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ABSTRACT
Software development for industrial automation applications is
a growing market with high economic impact. Control engineers
design and implement software for such systems using standardized
programming languages (IEC 61131-3) and still require substantial
manual work causing high engineering costs and potential quality
issues. Methods for automatically generating control logic using
knowledge extraction from formal requirements documents have
been developed, but so far only been demonstrated in simplified
lab settings. We have executed four case studies on large industrial
plants with thousands of sensors and actuators for a rule-based
control logic generation approach called CAYENNE to determine its
practicability. We found that we can generate more than 70 percent
of the required interlocking control logic with code generation
rules that are applicable across different plants. This can lead to
estimated overall development cost savings of up to 21 percent,
which provides a promising outlook for methods in this class.
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1 INTRODUCTION
Software to control power production, chemical plants, or oil re-
fineries is often programmed using IEC 61131-3 programming lan-
guages and cyclically executed on real-time controllers [18]. This
IEC standard defines five programming languages, both graphical
(e.g., function block diagrams) or textual (e.g., structured text). Con-
trol engineers design and implement this kind of software based on
semi-formal requirements specifications from process experts [16].
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Nowadays, process control systems, where such software is em-
bedded, comprise million lines of code and feature a distributed
infrastructure spanning controllers, local servers, edge gateways,
and cloud-backends [23]. There are more than 140.000 process con-
trol systems installed world-wide with a total market volume of
more than 15 BUSD [13].

Despite initial tool-assisted automation, designing and imple-
menting control logic for process control systems still remains a
largely manual process involving significant human labor [16]. The
costs for this work contribute to the high engineering costs for such
systems, which are typically in the range of several hundreds of
thousands USDs for a single project, but may also go up to several
million USDs for very large installations. Some of the involved
human work is repetitive, developing similar software repeatedly,
by re-encoding known patterns. Additionally, manually translated
requirements may lead to communication problems between cus-
tomers and suppliers.

For these reasons, a higher level of automation and code gener-
ation for software applications in industrial automation is highly
desired [29]. Over the last three decades, practitioners created soft-
ware libraries to reuse functionality and tools to automatically
import list-based specifications [16]. Researchers proposed more
than a dozen methods for automated IEC 61131-3 code genera-
tion [20]. One class of methods proposes to first model the cus-
tomer requirements using UML models with automation-specific
profiles and then use code generators to create IEC 61131-3 control
logic [17, 27, 28]. However, process engineers are usually not fa-
miliar with the UML notation, and the additional notation requires
keeping models and code synchronized. Another class of methods
suggests a rule-based approach to extract knowledge required for
code generation directly out of semi-formalized customer require-
ments [12, 15, 26]. These methods have not been tested in realistic
settings, therefore their scalability and robustness are unknown.

The contribution of this paper is an analysis of the practicabil-
ity of a rule-based control logic generation approach using four
large-scale case studies. In each case we generated IEC 61131-3
control logic code from the requirements specifications of actual
industrial plants using our rule-based method called CAYENNE
(Creating Architectures for rapidlY ENgiNEering control systems).
It involves translating customer ’piping and instrumentation dia-
grams’ (P&IDs) into a topological plant model, and then executing
code generation rules expressed in a novel domain-specific notation.
The CAYENNE rule engine traverses the topological models and
identifies specific patterns of pipes and instruments that trigger
code generation rules.
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We found from the case studies that we can generate a particular
type of control logic, namely interlocking logic [22], by more than
90 percent using a rule-based approach. We expect that potentially
more than 70 percent of these rules mined in these case studies
are potentially reusable across different plants, therefore providing
great potential for code generation in future cases. We estimated
that this form of code generation could lower the efforts for require-
ments specification, control logic and process graphics engineering,
as well as testing by approximately 21 percent. This can lead to cost
savings of hundreds of thousand USD in a given project. Domain ex-
perts confirmed our findings and provided positive feedback. More
case studies may be needed to address additional corner cases and
refine the rule set.

The remainder of this paper is structured as follows. Section
2 first provides the necessary background for code generation in
industrial automation. Section 3 conceptually explains the core idea
of rule-based approaches, before Section 4 describes our particular
implementation as the CAYENNE method. Section 5 elaborates on
the case study methodology and means for data collection. Section 6
provide individual findings from each case, then Section 7 presents
cross-case findings including statistics from rule mining and esti-
mations for effort reduction. Section 8 briefly surveys related work,
before Section 9 concludes the paper.

2 CONTROL LOGIC ENGINEERING
Process control systems (PCS) automate various industrial produc-
tion facilities, such as chemical plants, power plants, paper mills,
or oil refineries. Fig. 1 shows the generic components of a process
control system. Numerous sensors for temperature, pressure, level,
and flow collect data, e.g., from tanks, heat exchangers, or turbines.
The sensors feed real-time controllers that compute control signals
for various actuators, e.g., pumps, motors, conveyor belts. Engi-
neering workstations allow programming and configuring field
devices and controllers, while supervision workstations support hu-
man operators in production monitoring and alarm management. A
PCS usually connects to a Manufacturing Execution System (MES)
managing resources and scheduling processes, as well as an En-
terprise Resource Planning System (ERP) managing accounting,
procurement, and human resources.

PCS controllers often rely on real-time operating systems, such
as Embedded Linux, FreeRTOS, or VxWorks. They cyclically execute
control algorithms written in IEC 61131-3 programming languages.
These include graphical languages (e.g., function block diagrams),
as well as textual notations (e.g., structured text). Listing 1 shows
the IEC 61131-3 Structured Text syntax similar to the Pascal pro-
gramming language in a minimal code sample, where the filling
level of a tank is kept below 50 cm by opening or closing its inlet
valve. Such control logic keeps industrial processes within safe
conditions. Control engineers compile and execute the code in a
runtime environment (e.g., CODESYS [1], TwinCAT [2]). Control
logic can include sophisticated calculations to optimize production
flow.

Control engineers design and implement control logic based
on requirements from engineering contractors. Fig. 2 depicts a
typical - albeit simplified - engineering workflow for process control
systems. An engineering contractor provides an I/O list, which

EngineeringEngineering SupervisionSupervision

EthernetEthernet

SupervisionSupervisionEngineeringEngineering

ControllerController

EthernetEthernet

ControllerController

ActuatorActuator

SensorSensor

ActuatorActuator

SensorSensor

ActuatorActuator

SensorSensor

ActuatorActuator

SensorSensor

FieldbusFieldbus

FieldbusFieldbusGatewayGateway

Remote I/ORemote I/O

Enterprise Resource 
Planning System

Enterprise Resource 
Planning System

Manufacturing 
Execution System

Manufacturing 
Execution System

Process 
Control 
System

Figure 1: Abstracted Component View of a Process Control
System

specifies the required input and output signals (analog or digital)
for sensors and actuators. If needed, control engineers implement
custom algorithms in new function blocks for special requirements
(Step 1) and add them to their function block libraries. The I/O list
can then be automatically mapped to function blocks in the library
(Step 2), which creates control logic skeletons, e.g., the variable
input and output lists of IEC 61131-3 (see Listing 1).

Listing 1: IEC 61131-3 Structured Text Code Sample
PROGRAM ValveControl

VAR_INPUT
TankLevel : REAL;

END_VAR
VAR_OUTPUT

ValveOpen : BOOL;
END_VAR

IF (TankLevel > 50.0) THEN
ValveOpen := FALSE;

ELSE
ValveOpen := TRUE;

END_IF
END_PROGRAM

Control Logic 
Skeletons

2) Instantiate 
function 
blocks

IO List

C&E Matrices

P&IDs

Logic 
Diagrams

Control 
Narratives

Function 
Block 

Library

Control Logic 
Glue code

4) Code 
Generation

6) Deployment 
& Testing

5) Create process 
graphics

Process 
Graphics

3) Implement 
glue code

1) Implement custom 
function blocks

If needed

Requirements
(Engineering 
Contractor)

Control Logic Engineering
(Automation Provider)

Semi-Auto-
mated Step

Manual Step Artifact

Library

Legend

Process Graphics Engineering 
(Automation Provider)

Figure 2: Conventional Workflow of Requirements Specifi-
cation, Control Logic Engineering, and Process Graphics En-
gineering
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Glue code then needs to be implemented manually, based on
informal logic diagrams and textual control narratives (Step 3).
Another means for glue code requirements specification are Cause-
and-Effect (C&E) matrices, which are tables linking specific signals
to specify interlocks. As an example for an interlock, the signal
representing an alarm condition in a pipe (e.g., high pressure), could
be linked to the signal for venting a vessel, so that the automation
system avoids unsafe conditions. Engineering contractors usually
specify C&E Matrices and control engineers use code generation
tools to translate their logic to IEC 61131-3 (Step 4). Finally, control
engineers complete the control logic with manual additions and
continue in the deployment and testing phase (Step 6). In parallel,
so-called piping and instrumentation diagrams (P&IDs) from the
engineering contractor serve as a visual template for a manual
specification of process graphics (Step 5), that can be later used as
HMI for human operators.

While the conventional process involves some form of code
generation already in Step 2) and 4), there is potential for additional
automation. Logic diagrams and control narratives could be turned
into more formal specifications that allow automatic processing.
C&E matrices contain a lot of interlocks following simple patterns
(e.g., if a valve is closed, shut down a preceding pump to avoid
over-pressure), but are today always specified from scratch. Finally,
P&IDs already contain substantial knowledge about the topology
of the industrial process (e.g., vessels, piping structures, control
requirements), which is today not subject to automatic processing
but only manual interpretation.

3 CAYENNE RULE-BASED ENGINEERING
The core idea of our proposed CAYENNE approach is to introduce
a rule base with domain-specific, reusable rules to automate simple,
re-occurring design and implementation tasks for control logic. A
rule engine applies pre-specified rules on the requirement docu-
ments and can thus automatically generate parts of the IEC 61131-3
code. A first instantiation of this idea in the typical engineering
workflow (Fig. 2) suggests to generate C&E matrices using infor-
mation from P&IDs thus eliminating the need to specify interlocks
from scratch for each plant.

P&IDs contain topological information needed for interlock spec-
ification and are today created with commercial CAD tools. While
engineering contractors currently often provide these drawings
only as paper printouts or PDF files, which are hard to process,
many CAD tools have recently started to support object-oriented
or table-based serialization formats (so-called “smart P&IDs”). The
DEXPI initiative [3] (Data Exchange in Process Industries) is work-
ing on a standardized XML-format for P&IDs based on ISO 15926
and is supported by all major P&ID CAD tool vendors. Version 1.3
of the DEXPI specification will be released in 2019. Such a repre-
sentation now enables knowledge extraction from smart P&IDs by
applying domain-specific rules.

Fig. 3 shows an abstracted example for the knowledge extraction.
The P&ID contains a vessel B101, pump P106, three valves (V102,
V104, V105), as well as a level sensor (LS+/B102), and a temperature
sensor (TIC/B103). Alarm limits are specified for the level sensor
B102 (not shown) indicating the allowed low and high filling levels.
A common interlocking rule is depicted on the right hand side of

Fig. 3. For CAYENNE, we have developed a streamlined grammar for
a rule specification language, which allows an efficient formulation
and communication of new rules as well as semantic checks. Rules
are specified in a generic way without referring to specific instances.
A rule engine can process an object-oriented, smart P&ID model
and potentially match each rule many times for different instances.

B101

P106

P1

P3

P2

LS+

B102

TIC

B103

V102

V104

V105

[…]

[…]

Pump

Vessel

Rule (Verbose notation):
IF a vessel has a level 

  sensor attached

  AND there is a level sensor

  „high alarm“ signal

THEN 

  close all valves 

  on pipes feeding the vessel

Rule (CAYENNE Short hand notation):
Vessel.AlarmLevelHigh

& Vessel\Pipe\Valve

=> Valve.Close

Generated IEC 61131-3 Structured Text:
IF B102_HHLimit = TRUE THEN V102_Open := FALSE;

IF B102_HHLimit = TRUE THEN V104_Open := FALSE;

Piping & Instrumentation Diagram

Figure 3: Example P&ID, domain-specific rule in verbose and
short-hand notation, and generated IEC61131-3 ST.

In the example, the rule engine identifies all vessels in the P&ID
(B101) and checks whether they have a connected level sensor
(B102) with an alarm limit specified. It then traverses the model
from the vessel via each feeding pipe (P1 and P2) to connected
valves (here: V102, V104). The rule engine can then use these in-
stance references to generate a C&E matrix linking the level sensor
alarm signal with the valve closing signal. The rule engine option-
ally generates C&E matrices as an intermediate representation to
facilitate manual review and approval by the engineering contrac-
tor, since a typical plant may contain thousands of interlocks. The
C&E matrix is then processed by a code generator to produce IEC
61131-3 code. The resulting code is depicted at the bottom of Fig. 3.

Although the engineering process appears linearly in Fig. 2 for
simplicity, in practice it is an iterative process, where the engi-
neering contractor hands over successively refined requirements
multiple times to the automation provider. When re-generating
based on updated requirements, the code generator must consider
control logic written manually in parallel. To support this, the
CAYENNE approach suggests a merging approach where the newly
generated code is compared with the existing code and lets the
control engineer review and approve any merge conflicts.

While the rule-based engineering approach is illustrated specifi-
cally for simple interlocks in the scope of this paper, it is potentially
also applicable for other parts of control logic, e.g., batch production
recipes, function block configuration parameters, and shut-down
procedures.

4 CAYENNE IMPLEMENTATION
To validate the concept of CAYENNE rule-based engineering, we
have designed and implemented a prototype tool that interfaces
with commercial CAD tools and control engineering tools. Fig. 4
shows the tool’s high-level software architecture as an UML compo-
nent diagram. To decouple the rule engine and code generation from

3
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specific serialization formats for P&ID files, we created a so-called
“Topology Model”, a meta-model that captures the most impor-
tant concepts from P&IDs for code generation [9]. The CAYENNE
tooling is implemented using C#/.NET and includes importers for
SmartPlant P&ID’s Excel export format, as well as Microsoft Vi-
sio P&ID files. An importer for DEXPI ISO15926 is still work in
progress, since the standard and serialization format are not yet
finalized.
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InterLock 

RuleEngine

«DLL»
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«DLL»
Topology Object 
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«DLL»
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F eed

Create
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Figure 4: CAYENNE prototype software architecture: static
view

Listing 2: CAYENNE Rule Specification Grammar (excerpt)
keywordPipe = 'Pipe', ['-', number], [mediatype ];

keyword = 'Valve ' | 'Conveyor ' | 'Vessel ' | 'Reactor ' | ... ;
(* plus all elements from Topology Model , see Fig. 6 *)

keynum = keyword , '-', number;

functions = 'Stop' | 'Close ' | 'Open' | 'ESD' | 'Start ' | 'Restart
' | 'Sleep ' | 'Trip' | 'Activate ' | 'Inactivate ' | 'ShutDown '
| 'InhibitPermissive ';

attributes = 'Stopped ' | 'Closed ' | 'Opened ' | '
AlarmTemperatureHigh ' | | 'AlarmTemperatureLow ' | '
AlarmPressureHigh ' | 'AlarmPressureLow ' | ...

(* plus additional attributes not depicted here *)

cause = (keyword | keywordPipe | keynum), '.', (functions |
attributes);

traversal = '->', (keyword | keywordPipe | keynum | wildCard),
connectionList;

connectionList = [('/' | '\', (keyword | keywordPipe | keynum |
wildCard), connectionList ];

action = '=>', (keyword | keywordPipe | keynum | wildCard), '.',
(functions | attributes);

rule = cause , traversal , action;

Users can edit imported topology models (Topology Object Li-
brary) in Fig. 4 using a Topology Editor or serialize them to the
AutomationML/CAEX (IEC 62714) XML file format[4] for further
processing. CAYENNE provides an Interlock Rule Engine to traverse
topology models and apply domain-specific rules from a database
to generate C&E matrices or directly IEC 61131-3 structured text
in the PLCopen XML file format [5]. The rule engine accepts rules

specified according to the domain-specific grammar in Listing 2.
The tool uses the visitor design pattern to implement the model tra-
versal by tracing the piping and instrumentation structure imported
from P&IDs. Users can configure pre-defined rule sets as well as
specify new project-specific rules using a textual Rule Editor. We
implemented the rule grammar as well as semantic checks using
the Irony .NET language implementation kit [6].

Fig. 5 depicts a simplified view of the CAYENNE topology model
class hierarchy. It contains vessels, sensors, controllers, flow objects,
termination points and actuators and thus can express most ele-
ments typically used in plant engineering. An instance of the model
derived from an object-oriented P&ID specification includes con-
nections between the elements (i.e., material flow and information
flow) as well as numerous properties and references to graphical
shapes and coordinates. Users of the CAYENNE rule engine can
refer to any element from the topology model when defining new
rules.

Standard 
Topology 
Element

Standard 
Topology 
Element

VolumeVolume SensorSensor ControllerController ActuatorActuatorFlow ObjectFlow Object

Continuous 
Sensor

Continuous 
Sensor

SwitchSwitch

Temperature 
Sensor

Temperature 
Sensor

Level SensorLevel Sensor

Flow SensorFlow Sensor
Pressure 
Sensor

Pressure 
Sensor

VesselVessel

Heat
Exchanger

Heat
Exchanger

FlowHeaterFlowHeater

Pid
Controller

Pid
Controller

ApcFunctionApcFunction

PipePipe

JunctionJunction

NozzleNozzle

TerminationTermination

SourceSource SinkSink

HeaterHeater ValveValve

MotorMotor PumpPump

Figure 5: CAYENNE Topology Model (simplified): target for
P&ID import, basis for rule language grammar and rule im-
plementation.

TheCAYENNE tooling also includes a prototypical process graph-
ics generator, and a simulation generator for factory acceptance
tests (FAT). The former interfaces with a commercial tool for pro-
cess graphics engineering, where additional details can be added
manually. The latter generates Modelica [7] files and interfaces with
OpenModelica [8] to execute low fidelity plant simulations [9].

5 CASE STUDY METHODOLOGY
5.1 Goal/Question/Metric
We formulated the main goal for evaluating the CAYENNE rule-
based approach using theGoal-Question-Metric (GQM) template [10]:
“Determine (purpose) the practicability (issue) of a rule-based con-
trol logic generation approach (object) for a process engineer (view-
point) in the context of designing interlocks for automation of
industrial plants”. A secondary goal was to create an initial rule set
for testing and later refinement.

Fig. 6 shows the questions and corresponding metrics we de-
fined in order to achieve the main goal. M1 simply provides the
fraction of interlocks that could be generated with the CAYENNE
rule language, compared to interlocks that would require different
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Question RQ1 How suitable are rules to generate control logic?

Metric M1 Percentage of generatable interlocks from rules in a given case

Question RQ2 How reusable are rules for control logic generation?

Metric M2 Percentage of rules classified as 'generic'

Metric M3 Percentage of rules generating multiple interlocks

Metric M4 Percentage of rules generating interlocks in more than one case

Question RQ3 How much engineering efforts can be saved?

Metric M5 Percentage of estimated engineering effor savings

Question RQ4 How do practitioners perceive the usefulness?

Metric M6 [Qualitative Feedback from Domain Experts]

Goal: Determine practicability of rule-based approach for process engineer

Figure 6: GQMmodel for CAYENNE Validation

means for rule specification. Our target value for M1 was 70 per-
cent, because the approach may lack user acceptance in case it only
addressed a low fraction of interlocks.

M2-M4 characterize the reusability of the derived rules. M2 quan-
tifies our own categorization of rules into ’generic’ and ’process-
specific’ rules, with the expectation that 90 percent of the rules
will be reusable. This value must be high, since unique rules may
not contribute to effort savings. M3 states how many rules gen-
erated multiple interlocks, even if that occurred only in a single
case (target: 90 percent). Finally, M4 provides the fraction of rules
that already generated interlocks in multiple of our case studies,
thereby validating their reusability.

Research question RQ3 asked for the efforts savings from the
code generation approach. For M5, we rely on effort estimations
taking the results of M2-M4 into account, since we have not yet
applied the rules in a new project to actually measure the effort
savings. Finally, RQ4 closes the loop with practicing process engi-
neers and asked for feedback regarding the perceived usefulness of
the approach. To obtain values for the defined metrics, we executed
four case studies following guidelines for case study research [24].

5.2 Case Sampling
We conducted a purposive case sampling augmented with conve-
nience sampling [19]. ABB business units provided P&IDs and C&E
matrices from four production plants. External engineering con-
tractors had created these specifications manually and ABB had
developed control logic and process graphics for these plants based
on them. The specifications were three to six years old. In the mean-
time, each of the plants had been erected and was in production.
Our case studies were thus post-mortem analyses to determine how
much manual work could have been automated with a rule-based
approach.

Due to the business sensitivity for the plant owners, the specifi-
cations are subject to numerous non-disclosure agreements (NDA)
and the artifacts reside in various local storages. Therefore, we let
our ABB business units select cases they considered relevant and
interesting for code generation. From these, we selected cases rep-
resenting different application domains (e.g., chemical production,
oil refineries) to explore cross-case rule applicability.

5.3 Data collection
We divided our data collection into two phases:

Phase 1: Rule mining. For the four cases, the domain experts,
who provided the original specifications for the plants’ interlocks,
were largely unavailable (i.e., coming from different companies,

now working on different projects). Hence, we decided to perform
the rule mining ourselves by analyzing the patterns underlying
the specified interlocks. The originally specified interlocks in the
respective C&E matrices serve as the ’ground truth’ for the rule-
based generation.

1) Analyze 
interlock 
elements

C&E Matrices

for each interlock

2) Analyze 
traversal 
pattern

P&IDs

for each interlock

Cause:
Condition,
Instrument

Effect:
Action, 

Instrument

Plant 
Topology 
Traversal

3) Create generic 
interlocking rule

4) Add to Rule 
Database

Interlocking 
Rule

Rule 
Database

Phase 1: Rule Mining

Figure 7: Phase 1: Rule Mining

Fig. 7 shows the four steps of our rule mining (Phase 1). In
Step 1), we first analyzed the interlock elements specified in the
C&E matrices of each case. For each interlock, we identified the
cause including an instrument and a condition as well as the effect
including a list of instruments and actions. For example, the low-
level alarm condition of a sensor on a tank would cause the stopping
of a pump on the tank outlet as an effect. In Step 2), we located both
instruments in the corresponding P&IDs and determined the plant
topology traversal path between causing instrument and effecting
instrument. In the previous example, this would be the traversal
path between the tank and the pump. In Step 3), we expressed the
traversal path in terms of elements of the topologymodel abstracted
from concrete instances. In Step 4), the triple of cause, traversal,
and effect either matched with an existing interlocking rule, or we
created a new rule and added it to our rule database.

Phase 2: Rule validation. In this phase (not depicted here), we
executed an additional rule validation. In Step 5), we first manually
re-drew the original PDF-based P&IDs using Microsoft Visio to
have smart P&IDs as input. Note that the redrawing step is for
research purposes only and once XML-based export formats for
P&IDs are available, this step can be omitted, and the exported XML
files can be directly imported into a topology model. In Step 6), the
Visio P&IDs were mapped into a topology model based on CAEX
using a self-implemented importer tool. In Step 7), the CAYENNE
rule engine applied the rules from the developed rule database in
phase 1 on the topology model. This results in an automatically
generated C&E matrices, which get compared against the original,
manually-specified C&E matrices in Step 8).

6 CASE ANALYSIS
6.1 Overview
Table 1 characterizes the four analyzed cases.

The specifications of each plant included input/output (IO) lists
with 400 - 7000 IO points, i.e., digital/analog input and output
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signals. According to Forbes and Clayton [13], systems with 900-
2300 IO points are considered ‘medium-sized’ (45 percent of the
overall market), while systems with more than 2300 IO points are
considered ‘large-sized’ (16 percent of the overall market).

Property P
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n
t 

1
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la
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P
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n
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4

I/O points 1000 4000 400 7000

P&ID notation ISO ISA ISA ISA

P&ID native file format .dwg .dwg ? ?

Number of P&IDs available 50 116 8 134

Number of P&IDs analyzed 10 23 8 12

Number of vessels in analyzed P&IDs 18 23 8 4

Number of pumps in analyzed P&IDs 9 27 13 12

Number of C&E matrices available 12 9 1 54

Number of C&E matrices analyzed 2 7 1 ~30

Number of analyzed interlocks 125 58 100 89

Number of rules to generate interlocks 28 14 19 21

Number of rules for regular equipment 19 14 8 21

Number of rules for special equipment 9 0 11 0

Table 1: Properties of the analyzed cases.

P&IDs were available for the cases either in the ISO 10268 or
ANSI/ISA 5.1 notations. Their native file format was AutoCAD
drawing (.dwg), but all files were available as PDF exports only.
The number of available P&IDs per case ranged corresponding to
their size (e.g., in the small-sized Plant 3, we had 8 diagrams, while
we had 134 diagrams for the large Plant 4). We scoped our analysis
to those diagrams that represented the main material flow of the
underlying process and suggested the biggest learning effects for
rule mining. The selected P&IDs per plant contained 4-23 vessels
(i.e., tanks and heat exchangers) and 9-27 pumps.

Each case had hundreds to thousands of interlocks specified
in C&E matrices. The C&E matrices also contained versioning
information as well as free text annotations, which however did
not affect the interlock behavior. We found several typing errors,
where signal references were misspelled, as well as inconsistencies
between the P&IDs and the C&E, where tags specified in the C&E
were missing in the referenced P&ID. These specifications were
meant for manual interpretation, where humans can compensate
for errors to some extent. For a fully automated interlocking tool
chain these documents would need to be specified according to
standards (e.g., ISO 15926) and validated for consistency.

We did not analyze all of the thousands of interlocks in detail,
but selected between 50-100 interlocks per case corresponding
to the main material flow to achieve a representative coverage.
We classified the equipment in the cases into regular equipment
(e.g., pumps, valves, pipes, heat exchangers, controllers) and special
equipment (e.g., conveyors, power units, special vessel features).
Rules involving special equipment (also see Table 2, column 4)
may have lower reusability across plants. Thus, this classification
provides a rough measure for the uniqueness of the plant under
analysis.

In the following subsections, for space reasons we discuss find-
ings for two selected cases (Plant 2 and 3), before summarizing the
results of the overall rule mining in Section 7.

6.2 Plant 2
Plant 2 is chemical plant from South America The plant automation
includes more than 4000 IO points. The case included 116 P&IDs,
which however were not all relevant for interlocking logic. The
P&IDs included detailed specifications for the involved vessels (e.g.,
diameters, volume, operating conditions) as well as alarm limits and
interlock references. They also included complex piping structures.
Over the course of 2.5 years, the P&IDs had gone through multiple
revisions. The process featured various replicated equipment, e.g.,
duplicated vessels or duplicated pumps.

The interlocking logic specification consisted of nine C&E ma-
trices. These included a high number of permissives and inhibits,
which specify the starting conditions for the whole process. Instead
of only linking signal references using boolean logic, the matrices
contained ‘actions’ as cell entries, e.g. stopping a pump or closing
a valve. From the C&E matrices we selected only entries related to
measurement instruments, which are considered interlocks during
operation, while the permissives and inhibits rather pertain start-up
and shut-down procedures.

For deriving the interlocking rules of the 58 selected interlocks,
we had to analyze 23 of the 116 P&IDs. Despite several complex
piping structures most of the interlocks could be mapped to simple
interlocking rules. We created a new interlocking rule for anti-surge
control of compressors in this plant. Fig. 8 shows the (simplified)
P&ID structure this rule was based on. When valve V1 opens the
corresponding check valve V2 needs to close. However, a generic
rule should not match any two valves on connected pipes in the
plant, but only match those valves on an outlet of a compressor.
So the rule created for this case first starts a topology traversal
from the cause V1 and checks whether a controller and compressor
is connected. Then, it traverses in the opposite direction of the
material flow back to a junction point, where the material flow is
inverted. Afterwards, it matches the first valve on this outflow.

Compressor 
C100

V1 V2

C001
Cause Effect

Figure 8: Example for a non-trivial traversal pattern from
plant 2 between cause (valve V1) and effect (valve V2).

While such a traversal initially appears to be a rather special
occurrence, the rule is applicable 14 times in plant 2. It is applied
for multiple times for each outlet of compressor and there are
two such compressors in the plant segment. Furthermore, the rule
is triggered by other causes (e.g., level and temperature sensors),
which open valve V1. The underlying traversal pattern is typical
for anti-surge control in industrial compressors and therefore not
plant-specific [21].

All analyzed interlocks in plant 2 could be generated with rules.
This plant did not include any special equipment, but for one com-
plex piping structure we needed a special rule that we classified as
process-specific.
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6.3 Plant 3
Plant 3 is an oil refinery plant from the Middle East. The process
consists of twomain steps, a dehydration and a subsequent desalting
of crude oil. The products of this separation process are refined
oil, natural gas, and water. Special types of vessels are used in the
process that are supplied by electrical power units to drive the
electrostatic separation process. In addition, different chemicals
are used in the process to avoid clogging of pipes and reduce the
amount of dissolved oxygen from the crude oil. The automation of
the process includes about 400 IO points. The main refinery process
is captured in 8 P&IDs of which 6 were analyzed in detail.

The interlocks for the case were captured in a single C&E matrix
with roughly 40 causes and 30 effects and a total of 180 C&E entries.
75 of these interlocks were related to the handling of severe failures,
such as a plant power failure or an emergency shutdown of the plant.
Furthermore, 4 interlocks were triggering an acoustic alarm in case
one of the dosing tanks of the additionally supplied chemicals raises
a high-level alarm. We decided to exclude the C&Es for these two
categories and focused on the process-relevant interlocks. In sum,
these were 100 remaining interlocks, with causes being alarms or
failure events of process equipment as well as effects being either
tripping events for pumps and power units, closing of controlled
valves, or inhibits for the startup of a device.

After manually studying the P&IDs and understanding the flow
of the different materials involved, the definition of rules showed
to be rather straightforward. The piping at first seemed more com-
plicated than it actually was, e.g., because of the large number
of redundant connections between the separation vessels and the
water drain system. Due to the fact that a separator vessels is a com-
bination of a vessel and an electrically powered actuator, multiple
C&Es had an emergency shutdown procedure of the separator as
an effect. To capture this special type of cause, new rules had to be
added. Besides these special cases, a number of generic pump/vessel-
related rules of the previous plant cases could be reused. A few
new pump/vessel-related rules were added which are specific to the
refinery process, although, they only involve regular equipment.
Fig. 9 shows a case that occurred eight times in the plant and could
be expressed by a single, yet non-trivial, rule. Here, a high-pressure
alarm of a sensor causes the stop of the water pumps feeding into
the material flow before a vessel.

Cause

Effects

Natural Gas

PI

001

P‐208

Crude Oil

P1

P2

Crude Oil

water

water

crude oil gas

crude oil

V001

Figure 9: Example for a non-trivial traversal pattern from
plant 3 between cause (sensor PI1) and effect (pumps P1/P2).

While this traversal seems complicated first, the key to the rule
definition was to limit the matching of pipes with specific media
types.

Out of the 100 interlocks of plant 3, we found 6 interlocks which
we were not able to formulate adequate rules. We would have
immediately caused false positives, meaning that the rules would
have resulted in new interlocks that were not part of the original
C&E matrix of the plant. The remaining 94 interlocks could be
generated from only 19 rules. 14 of these rules were specific to
plant 3, with 10 of them being specific to the power units supplying
the separator vessels. While this could be considered a special
equipment, compared to the other plants, it is a common type of
equipment for oil refineries in general.

7 CROSS-CASE FINDINGS
7.1 Mined Rule Set
Table 2 provides an overview of the 92 CAYENNE rules mined in
the four case studies from which we generated 336 interlocks in
total. The actual rules are not shown for brevity and confidentiality
reasons in case of process-specific interlocks. The table sorts the
rules according the instrument that represented the cause for an
interlock. There are rules for different sensors (e.g., for flow, level,
position, pressure, temperature), while other interlocks are caused
by actuators (e.g., valves, pumps, switches).

We classified the rules into 55 ’generic’ and 37 ’process-specific’
rules, where the latter referred to rules with traversal clauses con-
taining more than three elements. We expect that the generic rules
are applicable for different cases, even if that did not occur in the
four heterogeneous cases we analyzed, as they represented differ-
ent processes. However, their traversal patterns follow plausible
physical principles and could therefore occur similarly even for
different kinds of plants if similar equipment is involved.

The table shows the number of times a rule applied for each case,
rules that matched many times are highlighted in green for easier
identification.

7.2 Effectiveness
Table 3 depicts the metrics M1-M4 measuring the effectiveness of
the rules-based approach to answer RQ1 and RQ2. M1 indicates that,
on average, 97% of the analyzed interlocks could be generated with
rules. The evaluated cases contained only few interlocks that are
beyond the current expressiveness of the CAYENNE rule language.
This result was above our target level of 80% and thus exceeded our
expectations.

M2 shows that on average we classified 73% of the rules in each
as ’generic’ while 27% were ’process-specific’. This means that
most of the rules have simple and straightforward causes, effects,
and traversal patterns, which increases the probability of being
reusable across different plants. However, 73% of generic rules lies
below our target level of 90%. A process or knowledge engineer
would need to invest some time in defining new rules or manually
specifying interlocks to address the remaining 27% given a new
plant specification to account for process specifics. M2’s value of
73% may however motivate the need for more case studies or pilot
projects to extend the rule base.

M3 indicates that 68% of the 91 rules generated multiple inter-
locks. This includes cases where a rule applied multiple times for a
single plant specification (e.g., if there are multiple similar pumps
in the same plant). Using rules instead of manual specification is
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SUM

Flow FFHH1 Generic Special  Equipment 2 0 0 0 2

Flow FFLL1 Generic Special  Equipment 2 0 0 0 2

Flow FSLL1 Generic Regular Equipment 2 0 0 0 2

Level LSHH1 Generic Regular Equipment 3 4 0 0 7

Level LSHH2 Process-specific Regular Equipment 1 0 0 0 1

Level LSHH3 Generic Regular Equipment 0 2 18 4 24

Level LSHH4 Generic Special  Equipment 0 0 4 0 4

Level LSHH5 Process-specific Special  Equipment 0 0 2 0 2

Level LSHH6 Generic Regular Equipment 0 8 0 0 8

Level LSHH7 Generic Special  Equipment 1 0 0 0 1

Level LSLL1 Generic Regular Equipment 1 4 14 8 27

Level LSLL2 Generic Regular Equipment 2 1 1 0 4

Level LSLL3 Generic Regular Equipment 3 0 0 0 3

Level LSLL4 Process-specific Special  Equipment 1 0 0 0 1

Level LSLL5 Process-specific Regular Equipment 1 0 0 0 1

Level LSLL6 Generic Regular Equipment 0 2 0 0 2

Level LSLL7 Generic Special  Equipment 0 0 4 0 4

Level LSLL8 Generic Special  Equipment 0 0 4 0 4

Level LSLL9 Generic Special  Equipment 0 0 4 0 4

Level LSLL10 Process-specific Regular Equipment 0 0 2 0 2

Level LSLL11 Generic Regular Equipment 7 0 0 0 7

Level LSLL12 Generic Regular Equipment 4 0 0 0 4

Level LSLL13 Generic Regular Equipment 2 0 0 0 2

Position ZSL1 Generic Special  Equipment 4 0 0 0 4

Position ZSR1 Generic Special  Equipment 4 0 0 0 4

Pressure PSHH1 Generic Regular Equipment 1 0 0 0 1

Pressure PSHH2 Generic Regular Equipment 0 8 0 0 8

Pressure PSHH3 Process-specific Regular Equipment 0 1 0 0 1

Pressure PSHH4 Process-specific Regular Equipment 0 2 0 0 2

Pressure PSHH5 Process-specific Regular Equipment 0 0 8 0 8

Pressure PSHH6 Generic Regular Equipment 0 0 4 5 9

Pressure PSHH7 Generic Special  Equipment 0 0 2 0 2

Pressure PSHH8 Process-specific Regular Equipment 0 0 0 6 6

Pressure PSHH9 Process-specific Regular Equipment 0 0 0 6 6

Pressure PSHH10 Process-specific Regular Equipment 0 0 0 2 2

Pressure PSHH11 Process-specific Regular Equipment 0 0 0 4 4

Pressure PSLL1 Generic Regular Equipment 0 1 2 4 7

Pressure PSLL2 Generic Regular Equipment 0 5 0 1 6

Pressure PSLL3 Generic Regular Equipment 0 2 0 0 2

Pressure PSLL4 Process-specific Regular Equipment 0 0 0 6 6

Pressure PSLL5 Process-specific Regular Equipment 0 0 0 6 6

Pressure PSLL6 Process-specific Regular Equipment 0 0 0 2 2

Pressure PSLL7 Process-specific Regular Equipment 0 0 0 4 4

Pressure PSLL8 Process-specific Regular Equipment 0 0 0 4 4

Pump JI1 Generic Regular Equipment 1 0 0 0 1

Pump JI3 Process-specific Special  Equipment 1 0 0 0 1

Pump JI4 Process-specific Special  Equipment 1 0 0 0 1

Pump JI5 Generic Special  Equipment 6 0 0 0 6

Pump JI6 Generic Regular Equipment 0 0 6 0 6

Pump JI7 Process-specific Regular Equipment 0 0 0 1 1

Pump JI9 Generic Special  Equipment 2 0 0 0 2

Pump JI10 Process-specific Special  Equipment 1 0 0 0 1

Pump JI11 Process-specific Special  Equipment 2 0 0 0 2

Pump JI12 Process-specific Special  Equipment 1 0 0 0 1

Speed SSLL1 Generic Special  Equipment 6 0 0 0 6

Switch HS1 Generic Special  Equipment 4 0 0 0 4

Switch HS2 Generic Special  Equipment 0 0 4 0 4

Switch HS3 Generic Special  Equipment 0 0 4 0 4

Switch HS4 Generic Special  Equipment 0 0 2 0 2

Switch HS5 Generic Special  Equipment 1 0 0 0 1

Switch HS6 Process-specific Special  Equipment 2 0 0 0 2

Switch HS7 Process-specific Special  Equipment 1 0 0 0 1

Switch HS8 Process-specific Special  Equipment 1 0 0 0 1

Switch HS9 Generic Special  Equipment 1 0 0 0 1

Switch HS10 Generic Special  Equipment 2 0 0 0 2

Switch HS11 Generic Special  Equipment 4 0 0 0 4

Switch HS12 Generic Special  Equipment 2 0 0 0 2

Switch HS13 Generic Special  Equipment 2 0 0 0 2

Switch HS14 Generic Special  Equipment 4 0 0 0 4

Switch HS15 Generic Special  Equipment 2 0 0 0 2

Switch HS16 Generic Special  Equipment 1 0 0 0 1

Temperature TSHH1 Generic Regular Equipment 0 0 0 0 0

Temperature TSHH2 Process-specific Regular Equipment 1 0 0 0 1

Temperature TSHH3 Process-specific Regular Equipment 1 0 0 0 1

Temperature TSHH4 Generic Special  Equipment 0 0 4 0 4

Temperature TSHH5 Generic Regular Equipment 0 4 0 0 4

Temperature TSHH6 Process-specific Regular Equipment 0 0 0 1 1

Temperature TSHH7 Process-specific Regular Equipment 0 0 0 1 1

Temperature TSHH8 Process-specific Regular Equipment 0 0 0 1 1

Temperature TSLL1 Process-specific Regular Equipment 1 0 0 0 1

Temperature TSLL2 Generic Regular Equipment 1 0 0 0 1

Transformer TR1 Generic Special  Equipment 0 0 4 0 4

Valve YS1 Generic Regular Equipment 8 0 0 0 8

Valve YS3 Generic Regular Equipment 1 0 0 0 1

Valve YS5 Process-specific Regular Equipment 1 0 0 0 1

Valve YS6 Process-specific Regular Equipment 7 0 0 0 7

Valve YS7 Process-specific Regular Equipment 5 0 0 0 5

Valve YS8 Generic Regular Equipment 0 14 0 0 14

Valve YS9 Process-specific Regular Equipment 0 0 0 1 1

Valve YS10 Process-specific Regular Equipment 0 0 0 1 1

Valve YS11 Generic Regular Equipment 0 0 0 1 1

Valve YS12 Generic Regular Equipment 0 0 0 1 1

115 58 93 70 336

48 14 19 22 103

10 0 7 19 36

92% 100% 93% 79% 91%

86 55 81 24 246

75% 95% 87% 34% 73%

Sum of interlocks generated with rules:

Number of  rules applied:

Interlocks without rules defined (unclear/complicated): 

Percentage of intelocks addressed by rules

Sum of interlocks generated with "generic" rules:

Percentage of intelocks addressed by "generic" rules

Table 2: Results fromRuleMining: Categories of rules, short
reference, classification, equipment types, number times
rules applicable per plant.
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M1 % of interlocks that 

can be generated with 

rules

80% 91% 92% 100% 93% 79%

M2 % of rules classified as 

"generic"

90% 73% 75% 95% 87% 34%

M3 % of rules generating 

multiple interlocks

90% 68%

M4 % of rules matching in 

multiple cases

50% 7%

Table 3: Metrics M1-M4 collected from the Case Studies

only justified if a rule is used multiple times, otherwise the effort
to construct the rule is higher than simply defining the interlock
directly. Most of the rules matching only once were also classified
as ’process-specific’. However, it is likely that M3 would increase
in case more specifications were analyzed, which would provide a
higher chance of their reuse.

For M4, we found that only 7% of our 91 rules were applicable
for more than one of our analyzed cases, which was way below
our target level of 50%. However, while there were only few such
rules, they actually matched a high number of times. These rules
refer to ’traversal patterns’ that occur often, thus they reduce the
manual effort significantly. We conjecture that the low value for M4
is also caused by the heterogeneity of our four cases, which both
lie in different industrial automation domains and contain different
kinds of equipment. Analyzing more similar cases (e.g., plants for
similar production processes) could lead to a higher number of
rules matching in multiple cases. Furthermore, domain experts
for specific processes may specify more reusable rules from their
experience.

7.3 Estimated Effort Reduction
For estimating the effort reduction (RQ3) of the CAYENNE rule-
based approach compared to a conventional state-of-the-art ap-
proach, we relate back to the workflow depicted in Fig. 10. Each
of the artifacts in the figure requires efforts from the engineering
contractor or automation provider. We show the estimated distri-
butions of these efforts on a percentage scale in Fig. 10, left column.
For example, the engineering contractor’s specification of an IO list
may take around 8% effort of the overall activities, while the P&ID
specification would require 17%. We do not express the efforts in
person hours or costs, since there are vastly different project sizes
as well as local salaries.

The column on the right hand side of Fig. 10 shows the estimated
effort distribution taking the CAYENNE rule-based approach into
account. The new process does not alter the creation of I/O lists,
P&IDs, logic diagrams, or control narratives, therefore these efforts
remain constant. Based on our case study results (M1-M4), the
efforts for the creation of C&E matrices could get reduced by 80%
(i.e., from 8% of the total effort to 2%). A full elimination of the
manual work for this step is unlikely, since there will still be several
special interlocks to be specified manually in each case, there is the
need for manually customizing the rule base before applying the
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rules, and the generation results need to be reviewed and approved
manually as before for safety reasons.
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Figure 10: Estimated Effort Reduction for Engineering

Creating the control logic could be reduced by around 15% (i.e.,
from 28% to 24%). Interlocks comprise up to 30% of the overall con-
trol logic, which for example also include PID loops, sequences, and
monitoring functions. For these 30% we estimate an effort reduc-
tion of up to 50% based on the case studies. As the rule-based code
generation covers a large portion of the interlocking control logic,
there is a reduced need for manual implementation. The generation
based on tool-validated smart P&IDs also removes the potential
for inconsistencies in the specifications, which often lead to time-
consuming feedback cycles between ‘engineering, procurement,
and construction’ contractors (EPC)s and automation providers.

The efforts for process graphics creation could be reduced by
around 50% (i.e., from 14% to 7%) due to generation from smart
P&IDs instead of manual specification. Finally, the efforts for de-
ployment and testing get reduced by 20% (i.e., from 14% to 11%),
since the automatic code generation reduces the potential for man-
ual errors and shifts testing to systematic errors in the generation.
Overall, the efforts reduction sums up to around 21%, which means
a project where these activities cost 500 KUSD could potentially
save 105 KUSD.

7.4 Domain Expert Feedback
We discussed our case study results with five domain experts, who
are regularly involved with requirements specification and control
logic engineering for the targeted production processes. All domain
experts deemed the CAYENNE rule-based approach as potentially
useful and supportive for their work, because it automates specific
manual steps. The domain experts emphasized the safety criticality
of interlocks, which requires careful manual review and formal
approval by safety experts. The generation process must respect
this context and provide the involved engineers detailed feedback
on the generation and allow humans to override the rule engine if
needed. An engineering contractor wants to retain full control of
the interlock specification due to the involved safety accountability.

The domain experts also pointed out that some rules may need
more refinement. For example, a rule checking for an overflow tank
may require taking the severity level of the tank into account. A
simple non-critical water tank would need a different treatment
than a tank dealing with acids, which may harm equipment and
humans, and thus potentially not require the same interlocks. They
also raised concerns that a rule-based generation could end up in
“too many” interlocks if the rule base was not carefully configured,
which a human engineer would have not specified due to experi-
ence. Furthermore, they mentioned that there might be additional
interlocks that may be hard to capture with the current rule spec-
ification language. Nevertheless, the domain experts encouraged
extensions, refinements, and additional case studies.

7.5 Result Validity
We discuss the construct, internal, and external validity of our case
studies. The construct validity refers to the appropriateness of the
artifacts and procedures in the case studies to resemble realistic
settings. In our case, the construct validity is supported by the use
of real plant specifications for non-trivial production plants. We did
not use customer-specified smart P&IDs so far due to missing tool
support, but created according ones based on the original P&IDs in
MS Visio.We had researchers carrying out the rule specification and
execution of the rule engine, which are not the actual target users.
However, we used iterative domain expert feedback to improve the
design of the rule language and tooling.

To assure internal validity, we compared the interlocks gener-
ated with the rule-based approach with formerly manually specified
interlocks in C&E matrices. This provides an initial validation of
our rule engine. However, when the approach and the rule set is
extended with more features and additional rules, a more system-
atic testing for false positives, contradicting rules, and possibly
redundant rules is required.

The external validity refers to the transferability of the results
to other situations. To improve the external validity, we analyzed
four different cases and found that a number of generated inter-
locks apply across different plants (Metric M3). Still, more cases in
additional application domains need to be analyzed to improve the
external validity further. It would also be helpful to focus a future
study on multiple more homogeneous plant specifications (e.g., 10
processes specifically for carbonic acid production), which could
provide a refined view of ’generic’ and ’process-specific’ rules.

8 RELATEDWORK
Automated code generation is one element of model-driven soft-
ware development, which has been researched in general software
engineering [25], as well as specifically for industrial automation
software applications [20, 29, 30].

Researchers proposed several methods for rule-based control
logic generation. Drath and Fay [12] generate C&E matrices from
AutomationML files, which can include P&ID-related information.
Steinegger et al. [26] follow a similar approach, but take more kinds
of requirements specifications into account and generate control
logic for different purposes. Grüner and Epple [15] use the Neo4J
graph database to represent a plant topology and generate control
logic using graph queries. None of these approaches was applied in
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larger case studies nor featured a custom-designed rule language
as the CAYENNE method.

Researchers have also worked on methods to generate IEC 61131-
3 control logic from UML diagrams instead of smart P&IDs [20]. This
requires formulating EPC requirements using UML, which goes
against current practices, as process engineers are not familiar with
the UML notation. Vogel-Heuser et al. [28] implemented code gener-
ators from UML class and activity diagrams for a commercial CASE
tool. Thramboulidis and Frey [27] sketched a model-driven develop-
ment process using P&IDs and SysML to generate IEC 61131-3 code.
Hästbacka et al. designed an UML Automation profile to express
EPC requirements in UML and generated IEC 61131-3 code from the
UML models. These approaches require an intermediate UML rep-
resentation, while the CAYENNE approach directly extracts control
logic code out of EPC requirements.

Automated model or code generation from natural language re-
quirements is another area of software engineering research. As the
requirements for software applications are mostly formulated in
natural language instead of semi-formal notations, such as C&E ma-
trices, it is much harder to use them in a code generation tool chain.
Gelhausen and Tichy [14] generate UML models from constrained
natural language representations. Deeptimahanti et al. [11] imple-
mented a tool for the generation of UML models by identifying
classes and stereotypes in natural language specifications. These ap-
proaches are mostly constrained by the capabilities of information
retrieval and text mining techniques.

9 CONCLUSIONS
This paper has reported on findings from four case studies, where
the rule-based CAYENNE approach automatically generated IEC
61131-3 control logic by analyzing formal requirements documents
(P&IDs). We have mined more than 90 code generation rules from
the cases to assess the practicability of rule-based generation ap-
proaches in general. The results indicate that potentially more than
70 percent of the interlocking logic could be generated from rules
that are applicable across plants, although our study has demon-
strated this only to a lesser extent due to the heterogeneity of the
analyzed cases. The cost savings potential was estimated to be
approximately 21 percent.

Practitioners can utilize the results to implement their own rule-
based generation approaches taking into account the expected cost
savings. Furthermore, due to the promising results, they could moti-
vate their customers to utilize standard notations for requirements
specification, such as the DEXPI ISO 15926 format for P&IDs. Re-
searchers can extend existing methods or devise new methods for
rule-based control logic generation. Interesting areas of research
are for example code generation rules for other parts of control
logic, beyond interlocks. Topological models derived from smart
P&IDs can also be exploited for simulation, HMI generation, or
training operator assistents.

As future work, we will enhance and extend the CAYENNE
approach to increase its technology readiness level. An importer for
the DEXPI ISO 15926 will enable processing P&IDs from all major
CAD-tools. Additional case studies target extending and refining
the mined rule set. Investigating more similar plants could yield

tailored rule sets for specific domains. Rules need to be established
for other kinds of control logic to save more engineering costs.
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