paths are additionally annotated with
extra-functional information, such as latencies or data volumes, where available.
They can allow assessing the technical compatibility between products.

5) Conduct Interviews In this step, we travel to the development site of the software
product and conduct a one-day interview with the software architect and product
manager. We structure the interview with the questionnaire prepared in steps 2-4
and try to answer all the included questions. During the interview we note down
the raw answers and re-formulate the included questions or provide examples for
understanding if needed. Besides information on the features and process, we also
ask for future plans and roadmaps. Roadmaps are instrumental in defining easy
to implement reuse or SPL scenarios across business units. Our interviews are
executed per product and we do not conduct workshops with multiple stakeholders
at this stage to be time- and cost-efficient.

During the interview, we include a 1-2 hour slot where we let the architects
sketch and explain the architecture on a whiteboard. We use this session to ask
about architectural features that relate to our analysis, but cannot be derived from
the available documentation. In our experience this is the quickest way to get to
an up-to-date bird’s eye view of the architecture that can serve as input for our
domain analysis.

6) Evaluate results and identify opportunities The results of step 3, 4, and 5 are for
each product a sketch of its architecture with components, interfaces, and used
technologies, a list of the features supported by the product, and a questionnaire
covering the answers to the other reuse potential criteria defined in step 2. In
the first step, we clean up all documents, e.g., layouting architecture sketches,
correcting grammar and wording, and removing duplicated features. Then, we
compare the products with each other.

For the features, we build up a feature map according to PulSE-ECO [46].
The feature map is a table which shows for the analyzed products in the columns,
the supported features in the rows by an x or black circle. Partial support can
be specified by an (x) or half filled circle. When the feature lists of the different
products have been created independently of each other, the same features can
be named differently for each product or features with the same name can have
different meanings for different products, for example. These cases need to be
identified and also cleaned up.

Low level features are grouped into feature subdomains and feature domains
according to their logical relation in order to get a higher abstraction level and a

Exploratory Case Study on Domain Analysis 11

better overview for comparing the different systems. For example, all features of a
PC tool for importing or exporting to XML, PDF, or Microsoft Office documents
are grouped under the feature subdomain Data Im-/Export and under the feature
domain Interfaces. The creation and cleaning up of the feature map can already
be started in step 4 and step 5 for more easily identifying equivalent features with
different names, for example. After cleaning up the feature map, we go through
each feature domain and sub-domain, rate the feature overlap (commonalities and
variabilities) between the different products with low, medium, and high, and
provide a rational for the rating, which also considers the results of the comparison
of the architectures and questionnaires.

For the architectures, we arrange the architecture sketches in a similar way,
which is usually possible, if the products use similar architectural patterns and
styles. Then we manually compare the architectures in order to identify common-
alities and variability and to identify larger parts of the architecture that could be
shared or reused between products or that could become part of a common core
asset base. Automating the architecture comparison is most often not an option for
us, because we have only informal FMC sketches and the products are developed
completely independently of each other, in different technologies, and without any
copied code. In this investigation, we also compare the interfaces and technologies
used by the products in the different parts of their architecture and summarize
this in tables. We check for the feature (sub-)domains rated with a high reuse
potential in the feature analysis, where these are implemented and whether they
could be shared between the different products. The outcome is a list of potential
reuse scenarios, which are lager system parts that could be shared in the future
between the products.

In parallel to the feature and architecture comparison, we also compare the
other reuse potential criteria based on the questionnaires with each other such as:
development process readiness, organizational fit, market fit, reuse culture, and
future outlook. This analysis and comparison is usually done only informally. For
each reuse potential criteria, we check whether a product would fit into a future
common software product line, identify potential issues, and provide recommen-
dations how to address these issues and go forwards towards a common product
line. We do not apply a formal maturity level rating as proposed by the Family
Evaluation Framework [37], but for visualization purposes, we summarize the re-
sults in tables with a rating of high, medium, and low for each pair of product and
reuse potential criteria.

3.3 Economic Analysis

To provide a financial justification, we create a business case for the establishment
of a SPL in the given application domain.

7) Create business case The calculation for the return of investment (ROI) of a
future SPL follows the proposal by Boeckle et al. [5] and needs the following
inputs:

– Cevo: the costs for maintaining each of the former products without reuse

12 Koziolek et al.

– Corg: the costs for changing the organization to adopt SPL enginneering and
for training people in SPL engineering. These costs need to be estimated based
on the organizational analysis in step 7.

– Ccab: the costs for building the core asset base or platform including product
scoping and implementation.

– Fcab: the fraction of the core asset base that needs to be updated per release
or year.

– Cunique: the costs of building the unique part of a product of a SPL. These are
calculated as the costs of an individual product multiplied with its unique part
in percent multiplied with the change rate of the product. For example, if the
costs of a product are 10 million dollars, 30% of the product are unique, and
20% of the product change per release, Cunique is the product: 600.000 dollars.

– Creuse the costs of reusing the core asset base for building product of the SPL.
These are calculated as the costs of an individual product multiplied with its
common part, which is based on the core asset base, in percent, multiplied with
a factor that reflects the costs of building the equivalent code based on the core
asset base and not from scratch. For the last factor, Boeckle et al. [5] assume
10 percent to be usually a high conservative estimation. For example, if the
costs of a product are 10 million dollars, 70% of the product are in common
with the core asset base, and we assume the cost of building the equivalent
code based on the core asset base to be 10% of building the code from scratch,
Creuse is the product: 700.000 dollars.

The ROI for merging n products into a new product line is calculated with
equation 1:

ROI =

∑n
i=1 Cevoi −

(
Corg + Ccab + Fcab × Ccab +

∑n
i=1(Creusei + Cuniquei)

)
Corg + Ccab

(1)

The ROI is the ratio of the cost savings to the cost of investment. The invest-
ment costs in the denominator are Corg + Ccab. Boeckle et al. [5] estimate Ccab

by using the development costs of a single product and multiplying it by the ra-
tio of the product that becomes part of the core asset base and by a factor that
represents the higher development costs for making the assets reusable.

Product management can most often provide the development costs of a prod-
uct, but they are sometimes outdated or no longer available due to the age and
history of some products. In such cases, cost models such as COCOMO II [6] can
be used. The higher cost for building reusable assets with more generic interfaces
and functionality are assumed with 150% as rule of thumb.

In the numerator of equation 1,
∑n

i=1 Cevoi are the costs for maintaining the
products individually, which can be easily acquired. The second part of the nu-
merator, the subtrahend, are again the investment costs for the core asset base,
the cost for maintaining it (Fcab × Ccab), and the cost for building all n products
based on the core asset base (

∑n
i=1(Creusei + Cuniquei)).

Fcab can be estimated by measuring the change rate of the old products in
the past. For developing a product i, core assets are (re-)used from the core asset
base (Creusei) and extended by product specific functionality (Cuniquei). For each

Exploratory Case Study on Domain Analysis 13

product it must be estimated how many percent can be reused from the core asset
base and how many percent are product-specific. Boeckle et al. [5] estimate the
factor of building the same functionality as in the former products with the core
asset base as 10% compared to implementing it from scratch. They mention that
this is actually on the high side, but there is no further rational for this number.

The return on investment can be calculated over years or releases. All recurring
numbers need to be normalized accordingly. The formula describes the integration
of n existing products into a new product line. For some other scenarios such
as adding one product to an existing product line, variances of the formula are
described in [5].

In summary, the business case calculation relies on the estimation of the
reusable fraction in each product, the costs for developing a generic core asset
base, as well as the costs for adapting reusable core assets to realize a specific
product. These values are difficult to estimate precisely. However, we can coarsely
estimate the reusable fraction based on our feature maps, as well as the higher cost
for the core asset base based on the feature map and the architecture maps. Thus,
the estimates are backed up by our domain analysis, which makes them easier to
defend.

3.4 Wrap-Up

At the end of our approach we document the results and hand them over to the
stakeholders of the analysis and products. An overview of the analysis and all
findings are documented in a report. The questionnaire, feature map, architecture
map, and artifacts generated during the analysis are cleaned up and attached to
the report. In addition, the analysis and most important results are summarized in
a presentation and discussed in a one or two hours meeting with the stakeholders.

At this stage our SPL potential analysis is complete. The next steps are getting
a decision for a particular reuse scenario or a full systematic software product line
development. Stakeholder workshops across the available products need to be held
and champions for the SPL need to be found in the business units. The subsequent
steps of domain engineering including the design of a reference architecture and
the sketching of migration roadmaps can be executed. These steps are out of scope
for this paper.

4 Case Study Design

The underlying objective of applying our domain analysis approach was to de-
crease ABB software development and maintenance costs in the future by iden-
tifying areas for software development shared among business units. As the SPL
Potential analysis can be applied in several application domains within ABB, we
also expected it to increase our understanding about software sharing and the ap-
plicability of software product lines within our organization in general. Multiple
cases can support identifying patterns and provide general findings beyond the
specific cases.

14 Koziolek et al.

4.1 Research Questions

Therefore, we considered the application of the domain analysis as an exploratory
case study [51,45,19]. We formulated five research questions, which we tried to
answer after executing the domain analysis method in the different cases. For each
research question we formulated an initial working hypothesis on the expected
outcome. Due to the low number of data points, these hypotheses cannot be sta-
tistically tested. In this case, they serve to make the learning effect from the case
studies more explicit.

Q1: What are the results of the domain analyses for the analyzed products?

With this question we were interested in the outcome of the domain analysis and
the actions derived from its results. Our working hypothesis H1 was: ”the domain

analysis supports the decision for starting an SPL initiative if it finds a high feature

overlap and good organizational compatibility in the analyzed products and business

units”. In turn the analysis would lead to a rejection of an SPL approach in case
of minor feature overlap or organizational challenges. If our working hypothesis
would be invalidated in our application cases, it would be a hint for improving
the method or for considering additional factors driving the decision for an SPL
approach.

Q2: Which factors facilitate or complicate SPL development among business

units? This question aimed at finding patterns in the reuse criteria and under-
standing the stakeholders’ priorities for them. Our working hypothesis H2 was ”the

stakeholders favor future SPL development if it provides them short-term to mid-term

benefits and if a positive return on investment can be calculated”. The question has
been often addressed in literature, but we wanted to find out whether there are
different factors relevant for our organization. Especially in a large corporate com-
pany such as ABB, organizational hurdles may be a major factor limiting shared
software development beyond financial factors. But we also anticipated that tech-
nology incompatibilities in the different products could be a roadblock despite high
feature overlap.

Q3: What granularity is required for the domain analysis in order to reach

the decision for implementing an SPL or not? Feature modeling and technical
analyses can be tackled on different abstraction levels. Features could relate to
coarse-grained subsystem or to fine-grained single functions. They can be modeled
as flat lists, hierarchical models, or even domain-specific languages [50]. Technical
analysis can be carried out on an broad technology level or on a fine-granular code
level. The question is how much detail is necessary to reasonably support a design
decision. Based on findings in the literature [14], our initial working hypothesis H3
was ”the required granularity for the domain analysis - in order to reach a decision -

is correlated with the analyzed products’ size and complexity”.

Q4: What is the projected return on investment for SPLs in our cases? The
seventh step in our method is to create a business case calculation to map the
technical analyses back to financial terms. Literature suggests different assumed
parameters for such a calculation, which are supposed to be based on real prod-
ucts. For example, Boeckle et al. [5] assumed a 70 percent reuse level for different
products and a 50 percent higher costs for building a generic platform instead
of a single platform. We anticipated different reuse levels and platform costs for

Exploratory Case Study on Domain Analysis 15

the different application cases. Our working hypothesis H4 was thus formulated in
more abstract terms: ”for cases with high feature overlap an SPL approach would pay

off within five years”. The working hypothesis is based on former experiences with
integrating similar sized industrial systems at ABB and may not transfer to other
domains with smaller products or shorter release cycles.

Q5: How does the domain analysis method need to be adapted for differ-

ent cases? We described our domain analysis method in an idealized manner in
Section 3. In practice there is a need to adapt the method to each application
case. For example, some inputs, such as architecture documentation may not be
given, or the stakeholder may not be interested in a business case calculation. This
question is especially interesting for practitioners who want to conduct similar in-
vestigations. Our working hypothesis H5 was: ”more than 80 percent of the method’s

steps, templates and reuse criteria can be reused across all application cases”.

Given the exploratory nature of our case study and high effort for carrying out
single cases, we cannot support our hypotheses H1-H5 with any statistical signif-
icance. The following application cases merely serve to collect empirical evidence
in favor or against our hypotheses. Threads to validity will be discussed in more
detail in Section 5.2.

4.2 Case Overview

We applied our SPL potential analysis method in four different application cases
in different industrial domains of ABB (cf. Table 1). The first case concerned a set
of large-scale, distributed industrial control systems, the second case two families
of stand-alone PC (Personal Computer) tools. Furthermore we applied the method
on three device engineering PC tools in application case 3 and several Enterprise
Information Systems in case 4. Appendix 7 provides a detailed description on how
we executed our approach for each case.

Application Case
1: Industrial Control

Systems

2: Automation

PC Tools

3: Device

Engineering Tools

4: Enterprise

Information Systems

Type of systems Client-server Stand-alone PC tools Desktop applications Desktop applications

Number of products 6 4 + 2 families of 10 3 2 + family of 5

Number of business units 6 2 1 2

Number of developers
<10 to >40

per product
10 <5

2-3

per product

System size (LOC) 1 - 6.5M 300K - 2M 300 - 500K 10 - 100K

Table 1 Overview of the four case studies.

We did not choose these cases systematically, but the selection was instead
driven by stakeholder requests and intuitively perceived good opportunities for
future reuse cases. As seen in Table 1, the analyzed product vary in size and the
cases have different number of involved parties, so that bias from a single case can
be avoided to some extent. However, for example none of the application cases

16 Koziolek et al.

comes from the area of embedded systems, so that the coverage of our study is far
from being complete.

For data collection to answer our research questions, we simply used meeting
minutes from the interview sessions (step 5 in our method, Section 3) as well
as informal notes taken during document analysis. In each case we interviewed
multiple stakeholders with different roles, such as product manager or software
architect.

5 Case Study Results

5.1 Answers to Research Questions

Q1: What are the results of the domain analyses for the analyzed products? Our work-
ing hypothesis H1 for this question was: ”the domain analysis supports the decision

for starting an SPL initiative if it finds a high feature overlap and good organizational

compatibility in the analyzed products and business units”. To investigate this work-
ing hypothesis, Table 2 summarizes the high level findings and outcomes in our
application cases.

Application Case
1: Industrial Control

Systems

2: Automation

PC Tools

3: Device

Engineering Tools

4: Enterprise

Information Systems

Feature overlap high high medium/high medium/high

Opportunities for

feature overlap

Reuse of entire

subsystems across

products

Development of

common components,

common platform

Development of a

common platform

(Data) Integration,

common platform,

common tool

Technology compatibility low/medium high low/medium medium/high

Migration effort very high medium medium low

Organizational maturity /

compatibility
low/medium high high medium

Decision made Not yet

Yes, both short-term

and long-term

integration

Yes, SPL prestudy
Yes, short-term

integration

Table 2 Results of the domain analysis for each application case

We found a high (approx. 70 percent) or at least medium to high (approx. 40-
70 percent) feature overlap in all application cases. However, the types of possible
integration scenarios or shared developments varied from case to case. In case 1,
an almost black-box reuse of entire subsystems was possible pending the creation
of proper adapters for the different products. For case 2, 3, and 4 the development
of a shared platform with common components was deemed feasible. For case 4,
a simple data integration scenario leaving the existing products largely intact was
an alternative.

Despite the high feature overlap, the technology compatibility was limited in
most cases and the migration effort medium to very high. The existing products
in each case were built on different technology stacks or had been developed at
different points in time so that multiple incompatible versions of a technology
stack were used. Not surprisingly, the organizational complexity for shared software
development was higher for cases with more business units.

Exploratory Case Study on Domain Analysis 17

Consequently, the decision to try to pursue a SPL approach was only made
for application case 3. In the other cases the stakeholders either favored short-
term integration scenarios or deferred a decision for more shared development.
The stakeholders were afraid of substantial changes to their existing products,
which could have incurred high and unpredictable migration costs to evolve to a
shared platform. Especially in the domain of industrial systems, these costs can be
prohibitively high because of the involved hardware resources and required user
expertise. The risk of a common platform was thus seen as too high to outweigh
its benefits.

In general, it was challenging to sell the SPL idea to a number of stakeholders,
which maybe one reason why the decision to pursue an SPL approach was made
only in one case. While future saved development and maintenance costs for shared
components were deemed plausible, some stakeholders were afraid of sacrificing
their business flexibility when tightly collaborating with other units, which may
serve other markets. For example, the coupling of release roadmaps could delay
serving customers with new features in time. The trade-off between independence
and efficient software development due to a common platform was seen by some
as a critical issue in addition to technological differences.

Besides these findings, our investigations had some additional, secondary ef-
fects. For the analysis, we re-documented several product architectures with a
common notation, which improved the communication between and within the
stakeholders’ units. The knowledge about the capabilities and technical decisions
of the different products increased among the stakeholders, which might lead to
less formal collaborations in the future. Our architecture sketches are now used by
several units as an up-to-date architecture documentation, which aids discussing
design changes and educating new employees about the product. We also aligned
different domain-specific terms among the stakeholders, which enabled more effi-
cient communication.

In conclusion, the result of our approach is often a less risky reuse or integration
scenario between different products, which can be seen as the first step towards
a software product line. Getting the commitment for a full-blown SPL approach
based only on the feature overlap and organizational analysis of our approach was
hard in the analyzed cases. Therefore, our working hypothesis has failed. As a new
working hypothesis, more emphasis could be put on aligning business goals and
development roadmaps during the investigation to motivate the benefits of an SPL
even better.

Q2: Which factors facilitate or complicate SPL development among business units?

Working hypothesis H2 for Q2 was ”the stakeholders favor future SPL development if

it provides them short-term to mid-term benefits and if a positive return on investment

can be calculated”. The stakeholders preference for more manageable, short-term
benefits was partially confirmed by the findings discussed for question Q1. For ex-
isting products, many stakeholders did not want to take the risks for a complicated
SPL project.

For the positive return on investment, we surprisingly found only limited inter-
est. Most stakeholders (including sponsors, managers, and architects) were hardly
interested in the business case calculation, sometimes because it was intuitively
clear for them, sometimes because they would not trust the assumptions going

18 Koziolek et al.

into these calculations. These assumptions for example concerned the expected
migration costs, the costs for creating generic components, the amount of shared
software between components, as well as the overall development and maintenance
costs.

During our interviews with the stakeholders, we received considerable input
which factors would facilitate or complicate reuse and joint software development.
Several stakeholders pointed out that strong management support is a prerequisite
for such initiatives. If managers from different units can agree on some common
business goals there would usually be a way to technically build a common plat-
form. Several former experiences at ABB supported this statement.

Some stakeholders saw higher potential for joint software development if en-
tirely new products were developed or new technologies should be utilized. Refac-
toring existing products towards shared components was seen as difficult to justify
financially. If the old products were to be abandoned, e.g., due to an outdated tech-
nology, the motivation for a future common platform would be higher. For new
products most interviewed business units had a process in place which explicitly
asked for the consideration of existing components to start the implementation.

However, the stakeholders mentioned a number of factors against more shared
software development. Most units were not aware of explicit incentives for software
reuse from other ABB units, as they were assessed only by the revenues from their
own products. Multiple interviewees noted a lack of an overview of the software
in their domain stemming from a strong focus on their own product.

A suitable organizational structure can also facilitate more systematic reuse.
Bosch [7] for example distinguishes four organizational structures:

1. A single Development Department with up to 30 developers
2. Multiple Business Units for 30 to 100 developers, each responsible for a partic-

ular product with shared development of common assets
3. A single Domain Engineering Unit responsible for common assets and several

product engineering units (in case of more than 100 developers)
4. Hierarchical Domain Engineering Units in case the common assets require more

than 30 developers.

Other factors contributing to the organizational structure are geographical distri-
bution, project management maturity, organizational culture, and type of systems.
In the context of this paper, the term ”business units” has a broader meaning as
in Bosch’s paper, because the ABB business units do not only include software
developers but also many other engineering-related employees.

Nevertheless, the application cases analyzed in this paper best match with the
category of ”Business Units” as defined by Bosch, as we analyzed collaborating
business units without a dedicated domain engineering unit. But only in applica-
tion case 1 the number of developers was larger than 30, thus the categorization
by Bosch does not fully match our application cases. For other common software
products within ABB that have not been analyzed in this paper, there are sev-
eral examples for both the categories of ”Development Department” and ”Domain
Engineering Unit”. The latter category can facilitate SPL development involv-
ing multiple ABB business units as experienced within ABB, but these cases are
beyond of the scope of this paper.

Exploratory Case Study on Domain Analysis 19

While organizational structures can facilitate SPL development, several stake-
holders cited trust issues as a roadblock for more shared development, here. Former
poor experiences with reused software of low quality and mismatching function-
ality limited their motivation for more reuse. Also some units did not provide
proper maintenance and support processes for their shared software, because their
organization was not tailored to support software reuse. Another issue was that
software not designed for reuse lacked stable interfaces and generic functionality
for multiple contexts.

Especially for dynamic business areas with changing business priorities it was
difficult to envision the success of an SPL development project, which required a
long-term commitment and did not provide immediate business benefits.

In summary, mostly organizational factors besides technical factors limited
more reuse in the cases we analyzed. Our working hypothesis has partially failed,
because the business case calculations were not as important to the stakeholders
as we had expected.

Q3: What granularity is required for the domain analysis in order to reach the decision

for implementing an SPL or not? Working hypothesis H3 was ”the required gran-

ularity for the domain analysis - in order to reach a decision - is correlated with the

analyzed products’ size and complexity”.

Tab. 3 shows the number of feature domains, feature subdomains, features, and
subfeatures analyzed in each application case as well as the time spent on feature
analysis alone. For case 1, we analyzed 26 subdomains, but did not break them
down into more fine-granular features. Still we needed about 2 days per product
to collect the answers for feature-related questions from our questionnaires. Due
to the high complexity of the products as well as the emphasis on architecture
reconstruction and organization we were not able to break down the subdomain
list into more fine-granular features. However, in this case the stakeholders were
satisfied with the achieved detail level, since they were not interested in a more
fine-granular break-down, which would have consumed significantly more time.

Application Case 1: Industrial Control
Systems

2: Automation
PC Tools

3: Device
Engineering Tools

4: Enterprise
Information Systems

Number of Feature
Domains 6 19 11 8

Number of Feature
Subdomains 26 53 70 42

Number of Features n/a 289 196 172
Number of Subfeatures n/a 39 57 170
Analysis time spent for
features 2 days / product 1-2 days / product 1 day / product 1 day / product

Table 3 Results of the feature granularity analysis

For the cases 2-4, we conducted an analysis on a more fine-granular level and
created feature maps containing 200 to 300 features each. In this case, the fea-
tures were sometimes simple functions, such as the ability to color elements in the
graphical user interface. Because the features were more simple, it was possible to
fill the feature lists within 1-2 days per product.

20 Koziolek et al.

Considering these findings our working hypothesis is supported, as the more
complex products needed more time for analysis. To get to a feature and subfea-
ture level in the analysis of case 1, we would have needed much more time than
in case 2-4. In our cases, the invested efforts were to a certain extent controlled
by the stakeholders, who only dedicated a specific amount of time to the domain
analysis. It is an open question on how this allotted time can be best spent in a
domain analysis, and how much time to spent on feature elaboration or architec-
ture reconstruction. In our cases, the already described effort distribution worked
reasonably well, but this may not transfer to other cases.

An option for time-boxing the efforts for the domain analysis is starting with
an initial mock-up business calculation for SPLs based on rough development and
maintenance costs data. Then it could be identified what information is required
to support the assumptions going into the calculation. This may include assump-
tions for the percentage of functional overlap or the overhead for creating reusable
components. The goal is to be able to defend these assumptions with correspond-
ing feature maps and architecture illustrations. All remaining activities, such as
the feature analysis and architecture reconstruction, should be sized accordingly.
However, in all our application cases it consumed too much calendar time to re-
trieve the necessary development and maintenance costs data, so that we started
the technical analysis in parallel.

The technical analysis re-documenting the high-level structure of the archi-
tectures and the used technologies can often be executed within 1-2 hours per
product if the product’s architect is available for an interview. This of course does
not allow to avoid any technological issues when merging or integrating products.
Instead, it roughly serves as a indicator of the general technical feasibility of an
integration.

Q4: What is the projected return on investment for SPLs in our cases? Working hy-
pothesis H4 was: ”for cases with high feature overlap an SPL approach would pay off

within five years”. We were only able to calculate the SPL business case in two
of our four application cases. For case 2, it was computed for one reuse scenario
that the shared approach would pay off within three years, whereas for case 4,
it was computed for one reuse scenario that the shared approach would pay off
within seven years. For the other cases, it was not possible to come up with a
business case calculation because of missing development cost numbers or lacking
stakeholder interest.

Given our result, we have to reject H4, because for case 4 the SPL approach
would need more than five years to pay off. Especially for a low number of similar
products and moderate technological incompatibility, it may be financially ben-
eficial to decide against developing a shared SPL platform and to integrate the
products through less expensive means.

Q5: How does the domain analysis method need to be adapted for different cases?

Working hypothesis H5 was stated as: ”more than 80 percent of the method’s steps,

templates and reuse criteria can be reused across all application cases”. Table 4 sum-
marizes how we executed each of the method’s steps for each application case. Each
application case had different characteristics caused by different goals, contexts,
and stakeholders.

Exploratory Case Study on Domain Analysis 21

Activity 1: Industrial Control
Systems

2: Automation
PC Tools

3: Device
Engineering Tools

4: Enterprise
Information Systems

1. List products &
information sources

Selected products in active
development, gathered
documentation and
contacts, agreed scope with
sponsors of the study.

Received list of tools to
analyze from sponsors of
the study.

Received list of available
tools from sponsors of the
study, reduced focus to
particular subdomain.

Received list of products
and information sources
from sponsors of the study.

2. Establish criteria for
reuse potential

Used all criteria. Used all criteria, except
organizational fit due to
only two units particpating,
focused on features and
architecture.

Used all criteria, focused
on future roadmaps,
lessons learned, and
features.

Used all criteria, focused
on features, architecture,
and added business
processes and data model.

3. Collect and analyze
documentation

Analyzed user and
configuration manuals,
power point presentations,
and few architecture
documentations.

Analyzed user manuals and
presentations about the
products.

Analyzed manuals and
architecture documenation.

Analyzed product
presentations, manuals,
database schemas, UML
use case descriptions.

4. Prepare initial interview
documents

Created initial feature list
based on analysts' domain
knowledge.
Constructed initial
architecture models based
on documenation.

Only the questionaire has
been prepared before the
interview.

Created initial feature list
based on documentation,
drafted architecture
overview maps per
product.

Created initial feature list,
created data mapping table.

5. Conduct interviews Interviewed lead architects
for each product as well as
several product managers.

Interviewed three project
managers and developers.

Interviewed lead architects,
product managers, and
team managers per
product.

Interviewed architects and
products manages, split
interview sessions by
business processes.

6. Evaluate results and
identify opportunities

Created feature support
matrix, highlighted
potential providers and
consumers for reuse.

Identified 10 of 50 feature
subdomains with high reuse
potential as well as three
short-term reuse scenarios.

Aligned technology
roadmaps, started project
for designing a common
platform.

Found overlap in business
processes, but differences
in techn.; created 4 reuse
scenarios.

7. Create business case Deferred business case
calculation due to
complexity.

Created business cases for
three short-term reuse
scenarios.

No business case
calculation due to partly
missing business numbers
and a lack of analysis time.

Projected possible return
on investement for a
common platform after
seven years.

Table 4 Execution of the steps per application case

Nevertheless, there were significant similarities between the application cases.
We were able to reuse most of the identified reuse criteria between application
cases, although we adjusted priorities and depth depending on stakeholder inputs.
For example, in application case 2 the stakeholders did not want to discuss or-
ganizational issues. In application case 3, the focus was on future developments,
features, and lessons learned w.r.t. reuse within the participating units. Thus,
we investigated the product roadmaps more deeply and asked the architects and
product managers about the knowledge of software reuse and the accompanying
processes. In application case 4, two new reuse criteria have been added to the
analysis: business process and data model.

Our questionnaires had some common reusable content, such as questions
about the organization, development process, and technologies. Questions about
the features had to be completely replaced per application case. In some cases the
mere existence of a feature was asked for, while in other cases (e.g., for complex
features), we created several questions about a single feature to let the stakeholders
better explain the extent of the feature support in their product. In our experi-
ence, it was difficult to generalize the questions about features across the analyzed
domains.

In each case we successfully used the FMC notation for architecture re-
documentations. We also interviewed stakeholders with similar roles across ap-
plication cases, namely architects and product managers. Feature tables were it-
eratively refined in each cases and the final presentation format was similar.

22 Koziolek et al.

Differences occurred in other tasks. The scoping activity for determining the
products under analysis was sometimes driven by the contracting stakeholders,
but sometimes also from taking a broader, independent look into the company’s
product portfolio. As stated for Q3, the granularity of analysis varied from case
to case. This also impacted the phase ”identify opportunities”, which in some
cases relied heavily on the feature tables and in other cases relied more on the
architecture maps. The business case calculation was based on the same template
in each case but needed to be adjusted per case to account for peculiarities, such
as high migration costs or limited feature overlap.

In conclusion, our working hypothesis H5 was supported as we were able to
reuse almost all method steps as well as notations and most of the templates across
application cases.

5.2 Threats to validity

This section discusses the trustworthiness of our results by describing internal,
construct, and external threats to validity.

Internal Validity Internal validity is affected when a researcher has not properly
controlled interfering variables or was not aware of them at all. This can influ-
ence the outcomes of the study, which can lead to false cause/effect relationships.
Being an exploratory case study, our investigation had a low level of controlling
interfering factors, such as bias from the selection of interviewed stakeholders,
inappropriate use of analysis methods, or unrevealed political factors influencing
reuse decisions.

Our findings for Q1-Q5 were based on the documents provided by the stake-
holders and their answers in interview sessions. We cross-checked both documents
and interview recordings for contradictions, to reduce the amount of false or in-
complete information. Still our findings may be incomplete and missing important
factors due to the limited time for analysis.

The required efforts for each application case were partially time-boxed by our
product stakeholders, who did not want to invest more time and money to get the
analysis results. The stakeholders influenced the planned efforts based on their
knowledge of the respective system and expected/required deliverables.

To a certain extent we controlled the factor of the analysts influencing the
results and having learning effects as different analysts were involved in each case.
Still learning effects were visible, as we made minor changes and improvements to
the domain analysis method after each application case.

Construct Validity Construct validity is affected, if the studied issues do not really
represent what the research wanted to investigate, i.e., how representative the case
setup was for learning about domain analyses. Our application cases were all drawn
from practical situations, i.e., software products being sold to ABB customers, and
thus can be considered realistic cases for a domain analysis.

Our researchers executing the analysis can be seen as consultants for the af-
fected ABB units and thus are typical users of a domain analysis method. However,

Exploratory Case Study on Domain Analysis 23

our analysis was carried out in a large, corporate, and decentralized organization,
so that the findings may only be valid for similar circumstances. In smaller com-
panies or more centralized organizations the outcomes to our research questions
Q1-Q5 may be different.

A threat to construct validity is that the measured results are not sufficiently
adequate and accurate. For most research questions, we did not use quantitative
measures, but instead reported qualitative findings, such as the different kinds
of actions resulting from the domain analysis or how the domain analysis was
adapted for the different cases. Due to confidentiality reasons, we cannot disclose
exact percentages of feature overlap or precise return on investment calculations.
We also did not create a quantitative measure for feature granularity, which we
deem as future work.

The FMC notation is not as well-known as the UML notation, but has been
used in other large companies, such as SAP for similar purposes. The business
case calculation formulas were initially taken from literature, where they had be
reported being derived from similar investigations. Our whole domain analysis
method can be considered typical for the goal of identifying reusable components
and working towards an SPL as it is similar to other methods, such as SEI Product
Line Technical Probe and PulSE-Eco, cf. Section 6.

External Validity External validity is affected if the studied cases cannot be gen-
eralized, so that the findings are not valid for similar cases. We argue that our
findings are generalizable to similar software tools and reuse situations. We ana-
lyzed real, non-trivial software products. Our investigation spanned four different
cases so that the bias from a single application case can be reduced to some extent,
although no statistical evidence is given.

The application cases included software products of different sizes ranging from
10 KLOC up to several million lines of code. This implies that our results are
applicable for range of software systems, especially considering the slightly different
outcomes per case discussed in Section 5.1.

However, all our application cases originated from a single corporate organiza-
tion and may thus not be easily transferable to other organizations. We did not
consider software for embedded systems in any of the application cases, but only
analyzed PC-based software. We only applied a single domain analysis method
and were not able to compare our method to other similar methods.

5.3 Lessons learned

In the following we report on several lessons learned from the four application
cases of our domain analysis approach. The lessons are intended to support similar,
future investigations.

Required efforts Table 5 provides an overview of the efforts required in each case
study. In case 1, the efforts for Step 6-7 are very high compared to the other cases.
This has mainly two reasons. First, the Industrial Control Systems in application

24 Koziolek et al.

case 1 were the most complex products we analyzed. Second, we applied the do-
main analysis the first time in this application case. We extensively compared the
products with regard to all reuse potential criteria and created a detailed docu-
mentation of the high-level architecture of each product. In case 2, we had only a
very small budget and, therefore, prioritized the reuse potential criteria and were
very efficient during the interviews, which resulted in the low efforts for Step 6-7.
In case 3 and 4, we customized and prioritized the reuse potential criteria, and
invested more time in the preparation of the interviews (Step 1-4). In case 4, one
product was added during the analysis based on the intermediate results, which
increased the efforts of Step 6-7 compared to case 2 and 4.

There are many factors that influence the time required for a domain analysis
and Table 5 can only give some orientation. However, the table shows that one
can estimate per product up to one week for Step 1-4 and up to two days for the
interviews (Step 5). Evaluation and business case (Step 6-7) should be planned
with two to three weeks for similar cases as 2, 3, and 4.

Application case 1: Industrial Control
systems

2: Automation PC
Tools

3: Device
Engineering Tools

4: Enterprise
Information Systems

Preperation (Step 1- 4) per
product 1-3 days 1-2 days 1-5 days 1-5 days

On-site interview session
(Step 5) per product 1-2 days 1-2 days 1-2 days 2 days

Evaluation and business
case (Step 6-7) 15 weeks 1 week 3 weeks 2 weeks

Table 5 Overview of required effort per case study.

Consider migration costs in SPL business cases Existing business case calculations
that we found in the literature often did not incorporate the costs for migrat-
ing existing installations to new reusable components. While these costs might be
marginal in some domains where simple software updates are required, this factor
is especially crucial in the domain of industrial automation. The software prod-
ucts are integrated into complex hardware environments and require significant
engineering work that is sometime expensive to adapt to new software versions.
Nevertheless we learned that a business case calculation can in some cases be
a valuable argument to facilitate the discussions on SPL adoption with higher
management.

Follow a reactive SPL approach for established products Krueger et al. [36] distinguish
between (i) a proactive SPL approach, where a top-down design for a domain is
performed, (ii) an extractive SPL approach, where commonalities are factored
out of existing products (bottom-up), and (iii) a reactive SPL approach, where
core assets are created upon new requirements for a new product. In all of our
four application cases, we targeted a combination of an extractive and a reac-
tive approach. As for each case a number of existing products were analyzed, we
intended to extract existing common functionality, where possible. However, the
domain of industrial automation systems is rather stable and established compared

Exploratory Case Study on Domain Analysis 25

to consumer-oriented domains. To protect the investment for installed products,
a reactive approach creating common core assets for products upon novel com-
mon requirements is economically most viable. This finding was supported by all
of our analyzed application cases, which favored smaller, short-term integration
scenarios.

Do not rely on code analysis for reconstruction When we started the domain analysis,
we expected that a static or dynamic code analysis could be helpful for architec-
ture reconstruction. Besides a picture of the dependencies among the high-level
subsystems, it would also give an up-to-date view and overcome outdated architec-
ture documents. However, several factors counted against this in our case. First,
there is a different level of abstraction needed for domain analysis, i.e., a logical,
feature-oriented view, compared to an implementation-oriented view. Second, in-
dustrial software systems are implemented with diverse programming languages,
technologies, and third-party components thus complicating tool-supported code
analysis. Third, in our case there are no code clones between the products since
the development units operate rather independently. Fourth, it is more efficient
to interview the architects about the architecture than setting up a working build
environment, configuring a static analysis tool, and interpreting the results. For
future domain analyses, we would thus abstain from automated code analysis if
large-scale systems are under analysis. An interesting pointer for future work are
feature location techniques [44] that could be assessed for their industrial maturity.

Use FMC for architecture reconstruction We learned in our domain analysis that
FMC is a valuable notation for high-level architecture illustration suitable for
initial technical reuse assessments. The unified notation forces architects to re-
formulate their architecture descriptions in common terms, which is by itself al-
ready a benefit. The visualization is more streamlined than the UML, thus more
suitable to compare multiple complex systems visually. The notation resonated
well with the participating architects who liked to think in predefined templates.
The documentation gave a fresh view on the products and is useful for communi-
cation purposes even beyond the domain analysis and SPL assessment. For some
suggested reuse case, the diagrams proved to be helpful to analyze the technical
challenges and required adaptations.

Create a shared understanding as important result In general, when analyzing a num-
ber of similar software products which have been developed rather independently,
it is a value by itself to create a shared understanding about the products between
the stakeholders. This is facilitated in a domain analysis through the uniform treat-
ment of each product and the alignment of domain-specific terminology. Certain
terms might be used different in different products although they represent similar
concepts. During our interviews we had numerous discussions about the feature
terminology, which proved to be valuable to create a shared understanding and
see similarities that were unclear before.

Keep in mind the human factor Our approach is heavily depended on the input
provided from the interviews. This might distort the analysis results, if the inter-
view partners do not share relevant information. This might be intentional out of

26 Koziolek et al.

fear of the impact of the domain analysis on the current development. But it also
might be unintentional, because the interviewees have become blind for certain rel-
evant issues that they take for granted. Thus, the interviews require experienced
moderators who can challenge given answers and call for clarifications. In general
the output from the interviews must be reflected critically given other information
sources, such as documentation, source code, or third parties.

6 Related Work

There are a number of case studies on SPL adoption reported in literature [11,
37,31]. However, they often focus on lessons learned from setting up an SPL in
a given organization, but do not necessarily detail the domain analysis step and
how the potential for an SPL was assessed. We summarize the findings of several
studies with focus on SPL potential assessment similar to ours in the following.

Northrop et al. report on experiences from applying the SEI Product Line
Technical Probe [39,29] (PLTP) in nine organizations. Four of the nine investi-
gated organizations made ”aggressive progress in their product line efforts” after
executing the PLTP, while the others abandoned, deferred, or just initiated an SPL
adoption approach. From their experience, most organizations underestimate the
required management commitment and involvement. Especially engineering orga-
nizations tend to focus on technical and implementation issues for SPLs, while
investing too little effort in proper scoping and business case development. These
results may correspond to our finding that a business case calculation was in most
of our cases less interesting for the stakeholders. Additionally, stakeholder inter-
viewed during the PLTP showed a higher buy-in to the product line effort, and the
sponsors of the PLTP were grateful to receive a product line readiness assessment.
Similarly, our domain analysis execution were appreciated by our stakeholders.

Knauber et al. [32] applied product line concepts according to the PuLSE
method in six small organizations with 2 to 11 developers each. In particular, they
applied the PuLSE-Eco method for domain potential assessment. They learned
that it was crucial in the investigated cases to convince key decision makers of
the product line benefits to be successful. Similar to our study they analyzed the
granularity of feature analysis and reported that PuLSE-Eco is flexible for this
task and can be easily adapted for different granularities. They found a lack of
architecture documentation in most organizations, and also experienced resistance
to changing the existing products due to effort concerns. The method per-se was
perceived time-consuming but appreciated by the stakeholders.

PuLSE-Eco was also applied at TESTO AG, a company creating portable elec-
tronic measurement instruments, by Schmid et al. [47]. In this case, PuLSE-Eco
was used as a product line feasibility studies, thus in a similar manner as in our
application cases. In addition to the described method, the authors analyzed fu-
ture products together with product management, which we covered partially by
including questions about the product roadmap into our interview questionnaires.
They had to re-document the existing system architecture as in our approach and
facilitated the domain analysis through an architecture workshop. The approach
also included creating a domain model in which novel requirements were inte-
grated. Lessons learned included the usefulness of an architecture workshop, the

Exploratory Case Study on Domain Analysis 27

developer disinterest in domain modeling and architecting, and the importance of
training as part of an SPL adoption approach.

Birk et al. [4] analyzed product line adoption approaches in five organizations
among them Hewlett-Packard and Bosch. Although they do not focus on SPL po-
tential assessment, they recommend to perform a through domain analysis before
starting an SPL approach. Three of the analyzed organizations explicitly modeled
product line requirements, which can be output of a domain analysis, while the
others relied on experienced architects and domain experts to develop an SPL core
asset base. They also recommended to create architecture documentations using
well-established notations to facilitate the SPL adoption approach.

The Family Evaluation Framework [37] (FEF) was developed over six years in
several European projects involving academic and industrial partners. It provides
four dimensions (business, architecture, process, organization) each of which are
divided into five maturity levels. The evaluation profile resulting from an SPL
potential assessment can be used to support the decision for an SPL. While the
framework is based on industrial experience, we are not aware of any replicated
case studies applying and analyzing the framework. The FEF description uses an
artificial application case for explanation, but not for investigation.

The present article is an extended analysis of the application cases 1 and 2
(detailed in Koziolek et al. [34]) and application case 3 and 4 (detailed in Domis
et al. [16]). The former papers focused more on the description of the applica-
tion cases, which are here summarized in the appendix for self-containment. In
this paper, we have formulated five research questions and according hypotheses,
whose answers we subsequently discussed. This paper thus analyzes and compares
all cases more deeply. The main contributions are the answers to the research
questions and the lessons learned. We have also refined the steps of our SPL po-
tential assessment approach compared to the former papers and discussed threats
to validity as well as related case studies in much greater detail.

7 Conclusions

We applied a domain analysis approach featuring architecture evaluation in four
large-scale application cases from the domain of industrial automation. The do-
main analysis resulted in an SPL approach only in one of the cases, whereas in
the other cases the stakeholders favored smaller integration scenarios. We learned
that the business flexibility is a factor complicating development approaches across
BUs and that business case calculation were either difficult to make or less interest-
ing for the stakeholders. Using the FMC notation for architecture reconstruction
proved to be successful for the given purpose.

Our lessons learned are intended to improve future domain analysis investiga-
tions in similar complex domains at other companies. We encourage to use similar
tools and notations as in our analyses to support a decision for SPL engineering
efficiently. Our results can also stimulate researchers to improve existing domain
analysis methods. Such methods should recognize strict cost constraints in indus-
try as well as technical constraints such as legacy systems complicating automated
code analyses.

28 Koziolek et al.

In future work, we will extend and refine our domain analysis approach and
apply it on additional cases. We intend to create templates and models that can be
reused to speed up future applications. The approach should be extended to design
an SPL reference architecture for the analyzed domain to enable implementation
of the found reuse potential. To further increase the understanding and usefulness
of SPL potential analysis, a number of research questions remain to be answered:

– Is it possible to define stopping criteria for a domain analysis with the stake-
holders to potentially shorten the analysis time?

– Which arguments can convince decision makers best for making an SPL deci-
sion?

– Can the complexity of an expected SPL adoption be quantified in a more
detailed manner?

– How can roadmaps of loosely coupled development units be aligned to support
an SPL approach?

– Can (semi-)automatic feature mining approaches shorten the time to create a
feature list for a complex industrial software system?

– Can (semi-)automated approaches compare software architectures in the con-
text of a domain analysis to support SPL potential analysis?

References

1. Ahnassay, A., Bagheri, E., Gasevic, D.: Empirical evaluation in software product line
engineering. Tech. rep., Laboratory for Systems, Software and Semantics, Ryerson
University (2013). URL http://ls3.rnet.ryerson.ca/wp-content/uploads/2013/08/
TR-LS3-130084R4T.pdf

2. America, P., Thiel, S., Ferber, S., Mergel, M.: Introduction to do-
main analysis. http://www.ibrarian.net/navon/paper/Introduction
to Domain Analysis Pierre America e.pdf?paperid=15855122 (2001)

3. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud,
J.M.: Pulse: A methodology to develop software product lines. In: Proceedings of the 1999
Symposium on Software Reusability, SSR ’99, pp. 122–131. ACM, New York, NY, USA
(1999). DOI 10.1145/303008.303063. URL http://doi.acm.org/10.1145/303008.303063

4. Birk, A., Heller, G., John, I., Schmid, K., von der Massen, T., Muller, K.: Product line
engineering, the state of the practice. Software, IEEE 20(6), 52–60 (2003). DOI 10.1109/
MS.2003.1241367

5. Boeckle, G., Clements, P., McGregor, J., Muthig, D., Schmid, K.: Calculating roi for
software product lines. Software, IEEE 21(3), 23 – 31 (2004). DOI 10.1109/MS.2004.
1293069

6. Boehm, B.W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., Steece, B.: Software
Cost Estimation with Cocomo II with Cdrom, 1st edn. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2000)

7. Bosch, J.: Software product lines: Organizational alternatives. In: Proceedings of the 23rd
International Conference on Software Engineering, ICSE ’01, pp. 91–100. IEEE Com-
puter Society, Washington, DC, USA (2001). URL http://dl.acm.org/citation.cfm?
id=381473.381482

8. Breivold, H.P., Larsson, S., Land, R.: Migrating industrial systems towards software
product lines: Experiences and observations through case studies. In: Proceedings of
the 2008 34th Euromicro Conference Software Engineering and Advanced Applications,
SEAA ’08, pp. 232–239. IEEE Computer Society, Washington, DC, USA (2008). DOI
10.1109/SEAA.2008.13. URL http://dx.doi.org/10.1109/SEAA.2008.13

9. Buhr, R.J.A.: Use case maps as architectural entities for complex systems. IEEE Trans.
Softw. Eng. 24(12), 1131–1155 (1998). DOI 10.1109/32.738343. URL http://dx.doi.
org/10.1109/32.738343

http://ls3.rnet.ryerson.ca/wp-content/uploads/2013/08/TR-LS3-130084R4T.pdf
http://ls3.rnet.ryerson.ca/wp-content/uploads/2013/08/TR-LS3-130084R4T.pdf
http://doi.acm.org/10.1145/303008.303063
http://dl.acm.org/citation.cfm?id=381473.381482
http://dl.acm.org/citation.cfm?id=381473.381482
http://dx.doi.org/10.1109/SEAA.2008.13
http://dx.doi.org/10.1109/32.738343
http://dx.doi.org/10.1109/32.738343

Exploratory Case Study on Domain Analysis 29

10. Capilla, R.: Using map for recovering the architecture of web systems of a spanish insurance
company. Software Technology and Engineering Practice, International Workshop on 0,
92–101 (2005). DOI http://doi.ieeecomputersociety.org/10.1109/STEP.2005.33

11. Carnegie Mellon University - Software Engineering Institute: Product Line Hall of Fame.
http://splc.net/fame.html (2013). Last visited 2013-01-21

12. Carnegie Mellon University - Software Engineering Institute: Software Product Lines.
http://www.sei.cmu.edu/productlines/ (2013). Last visited 2013-01-21

13. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement. Addison-Wesley (2003)

14. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley (2001)

15. Davis, T.: The reuse capability model: a basis for improving an organization’s reuse ca-
pability. In: Software Reusability, 1993. Proceedings Advances in Software Reuse., Se-
lected Papers from the Second International Workshop on, pp. 126 –133 (1993). DOI
10.1109/ASR.1993.291710

16. Domis, D., Sehestedt, S., Gamer, T., Aleksy, M., Koziolek, H.: Customizing domain anal-
ysis for assessing the reuse potential of industrial software systems. In: Proc. 18th Internal
Software Product Line Conference (SPLC2014), Industry Track. ACM (2014)

17. Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-oriented taxonomy.
Software Engineering, IEEE Transactions on 35(4), 573–591 (2009)

18. Eisenbarth, T., Simon, D.: Guiding feature asset mining for software product line develop-
ment. In: Proceedings of the International Workshop on Product Line Engineering: The
Early Steps: Planning, Modeling, and Managing, Erfurt, Germany, Fraunhofer IESE, pp.
1–4 (2001)

19. Eisenhardt, K.M.: Building theories from case study research. Academy of management
review 14(4), 532–550 (1989)

20. Fairbanks, G.: Just Enough Software Architecture: A Risk-Driven Approach, 1st edn.
Marshall & Brainerd (2010)

21. Frenzel, P., Koschke, R., Breu, A.P.J., Angstmann, K.: Extending the reflexion method
for consolidating software variants into product lines. In: Proceedings of the 14th Working
Conference on Reverse Engineering, WCRE ’07, pp. 160–169. IEEE Computer Society,
Washington, DC, USA (2007). DOI 10.1109/WCRE.2007.28. URL http://dx.doi.org/
10.1109/WCRE.2007.28

22. Ganesan D.; Knodel, J.: Identifying domain-specific reusable components from existing oo
systems to support product line migration. In: Proceedings First International Workshop
on Reengineering towards Product Lines, R2PL 2005, Pittsburgh, Pennsylvania, USA, pp.
16–20 (2005)

23. Groene, B.: Introducing architecture modeling at a big software product
company. In: Proceedings Praxisforum Modellierung 2012 (2012). URL
http://qfam.gi.de/fileadmin/user_upload/PraxiforumModellierung2012/
Introducing-architecture-modeling-at-a-big-software-product-company_Groene.
pdf

24. Guo, G.Y., Atlee, J.M., Kazman, R.: A software architecture reconstruction method.
In: Proceedings of the TC2 First Working IFIP Conference on Software Architecture
(WICSA1), WICSA1, pp. 15–34. Kluwer, B.V., Deventer, The Netherlands, The Nether-
lands (1999). URL http://dl.acm.org/citation.cfm?id=646545.696370

25. Harhurin, A., Hartmann, J.: Service-oriented commonality analysis across existing sys-
tems. In: Software Product Line Conference, 2008. SPLC ’08. 12th International, pp. 255
–264 (2008). DOI 10.1109/SPLC.2008.19

26. Hariri, N., Castro-Herrera, C., Mirakhorli, M., Cleland-Huang, J., Mobasher, B.: Sup-
porting domain analysis through mining and recommending features from online product
listings. IEEE Trans. Softw. Eng. 39(12), 1736–1752 (2013). DOI 10.1109/TSE.2013.39.
URL http://dx.doi.org/10.1109/TSE.2013.39

27. Holmes, R., Walker, R.J.: Systematizing pragmatic software reuse. ACM Trans. Softw.
Eng. Methodol. 21(4), 20:1–20:44 (2013). DOI 10.1145/2377656.2377657. URL http:
//doi.acm.org/10.1145/2377656.2377657

28. John, I., Knodel, J., Lehner, T., Muthig, D.: A practical guide to product line scoping.
In: Software Product Line Conference, 2006 10th International, pp. 3 –12 (2006). DOI
10.1109/SPLINE.2006.1691572

29. Jones, L.G., Northrop, L.M.: Clearing the way for software product line success. IEEE
Softw. 27(3), 22–28 (2010). DOI 10.1109/MS.2010.71. URL http://dx.doi.org/10.1109/
MS.2010.71

http://dx.doi.org/10.1109/WCRE.2007.28
http://dx.doi.org/10.1109/WCRE.2007.28
http://qfam.gi.de/fileadmin/user_upload/PraxiforumModellierung2012/Introducing-architecture-modeling-at-a-big-software-product-company_Groene.pdf
http://qfam.gi.de/fileadmin/user_upload/PraxiforumModellierung2012/Introducing-architecture-modeling-at-a-big-software-product-company_Groene.pdf
http://qfam.gi.de/fileadmin/user_upload/PraxiforumModellierung2012/Introducing-architecture-modeling-at-a-big-software-product-company_Groene.pdf
http://dl.acm.org/citation.cfm?id=646545.696370
http://dx.doi.org/10.1109/TSE.2013.39
http://doi.acm.org/10.1145/2377656.2377657
http://doi.acm.org/10.1145/2377656.2377657
http://dx.doi.org/10.1109/MS.2010.71
http://dx.doi.org/10.1109/MS.2010.71

30 Koziolek et al.

30. Kazman, R., Carrière, S.J.: Playing detective: Reconstructing software architecture from
available evidence. Automated Software Engineering 6(2), 107–138 (1999)

31. Khurum, M., Gorschek, T.: A systematic review of domain analysis solutions for product
lines. J. Syst. Softw. 82(12), 1982–2003 (2009). DOI 10.1016/j.jss.2009.06.048. URL
http://dx.doi.org/10.1016/j.jss.2009.06.048

32. Knauber, P., Muthig, D., Schmid, K., Widen, T.: Applying product line concepts in small
and medium-sized companies. IEEE Softw. 17(5), 88–95 (2000). DOI 10.1109/52.877873.
URL http://dx.doi.org/10.1109/52.877873

33. Knoepfel, A., Groene, B., Tabeling, P.: Fundamental Modeling Concepts: Effective Com-
munication of IT Systems. Wiley (2006)

34. Koziolek, H., Goldschmidt, T., de Gooijer, T., Domis, D., Sehestedt, S.: Experiences from
identifying software reuse opportunities by domain analysis. In: Proc. 17th Internal Soft-
ware Product Line Conference (SPLC2013), Industry Track. ACM (2013)

35. Koziolek, H., Weiss, R., Doppelhamer, J.: Evolving Industrial Software Architectures into
a Software Product Line: A Case Study. In: Proc. 5th Int. Conf. on the Quality of
Software Architecture (QoSA’09), LNCS, vol. 5581, pp. 177–193. Springer (2009). DOI
http://dx.doi.org/10.1007/978-3-642-02351-4

36. Krueger, C.W.: Easing the transition to software mass customization. In: Revised Pa-
pers from the 4th International Workshop on Software Product-Family Engineering, PFE
’01, pp. 282–293. Springer-Verlag, London, UK, UK (2002). URL http://dl.acm.org/
citation.cfm?id=648114.748909

37. van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer (2007)

38. Neighbors, J.M.: The draco approach to constructing software from reusable components.
Software Engineering, IEEE Transactions on (5), 564–574 (1984)

39. Northrop, L., Jones, L., Donohoe, P.: Examining product line readiness: Experiences
with the sei product line technical probe. https://resources.sei.cmu.edu/asset_files/
Presentation/2005_017_001_23904.pdf (2005)

40. Pinzger, M., Gall, H., Girard, J.F., Knodel, J., Riva, C., Pasman, W., Broerse, C., Wi-
jnstra, J.: Architecture recovery for product families. In: F. van der Linden (ed.) Soft-
ware Product-Family Engineering, Lecture Notes in Computer Science, vol. 3014, pp.
332–351. Springer Berlin Heidelberg (2004). DOI 10.1007/978-3-540-24667-1 26. URL
http://dx.doi.org/10.1007/978-3-540-24667-1_26

41. Pohl, K., Bckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer (2005)

42. Poulin, J.S.: Measuring Software Reuse: Principles, Practices, and Economic Models, 1st
edn. Addison-Wesley Professional (1996)

43. Prieto-Diaz, R., Arango, G.: Domain Analysis and Software Systems Modeling. IEEE
Computer Society Press (1991)

44. Rubin, J., Chechik, M.: A survey of feature location techniques. In: Domain Engineering,
pp. 29–58. Springer (2013)

45. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Engg. 14(2), 131–164 (2009). DOI 10.1007/
s10664-008-9102-8. URL http://dx.doi.org/10.1007/s10664-008-9102-8

46. Schmid, K.: A comprehensive product line scoping approach and its validation. In:
Proceedings of the 24th International Conference on Software Engineering, ICSE ’02,
pp. 593–603. ACM, New York, NY, USA (2002). DOI 10.1145/581339.581415. URL
http://doi.acm.org/10.1145/581339.581415

47. Schmid, K., John, I., Kolb, R., Meier, G.: Introducing the pulse approach to an embedded
system population at testo ag. In: Proceedings of the 27th International Conference on
Software Engineering, ICSE ’05, pp. 544–552. ACM, New York, NY, USA (2005). DOI
10.1145/1062455.1062552. URL http://doi.acm.org/10.1145/1062455.1062552

48. Simos, M., Creps, D., Klingler, C., Levine, L., Allemang, D.: Organization domain model-
ing (odm) guidebook, version 2.0. Tech. Rep. STARS-VC-A025/001/00, Lockheed Martin
Tactical Defence Systems, United States of America (1996)

49. Stoermer, C., O’Brien, L.: Map - mining architectures for product line evaluations. In:
Software Architecture, 2001. Proceedings. Working IEEE/IFIP Conference on, pp. 35 –44
(2001). DOI 10.1109/WICSA.2001.948405

50. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated bibliog-
raphy. Sigplan Notices 35(6), 26–36 (2000)

51. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. Sage Publications Ltd.
(2013)

http://dx.doi.org/10.1016/j.jss.2009.06.048
http://dx.doi.org/10.1109/52.877873
http://dl.acm.org/citation.cfm?id=648114.748909
http://dl.acm.org/citation.cfm?id=648114.748909
https://resources.sei.cmu.edu/asset_files/Presentation/2005_017_001_23904.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2005_017_001_23904.pdf
http://dx.doi.org/10.1007/978-3-540-24667-1_26
http://dx.doi.org/10.1007/s10664-008-9102-8
http://doi.acm.org/10.1145/581339.581415
http://doi.acm.org/10.1145/1062455.1062552

Exploratory Case Study on Domain Analysis 31

A Application Cases

This section provides a detailed description of the application of our Software Product Line
potential assessment approach and is intended to facilitate executing similar approaches.

A.1 Application Case 1: Industrial Control Systems

Industrial control systems monitor and control automation processes in a variety of different
industrial sectors (e.g., power generation, chemical plants, or substations). ABB has several
such systems in its portfolio, which address specific industrial subdomains and have been
incorporated in former company mergers.

For step 1 of our approach we conducted an internal survey of existing ABB prodcuts,
which resulted in a list of products, from which we removed such products that are no longer
in active development. In step 2 we decided to use almost all of the generic reuse criteria
formerly defined. We also decided to focus on high-level features only. Since these are large-
scale systems, there is no fine-granular break-down of the features as the analysis rather targets
the systematic reuse of whole subsystems. According to the selected reuse criteria, we started
to create the questionnaire for the later interviews.

In step 3, we found that for some systems extensive architectural documentation was
available. We used this information to come up with a sketch of the architecture in the FMC
notation. We created an initial list of 30 features in step 4, which we based on our own domain
knowledge from working with similar systems (Fig. 2). The list was reviewed by multiple ABB-
internal domain experts, who did not work on the products themselves.

Fig. 2 Anonymized excerpt of the feature support matrix for the control systems case study

We conducted on-site interviews for each product ranging from half a day to three days
(step 5) depending on the product’s size. As the last part of each product interview, we
created and extended our architectural sketches. Due to the different sizes of the systems and
the varying depth of the interviews, the architecture illustrations created during the interviews
had different granularity. In subsequent document analyses and clarifications via phone the
architecture illustrations of all systems were brought to a comparable level (example in Fig. 3.
Based on the architecture illustrations we were capable of visualizing the data flows through

32 Koziolek et al.

the components, which are omitted here for confidentiality. For example, one data flow included
a sensor value read from an industrial device and propagated through the system to be shown
on the operator screen.

System A

Connects

Power Historian Server

Operations Client
Operations Client

Power

Operations

Server

Power

Operations

Server

Connects

R

R

System B

Operations Client
Operations Client

Connects

Connects

R

RTSRTS

R

´

Digivis
Digivis

System C

PID
PID

R
R

R

Legend

Subsystem

Storage

Comm.

Channel

Data Read/

Write

Deployment

Unit

Client

Server

Client

Server

Client

Controller

Fig. 3 Architecture map for two of the analyzed systems in application case 1 (simplified)

The next step 6 was to identify reusable features and subsystems based on the information
from system documentation and the interviews transcripts. We executed this step offsite after
all interviews had been finished. We used a product feature support matrix (Figure 2). The
matrix shows for each product whether a feature from the feature list is supported. We also
indicated whether a new implementation of a feature or a replacement of an existing subsystem
is currently realistic. In this case, we marked the product as a potential reuse consumer for
that feature. Products that have a high-quality and generic implementation of a feature are
highlighted as potential reuse providers.

Furthermore, we analyzed the cohesion and coupling of the subsystems that implement a
feature to find out whether subsystems could be easily extracted from the implementations to
serve as core assets. We also colored subsystems in different products that implement similar
features. Using the matrix we identified several realistic new reuse opportunities among the
products. We documented the technical feasibility for each reuse opportunity based on the
information from the interviews and the available documentation. The organizational feasibility
of each reuse opportunity was also analyzed similarly.

In parallel, we attempted to create a economic analysis (step 7), which proved to be too
complicated in this case. Besides the development and maintenance cost of each product, also
the migration costs for existing installations need to be considered if a subsystem is replaced.
This is especially critical in the industrial control system domain, since these systems include
numerous hardware devices and engineering work to customize the system. We were thus not
able to create a reasonable business calculation in this domain, because the inputs for such a
calculation were difficult to gather.

In summary, in this application case, our approach enabled us to create a thorough, albeit
high-level, assessment of reuse opportunities. It showed to scale to complex systems and still
provides useful results despite the relatively short feature list. In one product, the high-level
architecture overviews provided by our architecture illustrations made the respective business
unit rethink architectural trade-offs. The architecture illustrations also were instrumental in
stimulating discussions among the product architects and visualize the functional overlap.

Our initial intuition about high functional overlap between the various systems was con-
firmed by our analysis. However, an actual re-engineering of the systems towards reusing
subsystems still seems difficult due to the expected high migration costs. These costs are a
result of the high configurability of the products, which would require high efforts to update
customer configurations. Therefore, the focus of reuse opportunities in this domain lies more in
guiding future development towards a better alignment and systematic reuse of subsystems.

Exploratory Case Study on Domain Analysis 33

A.2 Application Case 2: Automation PC Tools

In the second application case, we analyzed a set of PC-based commissioning and monitoring
tools for industrial automation systems. Commissioning tools load software applications onto a
device and set application parameters. Monitoring tools observe an automation system, check
and predict its operating conditions, and raise alarm events. During their development history,
the developers of the tools have changed. The product management was aware of the tools in
the families as well as of the potential functional overlaps, which could provide a potential for
a software product line and for reducing future development and maintenance efforts.

The time frame for this SPL potential analysis was three working weeks. We used one
week for preparation (step 1-4), one week on site for interviews with the developers (step
5), and one week for potential identification and economic analysis (step 6-7). For step 1
the developers provided an initial list of all tools. We excluded tools, for which a low reuse
potential could be assumed or which are no longer maintained. From the generic reuse criteria
we excluded organizational criteria, since the tools were owned by only two units, which were
already collaborating successfully step 2.

We gathered user manuals and architecture documents in step 3, which were instrumental
to build up an initial feature list (step 4). Nevertheless, due to our limited former domain
knowledge, we had to significantly adapt the list in step 5. During this step, we interviewed
three project managers and developers, who provided a business and technical perspective.
There was no explicit architecture role defined for these products. We used a feature map [46]
immediately in the interviews (Figure 4). Compared to Schmid’s approach [46], we only per-
formed product line mapping and a short domain potential assessment, but no quantitative
reuse infrastructure scoping, due to effort limitations.

The last session of each interview, was the architecture reconstruction. We started from
a black box view of a tool with its interfaces, refined this into a view showing clients and
servers, for example, and modeled the next levels of components and internal data flow. The
data-flow oriented view of FMC was a new notation for the developers. After a short learning
phase, modeling worked well and supported an active discussion about the architecture and
its concepts, such as used patterns and styles.

After completing the interviews, we finalized the assessment of the reuse and SPL potential
for each domain and subdomain in the feature map (step 6). We added rationale for each
potential rating of low, medium, and high. In the end, the feature map consisted of more
than 300 features grouped into 50 subdomains and 19 domains. The potential for systematic
reuse of ten subdomains, e.g., data management, are ranked high. The architecture illustration
was then used to cross-check the technical feasibility of creating shared components for the
identified subdomains. In the end, we identified three short-term reuse scenarios involving
smaller subsets of features that can be implemented in the next releases. Additionally, six
feature domains and subdomains are long-term candidates for being integrated into a common
platform, but require deeper technical investigations.

To round up our investigation with an economic analysis, we performed a business case
calculation step 7. In parallel to the preceding steps of the analysis, we collected numbers for
the current development and maintenance costs of the tools, which required several weeks of
calendar time, as the information had to be gathered from different sources. Then we calculated
the return on investment for each reuse scenario. As originally defined, the formulas [5] were
only applicable to one reuse scenario without changes. In this scenario, two components are
merged for being reused in both tool families. In this case, we estimated Ccab as 50 percent
higher than building one of the individual products. Fcab was 10 percent and Creuse was
approx. 12 percent of the costs of building the whole products from scratch. We have omitted
the other costs for confidentiality reasons. The calculation showed a positive ROI after three
years.

The stakeholders were particularly interested in the three short-term reuse scenarios and
their business cases. They did not require the exact numbers, but were satisfied by the positive
trend expected for implementing the scenarios. Thus, they planned to discuss the scenarios
with the other relevant stakeholders of the tools for implementation.

34 Koziolek et al.

Do
m

ai
n

Su
bd

om
ai

n

Fe
at

ur
e

Pr
od

uc
t 1

Pr
od

uc
t 2

Pr
od

uc
t 3

Pr
od

uc
t 4

Pr
od

uc
t 5

Pr
od

uc
t 6

 R
eu

se

Po
te

nt
ia

l

A x x x x x x
B x x x
C x x x x x
D x x x x

x x x (x) (x) (x) high
E x x
F x
G x
H x

x low
(x) x (x) (x) (x) medium

I x x x x
J x x
K x x x x
L x x x x
M x x
N x x

x (x) x (x) (x) medium
O x x x
P x x

(x) x (x) (x) medium
x (x) x (x) (x) medium

Subdomain
2.2

Do
m

ai
n

1
Do

m
ai

n
2

Subdomain
1.2

Subdomain
1.1

Subdomain
2.1

Fig. 4 Example Feature Map

A.3 Application Case 3: Device Engineering Tools

In the following application case, we focus on three different ABB device engineering tools
for configuration, commissioning, and maintenance within a single industrial sector. In step 1
of our approach these tools had been identified by management and a contact person had
been named for each tool. Specific for this case we considered a new product with only a
technical and market requirement specification available at the time of analysis. This is to
ensure that this new product can directly benefit from and support the systematic software
reuse opportunities that are identified during our analysis.

While establishing the reuse criteria in step 2 management asked us to put specific empha-
sis on lessons learned from the existing tools and future developments. Finally, as management
appeared to be open minded towards reuse for future developments, reuse culture was also
integrated into the questionnaire. Processes and market fit were excluded in this case.

During step 3 we collected documentation on the different engineering tools as well as
the devices to be engineered, e.g., product manuals, specification sheets, and getting started
guides. For the most powerful and complex tool, we also received detailed internal technical
documentation, such as an architecture review of a previous tool version, from which we
created a first architectural sketch. In step 4, we created an extensive feature list with roughly
200 entries categorized in 10 domains (Figure 4).

For step 5, we scheduled one and a half days for the interviews with lead architect, product
manager, and team manager for each tool. We started each interview with a short tool and
device demonstration, which proved to provide a good common understanding. During the
interviews we spent most time for discussing and refining the feature list. To reconstruct the

Exploratory Case Study on Domain Analysis 35

architecture in the interviews we additionally relied on the CrossModel Architecture Discovery
Pattern Language [20] for guidance, which was not yet known to us in the other application
cases. In addition, the FMC notation was used to document the architecture.

After the interviews, we identified reuse opportunities on the feature and system level
(step 6). The regarded tools partially have similar functionality as well as similar technology
roadmaps for future releases. This finding resulted in the creation of a new project to design and
implement a common underlying platform. Especially, collected lessons learned and identified
high level requirements covering all tools will be useful. The lessons learned were categorized
into organizational, technical, and known challenges with reuse. This allows for avoiding known
issues but also to benefit from known opportunities and good decisions.

We did not create a business case (step 7) in this application case, as the management’s
priority was on future reuse opportunities. Nevertheless the involved stakeholders confirmed
their perception of an expected positive return on investment by starting a new platform design
and development project. Based on the positive analysis results, one additional ABB device
engineering tool was added to the potential scope of a future common platform and will be
analyzed soon.

A.4 Application Case 4: Enterprise Information Systems

In this application case, we analyzed a set of ABB enterprise information systems, which are
used to store large data sets and to provide them to different kinds of users via corresponding
views, filters, and search functions. The analysis comprised a family of five products and two
individual products, which have grown independently of each other. Today, the two individual
products (A and B) and one product from the family (C) are used to support similar business
processes, i.e., some users require all three systems to manage related sets of data for particular
tasks. The four remaining products of the family have different users and handle independent
data.

To better understand the relationships of the considered enterprise information systems,
we extended the domain analysis: we used a comparison of the database schemata to analyze
the relation and overlap of the data managed by the products. Additionally, we conducted an
evaluation of the underlying business processes to assess the tool overlap on this level as well
as the impact of merging the tools on the business processes.

In step 1, the product managers provided the list of products to analyze as well as the
contact persons. To establish the reuse criteria in step 2 we reused the criteria prioritization
from application case 3, which was agreed upon by the contact persons. The provided docu-
mentation for step 3 included product overviews as power point presentations, user manuals,
database schemata, use case descriptions in UML, and high-level architectural descriptions.

From the collected documentation, we were able to prepare around 70 percent of the final
feature table in step 4 and major parts of the architecture maps before the interviews. Similar
to the feature table, we prepared a table that mapped the data model entities (in the rows)
to products (in the columns). We mainly used the product overviews and user manuals of the
products as input for the data entity map, because the database schemata were too detailed
and complex for such an high level mapping. Based on a use case documentation, we were able
to create a draft version of a business process description of one of the products.

The on-site interviews in step 5 required one and a half day for each product. Showing
the feature map for all products to the developers of a single tool created discussions. Some
interviewees disputed the features supported by other products or argued that despite missing
support in their own product, a work around would be possible. These discussions were valu-
able, as they allowed to cross check the feature table and achieve a better understanding of the
differences of the products. The final feature map contained more than 250 features grouped
into subdomains and domains.

Afterwards, we reviewed the prepared FMC architecture maps and completed them to-
gether with the interviewees. The original architecture documentations used proprietary nota-
tions and described the architecture on different levels of abstraction for each product. Redraw-
ing the architectures in FMC unified notation and abstraction level for better comparability.

36 Koziolek et al.

All interviewees understood the notation immediately and were able to provide corrections
and additions.

In step 6, we compared the business process, features, architectures, and data schemata.
For comparing the business processes, we mapped them onto a related reference business
process specification. As a result, we identified a large overlap between the individual product
A and product C from the family, although they might be instantiated differently. This fact
was determined in three business processes which are supported by both systems but handled
in a different way. For the feature map, we assessed the overlap with a subjective of rating
high, medium, and low and added a rationale statement. As for the business processes, the
individual product A and product C from the family showed a large feature overlap. The
functional overlap inside product B and the product family was lower and mainly covers basic
tool functionality such as open, edit, and store data sets.

From the architecture maps, we compared logical structuring and used technologies. The
two individual products and the tool family had been implemented in different technologies,
which hinders direct reuse of components between the products. Also the logical structures of
the products were different, but the cores of the individual product A and the product family
were similar and provided potential for a common platform. The data schemata included
different names and types, but semantically similar elements. We observed the largest overlap
between product A’s and C’s data model, while product B had a low data model overlap.

Based on these results, we elaborated several scenarios for integrating the products: 1)
data integration of A and C via corresponding interfaces, 2) merging A and C into a single
product, 3) building A and C based on a common platform, and 4) building a software product
line for implementing product A, product B, and the family (including C). For all scenarios,
we listed the most important advantages and disadvantages such as usability, complexity,
maintainability, time to market, and investment cost. We also sketched migration roadmaps
between the scenarios.

In step 7, we only performed a return on investment calculation for reuse scenarios 3) and
4). The business units provided the former development and maintenance costs for the calcula-
tions, and we estimated a 50 percent higher effort for building generic, shared parts instead of
specific, separated parts (Ccab). Although the feature map indicated a high functional overlap,
we conservatively assumed the overlap to be 50 percent after consulting the architects. With
these and other assumptions, we expected a positive return on investment for scenario 3) after
seven years, latest. Due to the larger number of products, the return on investment scenario
4) will likely pay off earlier. However, in both cases not the exact numbers, but the positive
trend even under conservative assumptions was important for the stakeholders.

The business unit will first implement scenario 1) (data integration) for better usability
of products A and C in common business processes and will align their business processes for
preparing a more deep integration scenario. After the alignment of the business processes, the
proposed integration scenarios well be reassessed for selecting the final solution.

	Introduction
	Foundations
	Software Product Line Potential Analysis
	Case Study Design
	Case Study Results
	Related Work
	Conclusions
	Application Cases

