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Abstract. Many enterprise IoT application scenarios, such as connected
cars, smart cities, and cloud-connected industrial plants require dis-
tributed MQTT brokers to achieve high scalability and availability. With
a market of over 20 MQTT brokers, it is hard for software architects to
make a good selection. Existing MQTT comparisons often include only
non-distributed brokers, focus exclusively on performance, or are difficult
to generalize. We compared three distributed MQTT brokers for perfor-
mance, scalability, resilience, security, extensibility, and usability in an
enterprise IoT scenario deployed to an edge gateway cluster. We found
that EMQX provided the best performance (28K msg/s), while only
HiveMQ showed no message loss in our test scenario. VerneMQ offers
similar features as the other brokers but is fully available as open source.
The paper includes decision guidance for software architects, listing six
major decision points regarding MQTT brokers.

Keywords: IoT, MQTT, Distributed Messaging, Edge Computing, Vir-
tualization, Software Containers, Benchmarking, GQM, Performance

1 Introduction

The global Internet-of-Things (IoT) market has an estimated volume of 190
BUSD and is expected to grow to more than 1100 BUSD by 2026 [6]. There
are many application areas where connected devices provide value-adding func-
tions: smart cities, industrial plants, smart home, connected cars, smart energy
grids, etc. These devices often send telemetry data to edge gateways and cloud
platforms, where the data is used for monitoring, supervision, predictive mainte-
nance, and optimization. One of the most popular protocols for this type of com-
munication is MQTT (Message Queuing Telemetry Transport, ISO/IEC 20922),
which implements a publish-subscribe pattern [11]. MQTT is specifically suited
for IoT applications, since it is designed for unstable network connections and
bandwidth saving [13].

There are more than 20 MQTT broker implementations available, making a
selection hard for software architects. Software architects need to balance and
prioritize different quality attributes of MQTT brokers to make an informed
decision. There is a lack of evaluation criteria for such messaging brokers specif-
ically in enterprise IoT scenarios. Such scenarios require scalable, high available
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MQTT brokers deployed to a cluster, which brings special challenges for capacity
planning and configuration.

Researchers and practitioners have studied different aspects of MQTT com-
munication in the past. There are comparisons to other protocols, such as CoAP,
AMQP, and Kafka [5, 22, 12, 21], as well as small-scale performance tests of differ-
ent, non-clustered MQTT brokers [15, 21, 2]. However, there is no comprehensive
comparison between distributed MQTT brokers available, which are deployed in
highly scalable and redundant edge clusters for enterprise IoT. Practitioner ex-
perience reports have demonstrated impressive scalability of MQTT brokers on
cloud platforms [17, 4], but are often difficult to generalize since they are geared
towards specific contexts. Furthermore these tests often focus exclusively on per-
formance, neglecting other quality attributes.

The contribution of this paper is a comparison of three representative, dis-
tributed MQTT brokers using evaluation criteria systematically defined using a
Goal/Question/Metric (GQM) scheme [3]. We report on evaluation results for
five quantitative metrics and provide additional qualitative analyses for security,
usability, and extensibility. We found that EMQX showed the best throughput,
while only HiveMQ achieved no message loss in our test scenarios. VerneMQ
is fully available as open source, while providing similar features and quality
as the commercial brokers. To obtain the previously defined metrics, we de-
ployed the selected MQTT brokers in redundant edge gateway servers running
the open-source edge virtualization platform StarlingX. This allowed analyzing
the interplay with software containers and container orchestration using Kuber-
netes (K8s).

The remainder of this paper is structured as follows: Section 2 sets the con-
text for Enterprise IoT messaging, for which Section 3 defines metrics and a
representative experiment scenario. Section 4 provides a brief overview of dis-
tributed MQTT brokers to rationalize the selected candidates. Section 5 presents
the analysis results for performance, scalability, resilience, security, extensibility,
and usability. Section 6 summarizes the results and decision points as guidance
for software architects. Finally, Section 7 investigates related work and Section
8 concludes the paper.

2 Background: Enterprise IoT Messaging

Fig. 1 shows an enterprise-scale, generic edge gateway cluster architecture that
can be useful in different application domains. IoT Devices are for example
sensors and actuators mainly publishing telemetry data to the edge gateway
cluster and occasionally consuming control signals. Due to potential temporal
network failures, possibly involving cellular connections and resource-constrained
devices, the MQTT protocol [13] is well suited as it is resilient against temporal
disconnects and has a low message size overhead thus saving bandwidth.

Message Broker Instances on the edge gateway cluster ingest messages
from the IoT Devices and enable different applications to consume them. Dis-
tributed MQTT brokers with multiple instances, each residing on a separate
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Fig. 1: Distributed Message Brokers on Edge Gateway Cluster

physical or virtual node, may scale horizontally (i.e., with the number of avail-
able nodes) to cope with a high number of connected devices and message work-
loads. The instances exchange messages and client session information, so that
the overall system may survive crashes of individual instances of nodes and sup-
port high-availability scenarios. A load balancer provides network endpoints of
available broker instances to clients interested in messaging, for example in a
round-robin fashion. Many MQTT brokers provide a Broker Dashboard for
monitoring and supervision of the clustered instances.

Mobile Apps subscribe for message topics, for example to display an alarm
list to a field operator in an industrial plant or to provide car telemetry data to
a car owner. Edge Applications may utilize messaging data to execute data
analytics algorithms on premises, for example to enable predictive maintenance
of individual devices or derive optimizations for the entire system. For larger
analysis tasks or cross-site statistics, cloud applications in public data centers
ingest the messages via Internet connections.

In enterprise IoT, the edge gateway cluster may contain multiple physical
nodes that run multiple layers of virtualization. There are several platforms
available supporting different aspects of such an edge gateways, e.g., EdgeX-
Foundry, Fledge, KubeEdge, Azure IoT Edge, and StarlingX.

3 IoT Messaging Requirements

We define metrics and evaluation criteria for distributed MQTT brokers (Sec-
tion 3.1) and specify the basic scenario used in later tests (Section 3.2).
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3.1 Goal/Question/Metric

The goal of our study (according to GQM [3]) is to evaluate the quality attributes
of distributed MQTT brokers in enterprise IoT scenarios from the software archi-
tect’s perspective. The following questions with corresponding metrics to answer
them shall support achieving this evaluation for each broker:

What is the performance? Metric M1 is the maximum sustainable through-
put (MST) [24] at which the broker is able to process all communicated messages.
In this case, both publishers and subscribers are able to maintain stable message
queues for an agreed reference workload. Metric M2 is the average latency from
publisher to subscriber in a given scenario. Short latencies are important for
many IoT applications, where live monitoring of telemetry data is desired. Prac-
tical limits are set by network connections, which introduce latencies outside of
the control of the broker.

What is the scalability? Metric M3 is the maximum number of supported
concurrent connections, each issuing a reference workload to the broker. Large-
scale IoT scenarios involving smart cities, power distribution grids or fleets of
connected cars may include millions of IoT devices. Metric M4 is the time to
start a new broker instance in case of a high load on the already running in-
stances. This metrics pertains the dynamic scalability (elasticity) to cope with
changing workloads without wasting computing resources.

What is the resilience? Metric M5 is the message loss count in case of a
broker instance crashing for a reference scenario. While losing individual sensor
readings may be acceptable in some scenarios (e.g., temperature values in a
smart home), it may be harmful in others (e.g., missing an emergency shutdown
signal of a plant). This metric is influenced by the queue lengths configuration
of a broker in relation to a particular workload.

What is the security? Security of a broker is largely determined by the user
configuration and only to a lesser extent by the broker’s security features. These
include authentication and authorization mechanisms, as well as encryption sup-
port and overload protection procedures. We refrain from defining a potentially
misleading, quantitative metric for security and instead provide a qualitative dis-
cussion in the evaluation section. Metric M6 is only a side-aspect of security and
measures the overhead of enabled TLS encryption on the maximum sustainable
throughput (as percentage).

What is the extensibility? MQTT brokers offer plug-in mechanisms allow-
ing third-party extensions, e.g., logging messages to a database. The evaluation
section provides a qualitative discussion on the extensibility of the brokers.

What is the usability? The usability of a distributed MQTT broker includes
both installation and operation. Easy deployment on container orchestration
systems may be valued. We again refrain from defining a quantitative measure
for usability, but instead provide a qualitative discussion.

3.2 Basic Experiment Scenario

MQTT performance tests can be categorized into “fan-in”-driven, “fan-out”-
driven, and symmetric tests. Fan-in tests reflect typical IoT applications scenar-
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ios with a high number of IoT devices (e.g., 10,000s) acting as publishers, but
only a few or a single subscriber (e.g., an analytics application). Fan-out tests
are the opposite, e.g., a high number of mobile applications consuming data from
few or a single publisher (e.g., weather station). We decided to use a symmetric
test scenario with 10 publishers and 10 subscribers, as our goal was to assess
quality differences of different brokers in a mostly representative scenario. This
also avoids the need to optimize broker queue size configurations. We refer to
other scalability tests ([9, 17, 4]) for specific fan-in / fan-out tests.

In our scenario, publishers try to send as many messages as possible to the
broker instances and ultimately the subscribers. We tested in a range between
1,000 and 50,000 messages per second, which is higher than many real cases. For
example, BMW’s connected car platform processes 1,500 messages per second
on HiveMQ, while Bose’s messaging backend using VerneMQ ran up to 9,700
messages per second [17]. The workload expected for an industrial plant equipped
with automation by ABB is within our experimentation range.

We used a fixed message payload size of 150 Bytes with random binary con-
tent. While a single telemetry datum (e.g., a temperature value) may be encoded
with only 4 Bytes, we assume that messages provide additional meta data (e.g.,
identification, timestamps, etc.) in a realistic scenario.Payloads of 64 Bytes or
128 Bytes have been used in other benchmarks and a previous work [21] has found
that payload sizes up to 4,096 Bytes have limited influence on the maximum sus-
tainable throughput. Batching messages may improve overall throughput, but
leads to more complexity on the consumer side, where the batches needs to be
de-grouped as part of the application logic.

All publishers and subscribers use MQTT QoS 1 assuring no message loss,
but requiring message acknowledgments (i.e., implying an extra network round
trip). QoS level 2 would also exclude duplicated messages, but is considered to
imply a too high overhead for most IoT scenarios, while QoS level 0 is risky in
terms of message loss.

4 Distributed MQTT Brokers

Comprehensive feature comparison tables are available for more than 20 MQTT
brokers1. There are also MQTT plug-ins available for message brokers originally
designed for other protocols, such as RabbitMQ or Apache Kafka. However these
plug-ins may be limited in their support of MQTT features. One of the most
popular MQTT brokers is Eclipse Mosquitto (implemented in C). It supports
MQTT versions 3.1 and 5.0 and has a low footprint, but provides no multi-
threading and no native cluster support. AWS IoT and Microsoft Azure IoT
provide basic MQTT support, but lack some features [10].

For our evaluation, we selected three representative, native MQTT brokers
that provide cluster support and are available as open source (at least in feature-
reduced “community-versions”). All of them support the full MQTT version 3.1
and 5.0 protocols, SSL/TLS, and all MQTT QoS levels.

1 https://en.wikipedia.org/wiki/Comparison of MQTT implementations
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EMQX2: The Erlang/Enterprise/Elastic MQTT Broker (EMQX) started as
an open source project in China in 2013. The developers created the company
EMQ Technologies Co., Ltd. in 2017 for commercial support and services. The
company claims having more than 5,000 enterprise users and customers from
various application domains. EMQX is now available in multiple variants, as
pure open source broker (1.5M docker pulls), as Enterprise broker, and as private
cloud solution. There is also a lightweight variant (15 MB installation) called
“EMQ X Edge” for resource-constrained IoT gateways, which may interface
with KubeEdge3. The open-source variant is available under Apache License 2.0
for all major operating system and processor architectures.

HiveMQ4: The company dc-square started the development of the com-
mercial MQTT broker HiveMQ in Germany in 2012. dc-square was renamed
to HiveMQ in 2019 and created an open-source variant (Community Edition,
Apache License 2.0, 0.5M docker pulls). The company claims having more than
130 customers for HiveMQ, among them BMW with a connected car platform
and Mattenet with a platform providing the real-time flight status of drones.
HiveMQ is implemented in Java and now available as community, professional,
and enterprise edition, in addition to an IoT cloud platform variant with hourly
subscription fees. The HiveMQ DNS discovery plug-in uses DNS service discov-
ery to add or remove brokers instances to the cluster at runtime.

VerneMQ5: Octavo Labs AG from Switzerland is developing the VerneMQ
MQTT broker since 2015. It is an open-source project (Apache License 2.0, 7.1M
docker pulls) with two main developers that started after they had been working
on an energy marketplace project. They discovered that AMQP and XMPP did
not scale well enough for a large number of devices and started implementing
VerneMQ using Erlang/OTP. There are no commercial variants with licensing
fees, but the company offers commercial support around VerneMQ. There are
several featured customers, among them Microsoft and Volkswagen.

5 Analysis of Distributed MQTT Brokers

5.1 Test Infrastructure

Our testbed is a StarlingX6 all-in-one duplex bare metal installation running on
two identical servers in a redundant, high-available fashion. Each server has a
Dual Intel Xeon CPU E5-2640 v3 running at 2.60 GHz with 8x2 physical cores
(32 threads), 128 GB of RAM and Gigabit connectivity.

StarlingX v3.0 is an open-source virtualization platform for edge clusters and
runs on top of CentOS 7.6. All tested brokers run in Docker CE orchestrated by
K8s. Prometheus monitoring tools measure CPU load among other metrics. For

2 https://www.emqx.io/
3 https://kubeedge.io/
4 https://www.hivemq.com/
5 https://vernemq.com/
6 https://www.starlingx.io/
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Fig. 2: Stable throughput compared to aggregated CPU usage of all broker pods

the broker installations we used helm charts (VerneMQ 1.10.2, EMQX 4.0.5) or
public tutorials from broker vendors (Enterprise HiveMQ 4.3.2 evaluation). In
K8s, the brokers use replication controllers (HiveMQ), stateful sets (VerneMQ,
EMQX) and load balancer services (metalLB as Level 2 Load Balancer).

A dedicated node in the same Ethernet segment as the StarlingX controllers
acts as load driver (CentOS 8.1, Intel Xeon CPU E5-2660 v4 @ 2.00 GHz, 16
cores (32 threads) and 8 GB of RAM). We evaluated different load driver appli-
cations, including mqtt-stresser, paho-clients, Locust/MQTT, JMeter/MQTT
and MZBench. We decided to use MZBench7 due to a low resource footprint,
convenient Web UI allowing to monitor and export metrics, and also a possibility
to define load scenarios in a simple Benchmark Definition Language (BDL). We
utilized custom MZBench MQTT workers provided by VerneMQ8. We spawn
MQTT workers locally in a Docker CE environment on the load driver node.

In addition to metrics from Prometheus and MZBench, we used broker dash-
boards provided by brokers to validate throughput measurements. A generic
graphical MQTT client MQTTExplorer9 was also used to validate topic lists.

5.2 Performance

To obtain the metrics M1 (maximum sustainable throughput) and M2 (average
latency), we conducted experiments as described in Section 3.2.

During each experiment run, the publishers first established a defined pub-
lishing rate (e.g., 4,000 msg/s), held this for two minutes to assure stability, and
then increased the publishing rate (e.g., by 2,000 msg/s) in two minute inter-
vals. To avoid interference with background noise from other processes running
on the edge gateway cluster, we configured each broker pod to utilize at most
four CPU cores. This leaves other cores to execute edge analytics applications
or broker dashboards and provides a fair comparison between the brokers.

Fig. 2 shows the aggregated CPU utilization (y-axis) over the messaging rate
(x-axis) for the three analyzed brokers. We repeated each experiment three times

7 https://satori-com.github.io/mzbench/
8 https://github.com/vernemq/vmq mzbench
9 http://mqtt-explorer.com/
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Fig. 3: Stable throughput compared to average publisher-to-subscriber latency

Table 1: Performance Metrics
EMQX HiveMQ VerneMQ

Maximum sustainable throughput (msg/s) M1 28,000 8,000 10,000

Average latency at 1000 msg/s (ms) M2 6.4 119.4 8.7

Performance

and report the average utilizations to exclude outliers. 95%-confidence intervals
are shown as indication for variations across experiments. The figure shows the
CPU utilization curves leveling out at around 4 CPU cores per pod (2 pods per
broker). At this point the broker cannot sustainably handle the message load and
the message queues run full. We defined an instability point where the average
message consumption differs from the published messages by more than 100
msg/s. The plots only include the measurements before reaching this instability
point after which, eventually, the message broker starts to drop messages.

Our measurement confirmed that the CPU was the bottleneck in this test
scenario. Scenarios with substantially larger message payloads could however run
into network bottlenecks, while fan-in and fan-out scenarios could overwhelm
the publisher or subscriber queues. In our specific scenario, EMQX managed
the highest MST with 28K msg/s, while VerneMQ managed 10K msg/s, and
HiveMQ managed 8K msg/s. We confirmed these throughput numbers with
independent measurements by MZBench and the respective broker dashboards.
It should be noted that each broker allows for much higher message throughput
in other scenarios if provided more CPU power (e.g., uncapped CPU assignment,
and deployment to more nodes).

Fig. 3 shows the average publisher-to-subscriber latency for the same sce-
nario. Before reaching CPU bottlenecks, the average latencies are below 150 ms
for all brokers. At 28K msg/s for EMQX the bottleneck is reached, so that the
average latency quickly increases beyond acceptable levels. A similar effect is
visible for the other brokers when reaching their CPU bottlenecks.

Our scenario enables a rough performance comparison of the brokers. Table 1
summarizes the GQM metrics. The Erlang-based MQTT brokers outperform
HiveMQ, which is implemented in Java. Each broker had equally configured
message queues sizes. There may be additional configuration options to tune
each broker’s performance including broker specific and system-wide parameters.
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5.3 Scalability

Our tests showed that all evaluated brokers are multi-threaded and utilize as
many CPU cores as available on a given host (tested up to 16 cores). Thus they
support vertical scaling with more powerful CPUs. Software architects need to
define their expected workload profile in the application scenario and can then
perform capacity planning for the required number of nodes. Other authors have
conducted MQTT scalability tests with millions of connections in larger clusters
(see Section 7), demonstrating theoretically unlimited scalability (metric M3).

In an edge gateway cluster also horizontal scaling by creating additional
broker instances is possible. We minimally tested horizontal scalability, since
our testbed included only two physical servers. We configured K8s auto-scaling
for a minimum number of 2 pods (1 per node) and a maximum of 8 pods. A
CPU threshold was defined which triggered the instantiation of new pods.

Fig. 4 shows the CPU utilization per pod instance in a stacked line chart over
the course of an autocaling experiment with VerneMQ. In the experiment, one
new publisher connected every minute and added a publishing rate of 1000 msg/s
to the overall publishing rate. At the peak, the experiment had 10 publishers with
a total of 10,000 msg/s, and 10 subscribers consuming each message. Initially, 10
subscribers and 1 publisher are assigned by the load balancer to two active pod
instances. Once three publishers have connected to the broker, the pre-defined
CPU utilization threshold is crossed and K8s starts new pods.

We also observe that the load balancer assigns new connection requests to
the newly started pods, but existing connections are not shifted between pods.
Thus, the autoscaling is only effective if there are new connections. For a constant
number of connections but a higher messaging rate, the cluster cannot benefit
from autoscaling without disconnecting clients.
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Table 2: Scalability Metrics
EMQX HiveMQ VerneMQ

Maximum number of connections M3 unlimited 

(tests up to 50 mio)

unlimited 

(tests up to 10 mio)

unlimited 

(tests up to 5 mio)

Time to start new broker instance (s) M4 18.6 20.2 14.2

Container image sized (MB) 89.2 298.6 82.5

Scalability

Fig. 5: Consumption rate and number of connections during resilience test

Metric M4 is the start-up time of new broker pods, since load peaks below
this time can only be handled by vertical scaling. We measured the duration
of the transition between the “PodSheduled” and the “Ready” condition of the
pod. Table 2 shows the average time of ten pod starts, excluding the time of
downloading the container image when it is run on the node for the first time.

5.4 Availability/Resilience

We assessed resilience by modifying the scenario described in Section 3.2 to
avoid high queue lengths. The modified scenario contains one publisher (100
msg/s), two subscribers, and two broker pods (B1, B2). B1 had the publisher P
and subscriber S1 connected. B2 had subscriber S2 connected. Both subscribers
consume all messages (total consumption rate of 200 msg/s). Furthermore, the
scenario used QoS 1 and persistent sessions. We configured the broker queues to
an in-flight message queue of 1,000 and on-/offline message queue of 50,000.

After a stabilization phase of each experiment, we forcefully stopped the
broker process on B2, i.e., Java VM or Erlang BEAM VM to simulate a crash.
Subscriber S2 was expected to reconnect to B1 via the load balancer immediately,
i.e., before B2 pod is restarted by K8s. Furthermore, S2 is supposed to resume
its session, and receive messages that the broker buffered during the disconnect.

Fig. 5 shows that HiveMQ exhibits the expected behavior, resulting in zero
message loss. The dark lines show the consumption rate of 200 msg/s that is tem-
porarily disturbed due the subscriber disconnect upon broker pod B2 stopping.
We observe an immediate re-connection of S2 and a temporary consumption rate
above 200 msg/s for queued messages. Both EMQX and VerneMQ performed
unexpectedly: the temporary decrease of the consumption rate is not equalized
by a later increase over 200 msg/s. For VerneMQ also note the number of clients
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Table 3: Average Message Loss during Resilience Test
EMQX HiveMQ VerneMQ

Average messages loss in reference scenario M5 580 0 82

Resilience
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Fig. 6: CPU utilization with and without TLS encryption

constantly decreasing. We repeated each experiment three times to exclude tem-
porary distortions but arrived at the same result summarized in Table 3. This
unexpected behavior requires further investigations in future work.

5.5 Security

MQTT security can be tackled at the network level (e.g., using VPN), the trans-
port layer (e.g., using TLS) and the application layer (e.g., authentication and
authorization). In the following, we focus on the security at the transport layer.

We conducted tests using TLS encryption to measure CPU and bandwidth
overhead. We configured each broker to use TLS v1.2, where encryption was
terminated directly at the broker instance. Please note, we were not able to
connect MZBench MQTT workers to HiveMQ due to reported SSL errors. Tests
with other MQTT clients, e.g., MQTTExplorer, worked fine.

Fig. 6 shows the impact of TLS encryption on the CPU utilization for one
representative broker (EMQX). The CPU utilization levels out at the cap of four
CPU cores already at 16,000 msg/s when using TLS, compared to 28,000 msg/s
without TLS. Installing certificates on the broker was similar between all the
brokers and can be performed, e.g., by using K8s secrets mounted into the pod.
An overview of additional security features of brokers can be found in Table 4.

5.6 Extensibility

All brokers offer plug-in mechanisms for developing extensions to the basic broker
functionality. For example, plug-ins allow special authentication mechanisms or
integration with monitoring frameworks.

VerneMQ provides hooks for changing protocol flow, events, and conditional
events. Developers can write plug-ins in Erlang, Elixir, or Lua and load them
during runtime. VerneMQ also provides webhooks, where a VerneMQ plugin
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Table 4: Security Metrics
EMQX HiveMQ VerneMQ

Authentication/authorization files, database files, database, 

OAuth, LDAP

files, database

Certificate-based authentication yes yes yes

TLS version support v1.1, v1.2 v1.1, v1.2, v1.3 v1.1, v1.2

Maximum sustainable throughput (TLS off) 28,000 8,000 10,000

Maximum sustainable throughput (TLS on) 16,000 ? 8,000

Overhead of enabled TLS on MST M6 43% n/a 20%

Security

dispatches an HTTP post request to a registered endpoint. This mechanism
allows implementing extensions in any programming language.

HiveMQ plug-ins are Java JAR files and shall be integrated using depen-
dency injection (using Google Guice). HiveMQ provides more than 30 callback
types besides services to interact with the HiveMQ core (e.g., publish services
to send new messages to clients). There is also a “RestService”, which allows to
create a REST API to be consumed by other applications. The HiveMQ mar-
ketplace provides a few open source plug-ins (e.g., Prometheus monitoring) and
commercial plug-ins (e.g., HiveMQ for Kafka).

EMQX can also be extended with Erlang code, 25 plug-ins are already avail-
able from the vendor (e.g,. web dashboard, rule engine, Lua hooks, STOMP
support). Plug-ins can be loaded at runtime, and there are also webhooks avail-
able. EMQ provides 15 hooks, chaining plug-ins on these hooks is possible.

In summary, the extensibility of all brokers is deemed good. HiveMQ has the
most extensive developer guides and the most hooks, while being geared towards
Java development. VerneMQ and EMQX may have more active communities due
to their longer open source history, offer fewer hooks, and are geared towards
Erlang development.

5.7 Usability

The installation of all brokers is smooth, which allows software architects to
quickly perform experiments with their intended workloads configured in a load
driver. All of them offer Docker containers, VerneMQ and EMQX provide helm
charts for K8s. EMQX and HiveMQ are available as Amazon Machine Images.
Users can configure the brokers via files and environment variables. All brokers
provide a web-based dashboard for monitoring and troubleshooting, where con-
nected clients and performance metrics can be investigated. The dashboards of
HiveMQ and EMQX offer the most information. All brokers have command line
interfaces. HiveMQ has the most comprehensive documentation and developer
guides, including several MQTT tutorials, although the documentation of the
other brokers is also good.
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6 Architecture Decision Guidance

Fig. 7 shows a preliminary problem space modelled with ADMentor10 and in-
tended as architect decision guidance. In an enterprise IoT scenario, software
architects first (1) need to decide whether the MQTT protocol is appropriate.
This choice is beyond the scope of our paper (see [16, 21, 18]). To decide for a
clustered broker (2), a detailed specification of the expected workload profile
should be created. This includes the number of publishers, subscribers, payload
sizes, topics, expected QoS levels, publication/subscription rates,etc. Non-trivial
scenarios likely benefit from a cluster.
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Fig. 7: Architecture Decision Guidance: IoT/MQTT Problem Space
A potentially business-driven choice (3) is the selection of an open-source or

commercial MQTT broker, which may largely limit the available alternatives.
Here, it needs to be traded-off whether licensing fees, commercial support, and
advanced features are well invested compared to own development efforts and
community support.

In a containerized edge cluster, the software architect may decide (4) on the
number of required pod replicas, resource quotas, and auto-scaling parameters
(if needed at all). Another decision point is the security configuration (5). The
MQTT configuration itself is a set of fine-granular decisions based the expected
workload profile (6).

The design of the MQTT topic space may also be in control of the software
architect and there are guides available with best practices for topic spaces11.
Here, the software architect does not have discrete options.

We found that the comparably easy installation of the brokers and the avail-
ability of powerful MQTT load drivers allow software architects to quickly eval-
uate MQTT brokers for a given application scenario. If the target deployment
hardware is already available for testing, we recommend specifying the expected
workload for a given load driver (e.g., in the simple Benchmark Definition Lan-
guage of MZBench12) and then quickly running a few experiments to get a feeling
on the performance and availability to expect. This exercise has been reported by

10 https://github.com/IFS-HSR/ADMentor
11 https://pi3g.com/2019/05/29/mqtt-topic-tree-design-best-practices-tips-examples/
12 https://satori-com.github.io/mzbench/scenarios/tutorial/
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others [17, 4] and also allows familiarizing with the usability and documentation
of the brokers, which then supports making a final decision.

7 Related Work

A broad survey of IoT technologies, among them MQTT, was provided by Al-
Fuquaha et al. [1]. Several books describe the protocol, applications, and usage
scenarios in detail [13, 14, 8]. Naik [16] discusses criteria for selecting messaging
protocols, such as MQTT, CoAP, AMQP, and HTTP. Several authors compared
MQTT and CoAP [5, 22, 12].

Sommer et al. [21] specifically investigated MOM for industrial production
systems, aiming at architectural decision support. They conducted performance
tests with Mosquitto, RabbitMQ, Kafka, and JeroMQ and found the MST for
Mosquitto with different payload sizes at around 1000 msg/s on an Intel i7
Windows-PC. These tests did not involve clustered brokers. Mishra [15] com-
pared the throughput and latency of Mosquitto, BevyWiseMQTT, and HiveMQ
in a small-scale, single broker instance scenario on a Raspberry Pi, but found lit-
tle performance differences. Bertrand-Martinez et al. [2] qualitatively evaluated
different MQTT brokers according to ISO 25010 quality criteria, among them
EMQX and Mosquitto. In this scoring, Mosquitto received the highest rank due
to simplicity and lightweightness.

There are also practitioner reports of performance tests with specific MQTT
brokers: Mahony et al. [17] set up a Kubernetes cluster on AWS and deployed
VerneMQ in up to 80 nodes to open 5 million messaging connections and more
than 9500 msg/s (measured with Locust). The company Hotstar [4] evaluated
the open source MQTT brokers VerneMQ and EMQX for distributing a social
feed to mobile applications. They set the brokers up on up to 5 AWS extra-
large node instances, ran performance tests with MZBench, and reached up to
50 million connections with EMQX. The HiveMQ team [9] demonstrated up to
10 million connections to HiveMQ deployed to 40 AWS EC2 instances.

Most broker vendors provide whitepapers on performance tests with their
own brokers. HiveMQ conducted performance tests on AWS including fan-in and
fan-out scenarios. For example, in a fan-in scenario with QoS1 they achieved up
to 60K msg/s on an 8-core CPU. ScaleAgent [20] compared JoramMQ, Apollo,
Mosquitto, and RabbitMQ at up to 44K msg/s and concluded that their Jo-
ramMQ broker performed best. HiveMQ provides several customer case studies
on their website, for example BMW’s connected car scenario with 1500 msg/s
or a scenario involving 1000 connected air quality sensors with 1100 msg/s.

There are more general works related to our study: The SPECjms2007 bench-
mark [19] provided an agreed workload to test messaging systems (supermarket
chain scenario), but has been retired as of 2016. Thean et al. [23] shows Mosquitto
running in Docker Swarm. Architecture decision guidance models have been pro-
posed for example for SOA [25], cloud computing [26], and microservices [7].
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8 Conclusions

This paper analyzed distributed MQTT brokers deployed to an edge gateway
cluster. We found that EQMX showed the highest throughput with 28K msg/s,
while VerneMQ managed 10K msg/s and HiveMQ managed 8K msg/s, respec-
tively. The test scenario was intentionally limited to a maximum of eight CPU
cores). We found that the scalability of the brokers is potentially unlimited, since
they are multi-threaded and can be horizontally scaled. Only HiveMQ managed
our test scenario without message loss. All brokers have similar security features
and offer extensions in any programming language using webhooks.

Our paper provides decision guidance for software architects in enterprise IoT
scenarios. They can use the results in our paper as an orientation and quickly set
up their own experiments using the tools referenced in the paper. Researchers
can derive reference enterprise IoT scenarios from our paper, conduct additional
tests, and build constructive models for IoT messaging.

As a next step, we intend to deepen our analysis with additional metrics
and scenarios and broaden it by integrating additional messaging solutions. In
addition to StarlingX, a complementary evaluation on more resource-constrained
edge gateways is warranted. It is conceivable to construct predictive performance
models for quick forecasting and to work an automated experiment generator as
a software service utilizing cloud computing resources.
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