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Abstract—Industrial control systems are complex, software-
intensive systems that manage mission-critical production pro-
cesses. Commissioning such systems requires installing, con-
figuring, and integrating thousands of sensors, actuators, and
controllers and is still a largely manual and costly process.
Therefore, practitioners and researchers have been working on
“plug and produce” approaches that automate commissioning for
more than 15 years, but have often focused on network discovery
and proprietary technologies. We introduce the vendor-neutral
OpenPnP reference architecture, which can largely automate the
configuration and integration tasks for commissioning. Using an
example implementation, we demonstrate that OpenPnP can re-
duce the configuration and integration effort up to 90 percent and
scales up to tens of thousands of communicated signals per second
for large Industrial Internet-of-Things (IIoT) systems. OpenPnP
can serve as a template for practitioners implementing IIoT
applications throughout the automation industry and streamline
commissioning processes in many thousands of control system
installations.

Index Terms—Software architecture, Client-server systems,
Real-time systems, Control engineering, Internet of Things

I. INTRODUCTION

With the advent of cheap computing power and industrial
IP technology, distributed control systems in industrial au-
tomation are currently evolving towards IIoT systems [1]. The
market size for these systems is 14 BUSD annually and grow-
ing. Today, control systems consist of embedded controllers,
sensors, actuators, servers, workstations, and cloud services
often involving proprietary communication technologies. Their
software may span more than 10 million lines of source
code. These systems control complex industrial processes,
such as chemical plants, oil refineries, and power plants. They
have challenging non-functional requirements, e.g., for perfor-
mance, reliability, and security, and therefore need carefully
designed software architectures, especially when becoming
IIoT systems [16].

A major challenge in industrial automation is the com-
missioning of distributed control systems [1], [2]. This in-
volves installing thousands of sensors, actuators, and control
devices, configuring these devices and integrating them into
an overall system. Commissioning today requires many man-
ually executed steps, such as identifying devices, setting up
network topologies, entering configuration parameters, trans-
ferring configuration parameters from malfunctioning devices,

and fine-tuning the interaction of devices [2]. This is further
complicated by proprietary device information models requir-
ing expert knowledge for their installation. The whole process
of commissioning a plant with 1,000s or 10,000s of devices
may last several calendar months and cost millions of dollars.

Due to high customer demand for faster plant commis-
sioning [4], researchers and practitioners have been working
on “plug and produce” (PnP) approaches for more than 15
years [13], [14]. The term PnP was derived from the “plug
and play” concept for consumer computers. Existing proposals
for PnP approaches [3], [8], [10], [11], [15] often focus on
low-level network discovery of industrial field devices, but
neglect higher-level configuration and integration tasks, which
cause the most manual efforts. They do not support device
replacement PnP use cases and usually rely on proprietary
information models and communication technologies, there-
fore complicating PnP in multi-vendor IoT systems. However,
technologies for machine-to-machine (M2M) communication
in IIoT systems have been evolving in recent years [1], and
IoT reference architectures have been proposed [20].

The contribution of this paper is the OpenPnP reference
software architecture for IIoT systems. OpenPnP’s key innova-
tions are 1) using standardized network discovery techniques
for industrial field devices, 2) equipping field devices with
information models formerly designed for controllers, 3) au-
tomatically transferring configuration parameters to devices,
4) automatically connecting devices with controllers, and 5)
assisting field device replacement. OpenPnP is a scalable
architecture that allows many different implementations, but
ensures interoperability across vendor borders to allow multi-
vendor PnP. The architecture is designed largely based on
industry-wide end-customer requirements [4]. Due to this,
OpenPnP is potentially applicable for many systems, promis-
ing a wide-reaching impact on industrial automation.

To validate OpenPnP, we created and analyzed an example
implementation based on several commercial and open-source
libraries. We integrated ABB control software and hardware
devices to facilitate technology transfer. The near-production
implementation allowed for validating effort reduction in com-
missioning. In the average case, the architecture can lower
the configuration and integration time for a field device from
approximately 9.5 minutes down to 0.5 minutes, which can



accumulate up to an effort of one person year for a large plant.
Using the technologies underlying OpenPnP, we have shown
that even resource-constrained devices can support dozens of
communication partners and up to 40,000 signals per second
in a given scenario.

The remainder of this paper is structured as follows: Section
2 provides background on distributed control systems and their
commissioning process. Section 3 introduces the OpenPnP
reference architecture with static and dynamic views. Section
4 describes our example implementation, before Section 5
provides a validation, illustrating the faster commissioning
process and the scalability of the architecture. Section 6
summarizes related approaches, before Section 7 concludes
the paper.

II. BACKGROUND

A Distributed Control System (DCS) is a computerized
system for a production process (e.g., chemical plant, power
plant). It can contain dozens of physically distributed real-
time controllers for numerous sensors and actuators as well
as central supervisory stations for human operators (Fig. 1).
The system interfaces with Enterprise Resource Planning
(ERP) and Manufacturing Execution Systems (MES) systems
for resource and production planning. More than a dozen
commercial DCS are available on the market and there are
more than 130,000 installations world-wide [1].
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Fig. 1. Traditional Distributed Control System (DCS): Hierarchical architec-
ture and proprietary communication technologies.

To interface with a production process, a DCS may contain
10,000s of sensors and actuators (i.e., field devices) that
measure temperature, flow, pressure, and other properties, to
operate valves, pumps, motors, and other equipment. Com-
missioning a DCS for a given plant involves installing field
devices (Phase 1-3 in Tab. I), setting their configuration pa-
rameters, and integrating them with controllers and supervision
systems (Phase 4-9 in Tab. I) The process of commissioning

today requires substantial manual work and can take 30-90
minutes per device [2]. Commissioning of a complete plant
may take several calendar months and thus delay the plant
owner from making revenues from the production process.
Consequently, plant owners are also reluctant to update the
production process and devices because they are concerned
about long plant downtimes for re-commissioning.

# Phase Activities (examples) min

1 Prepare replacement Save config of old device, suspend affected devices, 

remove cabling and device

13

2 Mount the device Prepare, use accessories, fix device using screws, etc. 20

3 Connect the cabling Prepare cables, open device, plug in cables 

(alternatively connect to wireless network)

9

4 Establish basic 

communication

Identify the device, set a fieldbuss address, upload a 

device driver, open device interface

2

5 Calibrate the device Check up sensor readings with calibrator, run 

calibration routine

3

6 Set basic 

parameters

Set approx. 10 parameters manually via PC tool or on 

device, e.g., unit, ranges, damping,  etc.

2

7 Set advanced 

parameters

Set approx. 20-50 parameters manually via PC tool or 

on device, e.g., filtering options, linearization, etc.

5

8 Conduct loop check Check basic communication with process control 

system

1

9 Integrate device into 

system

Import device configuration into control logic 

engineering tool, map signal references to logic 

variables, test the control algorithm

5

Total Time (minutes, estimated): 60

In
st

al
la

ti
o

n
C

o
n

fi
g

u
ra

ti
o

n
 a

n
d

 I
n

te
g

ra
ti

o
n

TABLE I
PHASES IN FIELD DEVICE COMMISSIONING

The complexity of device commissioning has a number of
reasons. Field personnel for example needs to manually config-
ure network addresses of industrial fieldbuses or electrically
wired devices (Phase 4 in Tab. I). Due to the large number
of device types they spend time selecting and downloading
the correct device driver packages (e.g., according to FDT
or FDI standard [2]). The device parametrization (Phase 6)
usually involves setting a number of configuration parame-
ters, for example measurement ranges, cable configurations,
and working modes. For more sophisticated field devices,
additionally dozens of advanced parameters need to be set
(Phase 7). The situation is aggravated by many vendor-specific
parameters that require expert knowledge. Integrating a device
with controllers and other devices is another process involving
manual labor (Phase 9).

Due to recent technology progress, a number of prerequi-
sites for faster device commissioning have been established,
which apply even across vendor borders. The OPC UA stan-
dard (IEC 62541 [25]) for M2M communication and rich
information modeling has been extended for field device
descriptions in 2013, network discovery and controller models
in 2014, as well as publish/subscribe (pub/sub) communication
in 2018. Besides supporting slower human monitoring tasks
with signal updates in the range of seconds, it now also allows
executing fast, deterministic control loop cycles in the range of
milliseconds on resource-constrained devices utilizing UDP-
based pub/sub communication. This broadening of capabilities
allows for the first time to implement commissioning and



operation functionality with the same technology, therefore
lowering the hurdle for technology adoption.

In 2017, the Open Group established the Open Process
Automation Forum (OPAF), including the largest automation
technology users, such as ExxonMobil, Shell, BASF, and
Philips, as well as a number of automation vendors, e.g.,
Siemens, Rockwell, Honeywell, and ABB. This forum has
formulated requirements to streamline future field device com-
missioning [4], which can potentially also be addressed with
OPC UA technologies. The OPAF has released a business
guide [5] that explains the value propositions of the automation
market participants in the future, which is required for PnP use
cases in multi-vendor systems.

Furthermore, the User Association of Automation Technol-
ogy in Process Industries (NAMUR) issued a number of stan-
dard device parameters in their recommendation NE 131 [30]
at the end of 2017. In addition, IEC 61987 [24] for modeling
the semantics of field devices has matured in recent years. All
these technologies have been created in a disconnected fashion
for specific use cases, such as system monitoring or electronic
device procurement. They are suitable, but have not yet been
used to address the challenge of PnP device commissioning,
which is our goal with OpenPnP.

III. OPENPNP REFERENCE ARCHITECTURE

This section provides different views of our proposed ref-
erence architecture. It is a conceptual architecture fully based
on standards and can be implemented using various libraries
and toolkits. We will describe an example implementation in
Section IV.

A. Static View

Figure 2 shows the deployment nodes, components, and
connectors of OpenPnP. As deployment nodes, there are
Engineering Servers, Operations Servers, Controllers, Field
Devices, and Web Servers, each with a potentially vary-
ing multiplicity (not depicted) depending on the application
case (i.e., large chemical plant vs. small paper machine).
Controllers and field devices as well as Engineering and
Supervision communicate via plant-internal, standard Ether-
net connections. There is no separate industrial fieldbus or
electrical wiring involved, which simplifies the overall system.
Thereby, the former controller-centric architecture (Fig. 1),
where all communication to the field goes through the automa-
tion controllers is altered into a network-centric architecture,
where controllers can be flexibly assigned to field devices and
supervision can directly connect to field devices bypassing
controllers.

Controllers and field devices both contain OPC UA servers
making them IoT devices with IP connectivIty. The servers
host their respective information models (e.g., configuration
parameters, sensor values) and provide application-level com-
munication services (e.g., read, write, subscribe). Each con-
troller includes at least one IEC 61131-3 [26] Runtime,
which enables executing control logic applications in a vendor-
neutral way. An Engineering Repository feeds the control
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Fig. 2. OpenPnP Reference Architecture: Communication converges on
a single Ethernet connection, components interface via OPC UA. A Plug
and Produce Service autonomously arbitrates device commissioning and
replacement.

programs via OPC UA to the controllers. The sensors and
actuators host a Communication Channel component that
directly interfaces with the hardware (e.g., reading sensor
values). Each node in the reference architecture includes an
OPC UA LDS (Local Discovery Server) to announce its
OPC UA servers across the network upon device connection.
Resource-constrained devices may alternatively use multicast
DNS (mDNS) [34].

The main component supporting the commissioning process
is the PnP Service running on the Operations Server. It
monitors the network for newly connected OPC UA servers
and then automatically connects to the public parts of these
servers with respective security credentials. It then browses
their information models. For field devices, it identifies their
type, which allows to retrieve a device driver package from the
Device Management component on the Engineering server.
The PnP Service also identifies the particular field device
instance via a pre-encoded tag name included by the device
vendor (which is industry best practice). This allows for
locating the respective device instance parameters configured
offline during engineering from the Engineering Repository
and downloading them to the device without human interac-
tion.

Finally, the field devices need to be integrated with con-
trollers. The PnP Service identifies signal references both
in the controller and device OPC UA servers and matches
them against each other. Without our reference architecture,
a control logic engineer performs this step manually. Once
the PnP Service has found all matching signal references



for a controller, it asks a commissioning engineer for final
approval, and afterwards sets up the necessary client/server
or pub/sub communication channels in the controllers and
field devices. OPC UA pub/sub can rely on separate message
brokers (e.g., MQTT- or AMQP-based), or, for low latency
control loops, can utilize UDP-based multicast connections
over TSN-enabled Ethernet [7].

B. Information View

For PnP that allows to mix field devices from different ven-
dors, the reference architecture requires international standards
for information model contents that are exposed via the OPC
UA servers.

Field devices include a specification according to OPC UA
for Devices (IEC 62541-100 [27]). This for example provides
manufacturer identification, device type, device serial number,
HW/SW revision, and basic communication parameters among
other information. Field devices may also include additional
properties according to IEC 61987 [24], which specifies hun-
dreds of device properties, such as operating conditions, phys-
ical location, measurement values, current/voltage outputs, in
a standardized format. This allows the PnP Service a more
advanced configuration of the device. Finally, the field device
must include a PLCopen [31] specification of input and output
signals, whose names are later matched against the respective
signal names in the control logic.

The Engineering Repository provides a specification of
the overall system in the XML format AutomationML (IEC
62714 [28]), for which a mapping to OPC UA is defined.
It is structured according to NAMUR recommendation NE
150 [29] (Standardised Interface for Exchange of Engineering-
Data), and includes a number of process control element
references. These represent sensors and actuators and include
specifications of signal names. The engineering specification
also includes the most relevant device parameters according to
NAMUR recommendation NE 131 [30], which have already
been set in the engineering phase. These are approximately
25 essential parameters per device. The PnP Service uses the
pre-encoded tag names in the field devices to identify the
respective parameter sets in the Engineering Repository and
uploads these parameters to the devices.

The controller provides a control logic specification ac-
cording to the OPC UA information model for IEC 61131-3
(PLCopen [31]). This also explicitly exposes input and output
signals according to the standard, which the PnP Service uses
for signal matching with the devices. Finally, field devices and
controllers provide a high-level state model according to the
PackML (ISA-88 [32]) standard, which for example allows
putting devices into a simulation mode or starting them up.
The PnP Service uses this state model during initial device
commissioning as well as device replacement.

C. Dynamic View: Device Replacement

Aside from initial device commissioning, OpenPnP also
provides concepts for replacing malfunctioning devices. In this
case the configuration parameters of the old device need to

be transferred to the new device. This is a special use case
for a PnP system. Figure 3 provides a high-level overview
of the component interactions during a device replacement. It
assumes that the old device is still running and was selected for
replacement via regular maintenance schedules or a predictive
maintenance algorithm. Replacing an already malfunctioned
device is also possible, but not detailed here for brevity.
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Fig. 3. Component interactions during device replacement: the PnP Services
determines affected devices and transfers the configuration from the old device
to the new device.

The commissioning engineer announces the intent to replace
a specific device to the PnP Service by providing the respective
device identification. The PnP Service first determines all
devices dependent on this device, since they need to be put in a
simulation mode when the device is replaced. For this, the PnP
Service checks both the OPC UA client/server connections
at the respective field device and detects the multicast group
subscribers to the signals the device is publishing via OPC UA
pub/sub from network via the IGMP protocol [35]. It provides
the list of affected devices to the commissioning engineer, who
can decide whether to proceed with the replacement.

Upon approval, the PnP Service first stores the old device
configuration including all application parameters from the
existing device. This is necessary as the parameters may
have been modified on the device via a local human-machine
interface (HMI). These local changes may not be reflected
in the Engineering Repository. Subsequently, the PnP Service
sends all affected devices into a simulation mode (i.e., where
the devices continue operation but assume the device discon-
nected) and stops the device to be replaced. It also stores the
respective signal configuration from the controller.

Finally, the commissioning engineer can physically discon-
nect the device, install the new device and connect it to the
network. With OpenPnP’s network discovery, the PnP Service



recognizes the newly connected device, uploads the stored
configuration to it and sets all affected devices into a running
mode again. It re-matches the device signals with the controller
specification and re-establishes the client/server or pub/sub
communication channels. Afterwards, the system can continue
production.

IV. IMPLEMENTATION

In order to transfer the OpenPnP concepts to practice
and to evaluate achievable performance and scalability, we
created a prototype implementation based on commercial and
OSS software components. The implementation is in a near-
production state, as it is based on a substantial amount of
already commercially sold software. The prototype integrates
control software from ABB legacy controllers, thereby demon-
strating a migration path even for existing installations. In
the meantime, the roadmaps of multiple ABB development
units cover the required OPC UA connectivity and information
models for selected field devices and controllers. Other major
companies have started to release field devices with OPC UA
connectivity as well.

Regarding the testbed hardware, we used as few custom
hardware components as possible to demonstrate vendor-
neutrality. Engineering Server and Operations Server rely on
regular Windows or Linux servers, with the software being
portable across operating systems. As controllers, we em-
ployed Raspberry Pis with ARM processors running Linux
(Raspbian with RT PREEMPT patch), which are represen-
tative for modern Industrial PCs. As field devices, we inte-
grated ABB TTH300 temperature transmitters as well as ABB
LLT100 laser level transmitters, which include ARM-based
communication boards running the commercial RTOS embOS
and include around 200 configuration parameters each.

We created OPC UA servers using the commercial OPC
UA C++ Server SDK [38] from Unified Automation. As al-
ternatives, many commercial SDKs (e.g., Microsoft, Matrikon,
Softing) and open source SDKs (e.g., FreeOpcUa, Open62541,
OPC Foundation) are available, supporting various program-
ming languages, such as C++, Java, or Python and operating
systems, such as Windows, Linux, VxWorks. We selected the
Unified Automation SDK because the version available to
us already included a proof-of-concept implementation of the
recently released OPC UA PubSub specification. We populated
the address spaces of the OPC UA servers with the information
models required for OpenPnP (see Section III-B).

OpenPnP allows multiple options to implement the auto-
matic network discovery functionality. The OPC UA Dis-
covery specification (IEC 62541-12) includes local discovery
servers with or without multicast extension and global discov-
ery servers. The multicast extension requires implementation
of an mDNS Responder that announces an OPC UA server
and responds to mDNS probes. There are implementations
available from the OPC Foundation as well as SDK providers,
such as Microsoft. We realized discovery with the open source
library mdnsd - embeddable Multicast DNS Daemon [36].

For the actual control software execution engine, i.e., the
IEC 61131 Runtime in Fig. 2, there are again many dif-
ferent alternatives, such as CodeSys, TwinCat, and 4DIAC.
These execute customer-specific control logic, such as PID
algorithms [9]. We decided to integrate four commercially sold
ABB control engines into our prototype implementation. This
approach may allow customers to continue using their existing
control logic applications. The four engines are in the range
of 500-1000 KLOC each and are today used in ten thousands
of customer installations. They required small adaptations,
because they do not yet support the PLCopen standard required
by OpenPnP.
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Fig. 4. OpenPnP Prototype: rack with sensors, communication boards,
network switches, and controllers

We implemented the PnP Service of our prototype from
scratch in C++. It includes an OPC UA client that can interact
with the controller and sensor/actuator field devices. The
PnP Service runs continuously and listens for new device
connections announced via mDNS. It then connects to these
devices and browses their OPC UA servers using a depth-
first search. Once a matching signal name is found in a node,
the PnP Service sets up the necessary client/server or pub/sub
communication channels.

Other components in our OpenPnP implementation rely
on generic or ABB-specific components. The Supervision
component in the prototype is realized with the Unified
Automation UAExpert Client for demonstration purposes, but
it would be replaced by an operator workplace in a product
release. The Engineering Repository is not fleshed out in the
prototype, but can be implemented by adapting existing control
logic engineering tools. Device Management relies on the
commercial ABB Field Information Manager, and the Public
Driver Repository is a web server of the Fieldcomm Group.

V. VALIDATION

We evaluated two critical aspects of OpenPnP: the targeted
time saving during the commissioning process and the scal-
ability of the architecture for IIoT scenarios during runtime.
Evaluating security aspects is beyond the scope of this paper,
but we refer to a systematic security assessment of OPC
UA [12].



A. Commissioning Time Saving

To quantify the potential time saving of OpenPnP for
commissioning of field devices, we compare effort estimations
for commissioning steps between a classical approach and the
OpenPnP approach. For the classical approach, we assume
field devices connected with 4-20 mA analog current loops
communicating via the HART protocol [37]. HART commu-
nication is used in approximately 80 percent of all industrial
field device in process automation today [9] and therefore
the most representative reference. Commissioning engineers
parametrize these devices via PC tools and manually integrate
them with automation controllers.

We decomposed the commissioning process (involving de-
vice replacement) into 9 phases (see Tab I) and 51 steps, a
selection of which is shown in Tab. II. The steps are applicable
to most field device types in process automation. The time
spent for each step may depend on a number of factors, such
as the complexity of the device, the experience of the person
installing it, the availability of appropriate documentation, or
the difficulty of physically mounting the device. We accounted
for these factors by estimating low (L), medium (M), and high
(H) duration values (in minutes and seconds) in Tab. I, but not
for rare outliers.

The actual estimated values in Tab. II are based on expe-
rience with device commissioning as well as extensive tests
with our OpenPnP prototype. To increase the confidence in
these estimations, five ABB domain experts with decades
of experience in device commissioning reviewed and refined
them. They provided input on specific constraints, more refined
effort estimations, as well as optional and mandatory steps.
We adjusted the estimation based on their input. Optional
steps have a “low” value estimation of zero seconds. In the
end, each domain expert agreed that the estimations reflected
representative and realistic scenarios.

In Phase 1, the system prepares device replacement by
saving the parameters of the old device. This phase is omitted
if the device is installed during initial plant commissioning.
Uploading a full set of parameters (e.g., between 50 and
2000 values) from a device can take up to 2 minutes with a
HART connection (1200 Baud). With an Ethernet connection
as prescribed in OpenPnP, this step usually requires between 1-
2 seconds to retrieve the parameters from the OPC UA address
space and save them to disk. In the classical approach, the
commissioning engineer now needs to manually determine any
surrounding affected device and suspend them for example by
providing constants for their inputs or shutting them down. The
OpenPnP approach automatically determines affected devices
and issues a command to put them in simulation mode (see
Section III-C), which can usually be completed in less than
one minute.

Phases 2 and 3 involve physically mounting the device
and connecting the cabling. While these steps consume a
significant part of the commissioning process, there are hardly
differences between the classical approach and the OpenPnP
approach, therefore we do not detail them further here. Es-

# Phases

Classic Approach

HART comm.

+ PC Tool (Steps) L M H

OpenPnP Approach

OPC UA comm. + 

PnP Service (Steps) L M H

1 Prepare 

replacing 

Store config via HART, 

unmount device

05:30 13:00 22:00 Store config via OPC UA, 

unmount device

03:11 07:32 14:05

1.1 Store device config via 

HART into Laptop

00:30 01:00 02:00 Store device config via 

OPC UA

00:01 00:02 00:05

1.2 Shut down plant segment 02:00 05:00 07:00 Put connected assets in 

fail-safe mode

00:10 00:30 01:00

1.3 Remove cabeling from 

device

01:00 02:00 03:00 Remove cabeling from 

device (Ethernet)

01:00 02:00 03:00

1.4 Remove device from 

mount point

02:00 05:00 10:00 Remove device from 

mount point

02:00 05:00 10:00

2 Mount the 

device 

physically

Prepare, use accessories, 

fix the device 

05:00 20:00 40:00 Prepare, use accessories, 

fix the device 

05:00 20:00 40:00

3 Connect the 

cabling

Run cabling to device, 

attach to device

05:30 09:00 21:00 Run cabling to device, 

attach to device

05:30 09:00 21:00

4 Establish 

basic comm.

Power on, connect, 

download device package

00:43 01:18 03:38 Power on, network 

discovery, connect via 

OPC UA

00:11 00:21 00:46

4.1 Power on the device 00:05 00:10 00:30 Power on, DHCP 00:05 00:10 00:30

4.2 Scan for devices 00:30 01:00 03:00 Scan for devices using 

OPC UA Discovery

00:05 00:10 00:15

4.3 Identify device by HART 

tag

00:01 00:01 00:01 Identify device by 

browsing address space

00:01 00:01 00:01

4.4 Select device package 00:01 00:01 00:01

4.5 Load device package 00:05 00:05 00:05

4.6 Open device HMI 00:01 00:01 00:01

5 Calibrate the 

device

Manually use calibration 

tool

00:00 03:00 04:30 Manually use calibration 

tool

00:00 03:00 04:30

6 Set basic 

parameters

Manually set basic 

parameters via laptop

01:00 01:20 02:50 Automatically transfer 

parameters 

00:02 00:02 00:02

6.1 Set unit 00:05 00:05 00:10 Retrieve parameters from 

engineering

00:01 00:01 00:01

6.2 Set upper range value 00:05 00:05 00:10 Download parameters 00:01 00:01 00:01

6.3 Set lower range value 00:05 00:05 00:10

6.4 Set damping 00:05 00:05 00:10

6.5 Set process value to zero 00:05 00:05 00:10

6.6 Set display language 00:05 00:05 00:10

6.7 Set password 00:05 00:05 00:20

6.8 Set basic parameter 1 00:05 00:05 00:10

6.9 Set basic parameter 2 00:05 00:05 00:10

6.10 Set basic parameter 3 00:05 00:05 00:10

6.11 Download via HART 00:10 00:30 01:00

7 Set adv. 

parameters

Manually set advanced 

parameter via laptop

00:00 00:55 02:10 Manual set + automatic 

transfer of parameters 

00:00 00:12 00:42

8 Conduct 

loop check

Set simulation value, 

check loop back

00:20 00:40 01:10 Perform automatic 

connection check

00:01 00:01 00:01

9 Integrate 

device into 

DCS

Map logic variables to IO 

channels, download logic

02:00 04:30 12:00 Discover controller, set 

up, match signals, set up 

communication

00:03 00:08 00:11

9.1 Import HWD files to 

engineering tool

00:10 00:30 01:00 Connect controller, DHCP 00:01 00:02 00:05

9.2 Map control logic 

variables to I/O chann.

01:00 02:00 08:00 Download control logic to 

controller

00:01 00:01 00:01

9.3 Connect to controller 00:10 00:30 01:00 Set up subscription / 

publishing

00:01 00:05 00:05

9.4 Download control logic 00:10 00:30 01:00

9.5 Test logic online 00:30 01:00 01:00

L M H L M H

(Phase 1-9) 20:03 53:43 01:49:18 13:58 40:16 01:21:17

(Phase 1-3) 15:30 41:00 01:21:00 13:40 36:30 01:15:00

(Phase 4, 6-9) 04:33 09:43 00:23:48 00:18 00:46 00:01:47

Total sum

Install time

Config time

TABLE II
EFFORTS FOR COMMISSIONING TASKS: DURATIONS FOR INDIVIDUAL

STEPS MAY VARY. IN THE AVERAGE ESTIMATION, THE OPENPNP
APPROACH CAN REDUCE THE EFFORT FOR CONFIGURATION FROM 9

MINUTES TO UNDER 1 MIN PER DEVICE.

tablishing the basic communication to the device in Phase 4
requires a HART scan in the classical approach, which usually
requires one minute. The device is identified via a HART tag.
Afterwards a matching device package can be downloaded to
the PC-tool for configuration. In the OpenPnP case, the device
connects to the network, gets an IP address via DHCP or other
means and is recognized by the PnP Service via OPC UA
Discovery. The PnP Service determines the device type and
instance by connecting to the device and browsing its address
space. Due to Ethernet connectivity this phase usually lasts
about 20 seconds in total and requires no manual intervention.

A device may require running a calibration routine in Phase
5, which is however again not different in the two approaches.



In Phase 6, the basic device parameters are set. In the classical
approach, the commissioning engineer types in the values
manually via the PC tool referring to the engineering data and
project documentation. This takes approximately 5 seconds
per parameter. In the OpenPnP approach, the PnP Service
retrieves the prepared device parameters from the engineering
repository and writes them into the OPC UA address space of
the device without manual intervention.

Phase 7 spans the setting of advanced device parameters,
which are optionally required for fine tuning the device for
a given application context. This step may vary significantly
between devices, but we agreed on conservative estimations
here. In the classical approach, a similar procedure as for
Phase 6 is executed, but involves additional parameters. In
the OpenPnP approach, we assume that the PnP Service can
transfer certain parameters directly from the engineering data,
but also requires a commissioning engineer to enter values
manually to account for special environmental factors that
are only known during actual installation. Phase 8 requires
a loop check for the analog HART connection to verify the
communication between device and system is working. For
OpenPnP, simple ICMP ping messages can be issued.

Finally, the device gets integrated into the DCS in Phase
9, where we connect it to an automation controller to execute
the control logic. In the classical case, this requires importing
HART references or fieldbus addresses into control logic
engineering tools. There, a control engineer manually maps
the signal references to control logic variables. While this is
for example supported by drag and drop mechanisms in engi-
neering software tools, it nevertheless requires manual work.
In the OpenPnP approach, the PnP Service can download the
control logic and automatically match the signal references.
This enables the PnP Service to autonomously set up the
required client/server or pub/sub communication channels via
the OPC UA address spaces.

In summary, Tab. II indicates that the OpenPnP approach
can lower configuration and integration time within device
commissioning from 5-23 minutes down to 0.5-1 minute,
which means an effort reduction of more than 90 percent.
For a plant with 10,000 devices this can accumulate to
approximately 1500h time saving (≈ 1 person year). The
main factors for this reduction are the automated transfer
of prepared device parameters avoiding a media break, the
automated identification of affected devices and the automated
signal matching between devices and controllers, and the faster
Ethernet connection.

Ethernet-related speed-ups are not tied to the OPC UA
technology, but can be achieved with other Industrial Ethernet
protocols as well (e.g., EtherNet/IP, PROFINET, EtherCAT,
Modbus-TCP, etc.). For example, PROFINET devices support
a similar device discovery with the LLDP protocol. Never-
theless, OPC UA provides benefits in this context, since it
allows for richer information modeling with a sophisticated
type system, provides vendor-neutral interoperability due to
several companion standards, and has shown to be faster than
other solutions [6].

Avoiding the media break to type in engineering data from
one system to the other manually during device commissioning
is another factor for saving time. It also removes a source
of human error for typing in values manually, which saves
costs, enhances safety, and saves time for fixing errors. The
OpenPnP signal matching based on a unique naming of the
signals throughout the system again avoids a media break
and manual mapping. This concept may also be beneficial
for existing HART devices and classical control systems. To
reduce commissioning time further, easier mounting of devices
should be analyzed, which is out-of-scope for the OpenPnP
architecture. Wireless communication could remove efforts for
cabling, but underlies certain physical restrictions in industrial
applications and may not be possible in many situations. Fi-
nally, self-calibration routines are already available for selected
device types, which can reduce commissioning times further.

B. Scalability

Communication latency in OpenPnP systems is important
for realistic systems, where hard deadlines need to be met
to control safety-critical equipment. Latency, however, is not
as crucial during initial device commissioning or device re-
placement (Fig. 3), but pertains the operational phase during
production, where cycle times between controller and device
in the range of milliseconds or even microseconds need to be
adhered to. An international working group for OPC UA TSN
communication has successfully validated this [6], achieving
submillisecond cycle times. However, these results are still
limited regarding scalability and do not provide guidance when
to use client/server or pub/sub communication.

As developers may use the OpenPnP architecture to im-
plement large-scale systems with thousands of field devices,
a scalability evaluation is crucial for successful technology
transfer. This is amplified by the Industrial Internet-of-Things,
which adds new communication partners to devices and
controllers, such as mobile HMIs for field workers, intru-
sion detection systems, edge gateways, and cloud services.
Client/server communication was designed for ad-hoc OPC
UA communication, but adds memory and CPU overhead to
servers for managing client sessions. Pub/sub communication
was designed for high-frequency cyclic OPC UA communica-
tion but may overload network hardware in extreme scenarios.

For our scalability evaluation, we thus asked two research
questions:

• RQ1: How do client/server and pub/sub OPC UA connec-
tions scale with an increasing number of signal receivers?

• RQ2: What is the bottleneck for fast OPC UA pub/sub
communication?

For RQ1, our hypothesis was that pub/sub communication
increases CPU utilization linearly dependent only on number
of signals per time unit, but independent of the number of
subscribers. For client/server communication our hypothesis
was that it increases CPU and memory utilization linearly
dependent on the number of signals per time unit and the
number of managed client sessions. For RQ2, our hypothesis
was that the network switch forwarding hardware becomes



the performance bottlenecks in case of high-frequency com-
munication, as they need to forward a vast amount of packets
between the publishers and subscribers.

Host HostHostHost Host

Hirschmann
switches

Switch configuration:
• IGMP Snooping: enabled
• IGMP Querier: enabled, 10s query interval
• Static query ports: Forwarding of unknown 

multicasts to neighbor switches

Monitor & control 
laptop / VM

172.16.1.2/24

Raspberry Pi 
devices

172.16.1.3/24 172.16.1.4/24 172.16.1.5/24 172.16.1.6/24

172.16.1.7/24

4 4 45

Fig. 5. Test Environment: Raspberry Pis sending and receiving signals via
OPC UA client/server and pub/sub communication. Correct dynamic multicast
filtering based IGMP snooping was verified across multiple switches.

Our test setup (Fig. 5) consisted of Raspberry Pi devices
connected via an industry-grade Hirschmann switch (type RSP
35). The switch was configured to support IGMP snooping
and acts as IGMP querier [35]. For setups with more than
one switch, static query ports were configured so that IGMP
queries are forwarded to the other switches as well for
correctly establishing Ethernet forwarding entries using IGMP
snooping. The correct IP multicast forwarding behavior was
verified using the Linux tool iperf to generate IP multicast
traffic and subscribe to it at different host combinations.

After configuring the switches for IGMP snooping and to act
as IGMP querier, the filtering is done directly at the switches.
This could be confirmed using Wireshark, where suddenly IP
multicast packets were only delivered to hosts that actually
subscribed to them, drastically reducing the overall network
traffic in the testbed.

We deployed Unified Automation OPC UA servers accord-
ing to our prototype implementation (Section IV) on Raspberry
Pi Zeros, which performed both OPC UA client/server and
pub/sub communication for a varying number of signals per
second and managed client sessions. We measured server-side
CPU and memory utilization as well as network bandwidth
usage using Linux performance counters and network traffic
traces using tshark/wireshark. Each experiment lasted around
one minute and was repeated five times to account for outliers.
The first twenty seconds of each experiment were discarded
to remove the effect of a transient phase on the analysis. In
total, we executed more than 250 experiments.

To answer RQ1, Fig. 6 shows the CPU utilization for a vary-
ing number of communicated signals and a publishing interval
of 100 ms. As expected, pub/sub communication incurs lower
CPU utilization than client/server communication in all cases,
and therefore scales better for a higher number of signals per
second. The publisher CPU utilization is independent of the
number of subscribers, therefore the type of communication is
especially beneficial in cases with a high number of different
signal receivers.
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Fig. 6. Scalability Analysis: client/server communication incurs higher
server CPU and memory overhead for managing more client sessions. Pub-
lish/subscribe communication incurs higher CPU utilization only for higher
number of published signals, not for more subscribers, as expected

The maximum number of communicated signals per second
in our pub/sub measurements for the given publishing interval
at a publisher CPU utilization of 80 percent was 40,000
compared to 25,000 for client/server communication and a
single client. Experiments at a CPU utilization of more than
80 percent led to large violations of the update intervals and
are therefore considered invalid. Additionally we noticed a
increase in the publishing interval for pub/sub communication
for the highest throughput scenarios. This can be attributed to
the prototypical implementation of the pub/sub communication
stack (i.e., a beta-version), but is not deemed a conceptual
issue and should be fixed in release versions.

Figure 6 additionally provides an indication of the CPU
overhead for managing many client sessions in client/server
communication. We increased the number of clients to the
servers from one to thirty, while evenly distributing the signals
to the clients. The experiments kept the total number of
communicated signals per second constant for higher numbers
of clients by reducing the number of signals sent to each client.
This allows for an explicit quantification of the induced session
management overhead.

We found that for 5000 signals sent per second, a maximum
of 30 sessions could be achieved with the Raspberry Pi Zero
before the CPU was fully utilized. This corresponds to sending
approximately 167 signals per second to each of the 30
clients. With more sessions, the specified publishing interval
could not be achieved anymore. Even for this high number of
sessions, the memory overhead was in the range of 2-3 percent
of the overall memory, therefore negligible. The number of
parallel sessions could be increased by choosing slower update
rates. This finding indicates that an industrial field device
equipped with a communication computer as powerful as a
5 USD Raspberry Pi Zero could serve a large number of
communication partners in an IIoT scenario.

To answer RQ2 about the bottleneck for pub/sub commu-
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Fig. 7. Performance Analysis: publish/subscribe communication is CPU-
bound for higher numbers of published signals per second. Memory and
network utilization is low.

nication in high-frequency scenarios, Fig. 7 provides CPU,
memory, and network utilization for a growing number of
signals per second. While memory and network are hardly
utilized at higher publishing frequencies, the actual bottleneck
in this scenario was the CPU. It is fully occupied encoding
OPC UA messages and handling the publishing process, thus
the server cannot exhaust the available network bandwidth.
The CPUs and ASICs in the network switches responsible for
packet matching and forwarding of the involved multicast UDP
traffic, are hardly utilized and capable to handle about 1,000
parallel multicast groups at line speed for the used industrial
switches. In contrast to the initial expectation, the switches
were no relevant bottleneck.

In conclusion, both client/server and pub/sub communica-
tion scale well for a high number of communication partners
and are CPU-bound. Network bandwidth was not the limiting
factor in any of the analyzed scenarios. Memory overhead
for managing a lot of client sessions is low, while pub/sub
communication has no per-subscriber memory overhead at all.
Dynamic filtering of multicast packets in switches (arbitrated
by the IGMP protocol) worked well.

With the analyzed OPC UA SDK, client/server communi-
cation can be used well for ad-hoc monitoring use cases and
even for cyclic control communication down to approximately
10 ms publishing intervals. Pub/sub via multicast UDP and
TSN is required for shorter publishing intervals (<10ms), or
in scenarios with more than 30 signal receivers (depending
on update interval), which are however both rare in typical
process automation applications as of today.

VI. RELATED WORK

OpenPnP is related to Plug and Play approaches and IoT
reference architectures. While the original Plug and Play tech-
nology developed by Microsoft and Intel aimed at computing
devices on a local computer bus, Universal Plug and Play
(UPnP) extended the notion for computer networks. It is a set
of network protocols that allows consumer computer devices

to discover each other on the network and was standardized
as ISO/IEC 29341 [35] in 2008.

Transferring the underlying ideas to industrial produc-
tion systems, researchers and industry practitioners have
been working on PnP approaches already for more than 15
years [14]. We refer to existing surveys and briefly compare
OpenPnP to the most relevant approaches. Pfrommer et al. [13]
provided a survey of different PnP approaches from the last
decade. Jasperneite et al. [15] also reviewed different solution
approaches towards PnP, but focused specifically on modular
manufacturing systems. The approaches summarized in the
following have similar goals as OpenPnP.

Hammerstingl and Reinhard [11] proposed a unified PnP
architecture in 2015, which contains similar concepts as
OpenPnP. It is however based on classical fieldbuses and
analog connections and therefore does not exploit the benefits
of OPC UA in terms of rich information modeling, vendor
interoperability, and performance. Koziolek et al. [8] devised
a PnP reference architecture, but did not provide device
replacement, an effort analysis, nor a full-scale prototype
implementation. Krüning and Epple [10] proposed a rudi-
mentary PnP architecture for PROFINET IO devices, which
required vendor-specific configuration parameters, and thus
does not work in a multi-vendor setting. Dürkop et al. [3]
used OPC UA Discovery in combination with PROFINET IO
devices, which provides backward compatibility, but does not
integrate devices with controllers and leads to a more complex
technology mix. The AutoPnP approach by Kainz et al. [21]
provided discovery and connection of production modules, but
required substantial upfront modeling in each setting.

There are also numerous reference architectures for the
Internet-of-Things (surveyed by Weyrich and Ebert [20]),
which provide different taxonomies and perspectives on the
technology. Garlan [16] foresees an extraordinary growth
in the number of connected IoT devices, and postulates
much more flexible software architectures that manage re-
configurations dynamically. OpenPnP addresses this specifi-
cally for IoT in the industrial automation domain. Most IoT
approaches and proposed software architectures in this context
deal with consumer applications [17], [19], but in contrast
to OpenPnP do not consider the specifics of industrial ap-
plications, such as resource-constrained devices and complex
information models.

In this line of research, Alkhabbas et al. [22] devised so-
called “Emergent Configurations” for engineering IoT sys-
tems. They envision configurations inferred by processing
contextual information and following the MAPE-K loop from
autonomic computing. In our domain, fixed configuration
parameters are still prevalent due to safety considerations, but
an extension into a similar direction is conceivable. Muccini
et al. [18] designed a proprietary modeling language for IoT
systems, which was applied on a smart card system at a
university. OpenPnP relies on standardized industry models
in the process automation domain to allow for vendor-neutral
interoperability. Another IoT reference architecture was de-
signed to connect software services for IoT applications,



exemplified by IFTTT-applications [23]. For OpenPnP, we
assume a more constrained interplay of services, but could
extend into this direction in the future [13].

VII. CONCLUSIONS

We have introduced the OpenPnP reference architecture,
which allows a significant reduction of configuration and
integration efforts during industrial plant commissioning. The
architecture incorporates OPC UA communication and discov-
ery and relies on a number of international standards for device
parameters. This allows multi-vendor PnP applications. Using
an example implementation, we showed that OpenPnP can
reduce configuration and installation time by up to 90 percent,
while scaling to IIoT systems with many nodes.

OpenPnP can benefit practitioners and researchers. Practi-
tioners receive a template to implement IIoT applications that
support vendor-neutral PnP. This allows faster commissioning
of systems using devices from different vendors. With its scal-
ability and interoperability, OpenPnP is applicable for many
different types of control systems and thus can potentially
impact many existing and future installations. Field device
vendors can use the PnP feature as added value to their
products. Customers can request OpenPnP compliance from
their suppliers to be able to streamline their commissioning
processes. Researchers may use the foundation of OpenPnP
to improve configuration and integration further.

We plan to enhance OpenPnP in several directions. De-
riving configuration parameters for devices based on digital
models of their application context could save further time
for manual specification during engineering. The OpenPnP
concepts could be extended for modular automation systems
that connect larger plant modules instead of individual field
devices. Finally, OpenPnP device models could be extended
to full device simulations that allow a virtual commissioning
to test configurations before physical installation.
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