
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Rule-based Code Generation in Industrial Automation:
Four Large-scale Case Studies applying the CAYENNE Method

Heiko Koziolek, Andreas Burger, Marie
Platenius-Mohr, Julius Rückert, Hadil Abukwaik

heiko.koziolek@de.abb.com
ABB Corporate Research Center Germany

Ladenburg

Raoul Jetley, Abdulla PP
ABB Corporate Research Center India

Bangalore

ABSTRACT
Software development for industrial automation applications is
a growing market with high economic impact. Control engineers
design and implement software for such systems using standardized
programming languages (IEC 61131-3) and still require substantial
manual work causing high engineering costs and potential quality
issues. Methods for automatically generating control logic using
knowledge extraction from formal requirements documents have
been developed, but so far only been demonstrated in simplified
lab settings. We have executed four case studies on large industrial
plants with thousands of sensors and actuators for a rule-based
control logic generation approach called CAYENNE to determine its
practicability. We found that we can generate more than 70 percent
of the required interlocking control logic with code generation
rules that are applicable across different plants. This can lead to
estimated overall development cost savings of up to 21 percent,
which provides a promising outlook for methods in this class.

KEYWORDS
Software design and implementation, code generation, IEC 61131-3,
industrial automation, case study, model-driven development
ACM Reference Format:
Heiko Koziolek, Andreas Burger, Marie Platenius-Mohr, Julius Rückert,
Hadil Abukwaik and Raoul Jetley, Abdulla PP. 2019. Rule-based Code Gen-
eration in Industrial Automation: Four Large-scale Case Studies applying
the CAYENNE Method. In ICSE ’20: International Conference on Software
Engineering, May 23–29, 2019, Seoul, South Korea. ACM, New York, NY, USA,
10 pages. https://doi.org/TBD

1 INTRODUCTION
Software to control power production, chemical plants, or oil re-
fineries is often programmed using IEC 61131-3 programming lan-
guages and cyclically executed on real-time controllers [18]. This
IEC standard defines five programming languages, both graphical
(e.g., function block diagrams) or textual (e.g., structured text). Con-
trol engineers design and implement this kind of software based on
semi-formal requirements specifications from process experts [16].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2019, Seoul, South Korea
© 2019 Association for Computing Machinery.
ACM ISBN TBD. . . $15.00
https://doi.org/TBD

Nowadays, process control systems, where such software is em-
bedded, comprise million lines of code and feature a distributed
infrastructure spanning controllers, local servers, edge gateways,
and cloud-backends [23]. There are more than 140.000 process con-
trol systems installed world-wide with a total market volume of
more than 15 BUSD [13].

Despite initial tool-assisted automation, designing and imple-
menting control logic for process control systems still remains a
largely manual process involving significant human labor [16]. The
costs for this work contribute to the high engineering costs for such
systems, which are typically in the range of several hundreds of
thousands USDs for a single project, but may also go up to several
million USDs for very large installations. Some of the involved
human work is repetitive, developing similar software repeatedly,
by re-encoding known patterns. Additionally, manually translated
requirements may lead to communication problems between cus-
tomers and suppliers.

For these reasons, a higher level of automation and code gener-
ation for software applications in industrial automation is highly
desired [29]. Over the last three decades, practitioners created soft-
ware libraries to reuse functionality and tools to automatically
import list-based specifications [16]. Researchers proposed more
than a dozen methods for automated IEC 61131-3 code genera-
tion [20]. One class of methods proposes to first model the cus-
tomer requirements using UML models with automation-specific
profiles and then use code generators to create IEC 61131-3 control
logic [17, 27, 28]. However, process engineers are usually not fa-
miliar with the UML notation, and the additional notation requires
keeping models and code synchronized. Another class of methods
suggests a rule-based approach to extract knowledge required for
code generation directly out of semi-formalized customer require-
ments [12, 15, 26]. These methods have not been tested in realistic
settings, therefore their scalability and robustness are unknown.

The contribution of this paper is an analysis of the practicabil-
ity of a rule-based control logic generation approach using four
large-scale case studies. In each case we generated IEC 61131-3
control logic code from the requirements specifications of actual
industrial plants using our rule-based method called CAYENNE
(Creating Architectures for rapidlY ENgiNEering control systems).
It involves translating customer ’piping and instrumentation dia-
grams’ (P&IDs) into a topological plant model, and then executing
code generation rules expressed in a novel domain-specific notation.
The CAYENNE rule engine traverses the topological models and
identifies specific patterns of pipes and instruments that trigger
code generation rules.

1

https://doi.org/TBD
https://doi.org/TBD

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20, May 23–29, 2019, Seoul, South Korea Koziolek, et al.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

We found from the case studies that we can generate a particular
type of control logic, namely interlocking logic [22], by more than
90 percent using a rule-based approach. We expect that potentially
more than 70 percent of these rules mined in these case studies
are potentially reusable across different plants, therefore providing
great potential for code generation in future cases. We estimated
that this form of code generation could lower the efforts for require-
ments specification, control logic and process graphics engineering,
as well as testing by approximately 21 percent. This can lead to cost
savings of hundreds of thousand USD in a given project. Domain ex-
perts confirmed our findings and provided positive feedback. More
case studies may be needed to address additional corner cases and
refine the rule set.

The remainder of this paper is structured as follows. Section
2 first provides the necessary background for code generation in
industrial automation. Section 3 conceptually explains the core idea
of rule-based approaches, before Section 4 describes our particular
implementation as the CAYENNE method. Section 5 elaborates on
the case study methodology and means for data collection. Section 6
provide individual findings from each case, then Section 7 presents
cross-case findings including statistics from rule mining and esti-
mations for effort reduction. Section 8 briefly surveys related work,
before Section 9 concludes the paper.

2 CONTROL LOGIC ENGINEERING
Process control systems (PCS) automate various industrial produc-
tion facilities, such as chemical plants, power plants, paper mills,
or oil refineries. Fig. 1 shows the generic components of a process
control system. Numerous sensors for temperature, pressure, level,
and flow collect data, e.g., from tanks, heat exchangers, or turbines.
The sensors feed real-time controllers that compute control signals
for various actuators, e.g., pumps, motors, conveyor belts. Engi-
neering workstations allow programming and configuring field
devices and controllers, while supervision workstations support hu-
man operators in production monitoring and alarm management. A
PCS usually connects to a Manufacturing Execution System (MES)
managing resources and scheduling processes, as well as an En-
terprise Resource Planning System (ERP) managing accounting,
procurement, and human resources.

PCS controllers often rely on real-time operating systems, such
as Embedded Linux, FreeRTOS, or VxWorks. They cyclically execute
control algorithms written in IEC 61131-3 programming languages.
These include graphical languages (e.g., function block diagrams),
as well as textual notations (e.g., structured text). Listing 1 shows
the IEC 61131-3 Structured Text syntax similar to the Pascal pro-
gramming language in a minimal code sample, where the filling
level of a tank is kept below 50 cm by opening or closing its inlet
valve. Such control logic keeps industrial processes within safe
conditions. Control engineers compile and execute the code in a
runtime environment (e.g., CODESYS [1], TwinCAT [2]). Control
logic can include sophisticated calculations to optimize production
flow.

Control engineers design and implement control logic based
on requirements from engineering contractors. Fig. 2 depicts a
typical - albeit simplified - engineering workflow for process control
systems. An engineering contractor provides an I/O list, which

EngineeringEngineering SupervisionSupervision

EthernetEthernet

SupervisionSupervisionEngineeringEngineering

ControllerController

EthernetEthernet

ControllerController

ActuatorActuator

SensorSensor

ActuatorActuator

SensorSensor

ActuatorActuator

SensorSensor

ActuatorActuator

SensorSensor

FieldbusFieldbus

FieldbusFieldbusGatewayGateway

Remote I/ORemote I/O

Enterprise Resource
Planning System

Enterprise Resource
Planning System

Manufacturing
Execution System

Manufacturing
Execution System

Process
Control
System

Figure 1: Abstracted Component View of a Process Control
System

specifies the required input and output signals (analog or digital)
for sensors and actuators. If needed, control engineers implement
custom algorithms in new function blocks for special requirements
(Step 1) and add them to their function block libraries. The I/O list
can then be automatically mapped to function blocks in the library
(Step 2), which creates control logic skeletons, e.g., the variable
input and output lists of IEC 61131-3 (see Listing 1).

Listing 1: IEC 61131-3 Structured Text Code Sample
PROGRAM ValveControl

VAR_INPUT
TankLevel : REAL;

END_VAR
VAR_OUTPUT

ValveOpen : BOOL;
END_VAR

IF (TankLevel > 50.0) THEN
ValveOpen := FALSE;

ELSE
ValveOpen := TRUE;

END_IF
END_PROGRAM

Control Logic
Skeletons

2) Instantiate
function
blocks

IO List

C&E Matrices

P&IDs

Logic
Diagrams

Control
Narratives

Function
Block

Library

Control Logic
Glue code

4) Code
Generation

6) Deployment
& Testing

5) Create process
graphics

Process
Graphics

3) Implement
glue code

1) Implement custom
function blocks

If needed

Requirements
(Engineering
Contractor)

Control Logic Engineering
(Automation Provider)

Semi-Auto-
mated Step

Manual Step Artifact

Library

Legend

Process Graphics Engineering
(Automation Provider)

Figure 2: Conventional Workflow of Requirements Specifi-
cation, Control Logic Engineering, and Process Graphics En-
gineering

2

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Rule-based Code Generation ICSE ’20, May 23–29, 2019, Seoul, South Korea

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

Glue code then needs to be implemented manually, based on
informal logic diagrams and textual control narratives (Step 3).
Another means for glue code requirements specification are Cause-
and-Effect (C&E) matrices, which are tables linking specific signals
to specify interlocks. As an example for an interlock, the signal
representing an alarm condition in a pipe (e.g., high pressure), could
be linked to the signal for venting a vessel, so that the automation
system avoids unsafe conditions. Engineering contractors usually
specify C&E Matrices and control engineers use code generation
tools to translate their logic to IEC 61131-3 (Step 4). Finally, control
engineers complete the control logic with manual additions and
continue in the deployment and testing phase (Step 6). In parallel,
so-called piping and instrumentation diagrams (P&IDs) from the
engineering contractor serve as a visual template for a manual
specification of process graphics (Step 5), that can be later used as
HMI for human operators.

While the conventional process involves some form of code
generation already in Step 2) and 4), there is potential for additional
automation. Logic diagrams and control narratives could be turned
into more formal specifications that allow automatic processing.
C&E matrices contain a lot of interlocks following simple patterns
(e.g., if a valve is closed, shut down a preceding pump to avoid
over-pressure), but are today always specified from scratch. Finally,
P&IDs already contain substantial knowledge about the topology
of the industrial process (e.g., vessels, piping structures, control
requirements), which is today not subject to automatic processing
but only manual interpretation.

3 CAYENNE RULE-BASED ENGINEERING
The core idea of our proposed CAYENNE approach is to introduce
a rule base with domain-specific, reusable rules to automate simple,
re-occurring design and implementation tasks for control logic. A
rule engine applies pre-specified rules on the requirement docu-
ments and can thus automatically generate parts of the IEC 61131-3
code. A first instantiation of this idea in the typical engineering
workflow (Fig. 2) suggests to generate C&E matrices using infor-
mation from P&IDs thus eliminating the need to specify interlocks
from scratch for each plant.

P&IDs contain topological information needed for interlock spec-
ification and are today created with commercial CAD tools. While
engineering contractors currently often provide these drawings
only as paper printouts or PDF files, which are hard to process,
many CAD tools have recently started to support object-oriented
or table-based serialization formats (so-called “smart P&IDs”). The
DEXPI initiative [3] (Data Exchange in Process Industries) is work-
ing on a standardized XML-format for P&IDs based on ISO 15926
and is supported by all major P&ID CAD tool vendors. Version 1.3
of the DEXPI specification will be released in 2019. Such a repre-
sentation now enables knowledge extraction from smart P&IDs by
applying domain-specific rules.

Fig. 3 shows an abstracted example for the knowledge extraction.
The P&ID contains a vessel B101, pump P106, three valves (V102,
V104, V105), as well as a level sensor (LS+/B102), and a temperature
sensor (TIC/B103). Alarm limits are specified for the level sensor
B102 (not shown) indicating the allowed low and high filling levels.
A common interlocking rule is depicted on the right hand side of

Fig. 3. For CAYENNE, we have developed a streamlined grammar for
a rule specification language, which allows an efficient formulation
and communication of new rules as well as semantic checks. Rules
are specified in a generic way without referring to specific instances.
A rule engine can process an object-oriented, smart P&ID model
and potentially match each rule many times for different instances.

B101

P106

P1

P3

P2

LS+

B102

TIC

B103

V102

V104

V105

[…]

[…]

Pump

Vessel

Rule (Verbose notation):
IF a vessel has a level

 sensor attached

 AND there is a level sensor

 „high alarm“ signal

THEN

 close all valves

 on pipes feeding the vessel

Rule (CAYENNE Short hand notation):
Vessel.AlarmLevelHigh

& Vessel\Pipe\Valve

=> Valve.Close

Generated IEC 61131-3 Structured Text:
IF B102_HHLimit = TRUE THEN V102_Open := FALSE;

IF B102_HHLimit = TRUE THEN V104_Open := FALSE;

Piping & Instrumentation Diagram

Figure 3: Example P&ID, domain-specific rule in verbose and
short-hand notation, and generated IEC61131-3 ST.

In the example, the rule engine identifies all vessels in the P&ID
(B101) and checks whether they have a connected level sensor
(B102) with an alarm limit specified. It then traverses the model
from the vessel via each feeding pipe (P1 and P2) to connected
valves (here: V102, V104). The rule engine can then use these in-
stance references to generate a C&E matrix linking the level sensor
alarm signal with the valve closing signal. The rule engine option-
ally generates C&E matrices as an intermediate representation to
facilitate manual review and approval by the engineering contrac-
tor, since a typical plant may contain thousands of interlocks. The
C&E matrix is then processed by a code generator to produce IEC
61131-3 code. The resulting code is depicted at the bottom of Fig. 3.

Although the engineering process appears linearly in Fig. 2 for
simplicity, in practice it is an iterative process, where the engi-
neering contractor hands over successively refined requirements
multiple times to the automation provider. When re-generating
based on updated requirements, the code generator must consider
control logic written manually in parallel. To support this, the
CAYENNE approach suggests a merging approach where the newly
generated code is compared with the existing code and lets the
control engineer review and approve any merge conflicts.

While the rule-based engineering approach is illustrated specifi-
cally for simple interlocks in the scope of this paper, it is potentially
also applicable for other parts of control logic, e.g., batch production
recipes, function block configuration parameters, and shut-down
procedures.

4 CAYENNE IMPLEMENTATION
To validate the concept of CAYENNE rule-based engineering, we
have designed and implemented a prototype tool that interfaces
with commercial CAD tools and control engineering tools. Fig. 4
shows the tool’s high-level software architecture as an UML compo-
nent diagram. To decouple the rule engine and code generation from

3

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

ICSE ’20, May 23–29, 2019, Seoul, South Korea Koziolek, et al.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

specific serialization formats for P&ID files, we created a so-called
“Topology Model”, a meta-model that captures the most impor-
tant concepts from P&IDs for code generation [9]. The CAYENNE
tooling is implemented using C#/.NET and includes importers for
SmartPlant P&ID’s Excel export format, as well as Microsoft Vi-
sio P&ID files. An importer for DEXPI ISO15926 is still work in
progress, since the standard and serialization format are not yet
finalized.

«EXE»
Topology Editor

«DLL»
CAYENNE
InterLock

RuleEngine

«DLL»
Visio Importer

«DLL»
Topology Object

Library

«DLL»
Topology SPPID

Adapter

«DLL»
FAT Simulation

Adapter

«DLL»
Modelica Object

Lib

«EXE»
Control

Engineering Tool

«EXE»
Open Modelica

«EXE»
SmartPlant P&ID

«EXE»
Microsoft Visio

CAYENNE Component

External Component

Legend

«DLL»
AutomationML

Engine

CAEX file

«DLL»
PG2 Process

Graphics
Generator

«EXE»
Process
Graphics

Engineering Tool

« lib»
Graphics Library

«DLL»
Rule Editor

«DLL»
DEXPI / Proteus

XML / ISO 15926
Importer

«EXE»
Any Commercial

CAD tool

AutoCAD P&ID, COMOS P&ID,
SmartPlant P&ID, ... Planned

VisioXML
F ile

API

API

.MAT file

V iew/Edit

Serialize

Export

Excel
Export

DEXPI
XML file

F eed

Create

Create

Use

Create

Feed

Figure 4: CAYENNE prototype software architecture: static
view

Listing 2: CAYENNE Rule Specification Grammar (excerpt)
keywordPipe = 'Pipe', ['-', number], [mediatype];

keyword = 'Valve ' | 'Conveyor ' | 'Vessel ' | 'Reactor ' | ... ;
(* plus all elements from Topology Model , see Fig. 6 *)

keynum = keyword , '-', number;

functions = 'Stop' | 'Close ' | 'Open' | 'ESD' | 'Start ' | 'Restart
' | 'Sleep ' | 'Trip' | 'Activate ' | 'Inactivate ' | 'ShutDown '
| 'InhibitPermissive ';

attributes = 'Stopped ' | 'Closed ' | 'Opened ' | '
AlarmTemperatureHigh ' | | 'AlarmTemperatureLow ' | '
AlarmPressureHigh ' | 'AlarmPressureLow ' | ...

(* plus additional attributes not depicted here *)

cause = (keyword | keywordPipe | keynum), '.', (functions |
attributes);

traversal = '->', (keyword | keywordPipe | keynum | wildCard),
connectionList;

connectionList = [('/' | '\', (keyword | keywordPipe | keynum |
wildCard), connectionList];

action = '=>', (keyword | keywordPipe | keynum | wildCard), '.',
(functions | attributes);

rule = cause , traversal , action;

Users can edit imported topology models (Topology Object Li-
brary) in Fig. 4 using a Topology Editor or serialize them to the
AutomationML/CAEX (IEC 62714) XML file format[4] for further
processing. CAYENNE provides an Interlock Rule Engine to traverse
topology models and apply domain-specific rules from a database
to generate C&E matrices or directly IEC 61131-3 structured text
in the PLCopen XML file format [5]. The rule engine accepts rules

specified according to the domain-specific grammar in Listing 2.
The tool uses the visitor design pattern to implement the model tra-
versal by tracing the piping and instrumentation structure imported
from P&IDs. Users can configure pre-defined rule sets as well as
specify new project-specific rules using a textual Rule Editor. We
implemented the rule grammar as well as semantic checks using
the Irony .NET language implementation kit [6].

Fig. 5 depicts a simplified view of the CAYENNE topology model
class hierarchy. It contains vessels, sensors, controllers, flow objects,
termination points and actuators and thus can express most ele-
ments typically used in plant engineering. An instance of the model
derived from an object-oriented P&ID specification includes con-
nections between the elements (i.e., material flow and information
flow) as well as numerous properties and references to graphical
shapes and coordinates. Users of the CAYENNE rule engine can
refer to any element from the topology model when defining new
rules.

Standard
Topology
Element

Standard
Topology
Element

VolumeVolume SensorSensor ControllerController ActuatorActuatorFlow ObjectFlow Object

Continuous
Sensor

Continuous
Sensor

SwitchSwitch

Temperature
Sensor

Temperature
Sensor

Level SensorLevel Sensor

Flow SensorFlow Sensor
Pressure
Sensor

Pressure
Sensor

VesselVessel

Heat
Exchanger

Heat
Exchanger

FlowHeaterFlowHeater

Pid
Controller

Pid
Controller

ApcFunctionApcFunction

PipePipe

JunctionJunction

NozzleNozzle

TerminationTermination

SourceSource SinkSink

HeaterHeater ValveValve

MotorMotor PumpPump

Figure 5: CAYENNE Topology Model (simplified): target for
P&ID import, basis for rule language grammar and rule im-
plementation.

TheCAYENNE tooling also includes a prototypical process graph-
ics generator, and a simulation generator for factory acceptance
tests (FAT). The former interfaces with a commercial tool for pro-
cess graphics engineering, where additional details can be added
manually. The latter generates Modelica [7] files and interfaces with
OpenModelica [8] to execute low fidelity plant simulations [9].

5 CASE STUDY METHODOLOGY
5.1 Goal/Question/Metric
We formulated the main goal for evaluating the CAYENNE rule-
based approach using theGoal-Question-Metric (GQM) template [10]:
“Determine (purpose) the practicability (issue) of a rule-based con-
trol logic generation approach (object) for a process engineer (view-
point) in the context of designing interlocks for automation of
industrial plants”. A secondary goal was to create an initial rule set
for testing and later refinement.

Fig. 6 shows the questions and corresponding metrics we de-
fined in order to achieve the main goal. M1 simply provides the
fraction of interlocks that could be generated with the CAYENNE
rule language, compared to interlocks that would require different

4

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Rule-based Code Generation ICSE ’20, May 23–29, 2019, Seoul, South Korea

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

Question RQ1 How suitable are rules to generate control logic?

Metric M1 Percentage of generatable interlocks from rules in a given case

Question RQ2 How reusable are rules for control logic generation?

Metric M2 Percentage of rules classified as 'generic'

Metric M3 Percentage of rules generating multiple interlocks

Metric M4 Percentage of rules generating interlocks in more than one case

Question RQ3 How much engineering efforts can be saved?

Metric M5 Percentage of estimated engineering effor savings

Question RQ4 How do practitioners perceive the usefulness?

Metric M6 [Qualitative Feedback from Domain Experts]

Goal: Determine practicability of rule-based approach for process engineer

Figure 6: GQMmodel for CAYENNE Validation

means for rule specification. Our target value for M1 was 70 per-
cent, because the approach may lack user acceptance in case it only
addressed a low fraction of interlocks.

M2-M4 characterize the reusability of the derived rules. M2 quan-
tifies our own categorization of rules into ’generic’ and ’process-
specific’ rules, with the expectation that 90 percent of the rules
will be reusable. This value must be high, since unique rules may
not contribute to effort savings. M3 states how many rules gen-
erated multiple interlocks, even if that occurred only in a single
case (target: 90 percent). Finally, M4 provides the fraction of rules
that already generated interlocks in multiple of our case studies,
thereby validating their reusability.

Research question RQ3 asked for the efforts savings from the
code generation approach. For M5, we rely on effort estimations
taking the results of M2-M4 into account, since we have not yet
applied the rules in a new project to actually measure the effort
savings. Finally, RQ4 closes the loop with practicing process engi-
neers and asked for feedback regarding the perceived usefulness of
the approach. To obtain values for the defined metrics, we executed
four case studies following guidelines for case study research [24].

5.2 Case Sampling
We conducted a purposive case sampling augmented with conve-
nience sampling [19]. ABB business units provided P&IDs and C&E
matrices from four production plants. External engineering con-
tractors had created these specifications manually and ABB had
developed control logic and process graphics for these plants based
on them. The specifications were three to six years old. In the mean-
time, each of the plants had been erected and was in production.
Our case studies were thus post-mortem analyses to determine how
much manual work could have been automated with a rule-based
approach.

Due to the business sensitivity for the plant owners, the specifi-
cations are subject to numerous non-disclosure agreements (NDA)
and the artifacts reside in various local storages. Therefore, we let
our ABB business units select cases they considered relevant and
interesting for code generation. From these, we selected cases rep-
resenting different application domains (e.g., chemical production,
oil refineries) to explore cross-case rule applicability.

5.3 Data collection
We divided our data collection into two phases:

Phase 1: Rule mining. For the four cases, the domain experts,
who provided the original specifications for the plants’ interlocks,
were largely unavailable (i.e., coming from different companies,

now working on different projects). Hence, we decided to perform
the rule mining ourselves by analyzing the patterns underlying
the specified interlocks. The originally specified interlocks in the
respective C&E matrices serve as the ’ground truth’ for the rule-
based generation.

1) Analyze
interlock
elements

C&E Matrices

for each interlock

2) Analyze
traversal
pattern

P&IDs

for each interlock

Cause:
Condition,
Instrument

Effect:
Action,

Instrument

Plant
Topology
Traversal

3) Create generic
interlocking rule

4) Add to Rule
Database

Interlocking
Rule

Rule
Database

Phase 1: Rule Mining

Figure 7: Phase 1: Rule Mining

Fig. 7 shows the four steps of our rule mining (Phase 1). In
Step 1), we first analyzed the interlock elements specified in the
C&E matrices of each case. For each interlock, we identified the
cause including an instrument and a condition as well as the effect
including a list of instruments and actions. For example, the low-
level alarm condition of a sensor on a tank would cause the stopping
of a pump on the tank outlet as an effect. In Step 2), we located both
instruments in the corresponding P&IDs and determined the plant
topology traversal path between causing instrument and effecting
instrument. In the previous example, this would be the traversal
path between the tank and the pump. In Step 3), we expressed the
traversal path in terms of elements of the topologymodel abstracted
from concrete instances. In Step 4), the triple of cause, traversal,
and effect either matched with an existing interlocking rule, or we
created a new rule and added it to our rule database.

Phase 2: Rule validation. In this phase (not depicted here), we
executed an additional rule validation. In Step 5), we first manually
re-drew the original PDF-based P&IDs using Microsoft Visio to
have smart P&IDs as input. Note that the redrawing step is for
research purposes only and once XML-based export formats for
P&IDs are available, this step can be omitted, and the exported XML
files can be directly imported into a topology model. In Step 6), the
Visio P&IDs were mapped into a topology model based on CAEX
using a self-implemented importer tool. In Step 7), the CAYENNE
rule engine applied the rules from the developed rule database in
phase 1 on the topology model. This results in an automatically
generated C&E matrices, which get compared against the original,
manually-specified C&E matrices in Step 8).

6 CASE ANALYSIS
6.1 Overview
Table 1 characterizes the four analyzed cases.

The specifications of each plant included input/output (IO) lists
with 400 - 7000 IO points, i.e., digital/analog input and output

5

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

ICSE ’20, May 23–29, 2019, Seoul, South Korea Koziolek, et al.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

signals. According to Forbes and Clayton [13], systems with 900-
2300 IO points are considered ‘medium-sized’ (45 percent of the
overall market), while systems with more than 2300 IO points are
considered ‘large-sized’ (16 percent of the overall market).

Property P
la

n
t

1

P
la

n
t

2

P
la

n
t

3

P
la

n
t

4

I/O points 1000 4000 400 7000

P&ID notation ISO ISA ISA ISA

P&ID native file format .dwg .dwg ? ?

Number of P&IDs available 50 116 8 134

Number of P&IDs analyzed 10 23 8 12

Number of vessels in analyzed P&IDs 18 23 8 4

Number of pumps in analyzed P&IDs 9 27 13 12

Number of C&E matrices available 12 9 1 54

Number of C&E matrices analyzed 2 7 1 ~30

Number of analyzed interlocks 125 58 100 89

Number of rules to generate interlocks 28 14 19 21

Number of rules for regular equipment 19 14 8 21

Number of rules for special equipment 9 0 11 0

Table 1: Properties of the analyzed cases.

P&IDs were available for the cases either in the ISO 10268 or
ANSI/ISA 5.1 notations. Their native file format was AutoCAD
drawing (.dwg), but all files were available as PDF exports only.
The number of available P&IDs per case ranged corresponding to
their size (e.g., in the small-sized Plant 3, we had 8 diagrams, while
we had 134 diagrams for the large Plant 4). We scoped our analysis
to those diagrams that represented the main material flow of the
underlying process and suggested the biggest learning effects for
rule mining. The selected P&IDs per plant contained 4-23 vessels
(i.e., tanks and heat exchangers) and 9-27 pumps.

Each case had hundreds to thousands of interlocks specified
in C&E matrices. The C&E matrices also contained versioning
information as well as free text annotations, which however did
not affect the interlock behavior. We found several typing errors,
where signal references were misspelled, as well as inconsistencies
between the P&IDs and the C&E, where tags specified in the C&E
were missing in the referenced P&ID. These specifications were
meant for manual interpretation, where humans can compensate
for errors to some extent. For a fully automated interlocking tool
chain these documents would need to be specified according to
standards (e.g., ISO 15926) and validated for consistency.

We did not analyze all of the thousands of interlocks in detail,
but selected between 50-100 interlocks per case corresponding
to the main material flow to achieve a representative coverage.
We classified the equipment in the cases into regular equipment
(e.g., pumps, valves, pipes, heat exchangers, controllers) and special
equipment (e.g., conveyors, power units, special vessel features).
Rules involving special equipment (also see Table 2, column 4)
may have lower reusability across plants. Thus, this classification
provides a rough measure for the uniqueness of the plant under
analysis.

In the following subsections, for space reasons we discuss find-
ings for two selected cases (Plant 2 and 3), before summarizing the
results of the overall rule mining in Section 7.

6.2 Plant 2
Plant 2 is chemical plant from South America The plant automation
includes more than 4000 IO points. The case included 116 P&IDs,
which however were not all relevant for interlocking logic. The
P&IDs included detailed specifications for the involved vessels (e.g.,
diameters, volume, operating conditions) as well as alarm limits and
interlock references. They also included complex piping structures.
Over the course of 2.5 years, the P&IDs had gone through multiple
revisions. The process featured various replicated equipment, e.g.,
duplicated vessels or duplicated pumps.

The interlocking logic specification consisted of nine C&E ma-
trices. These included a high number of permissives and inhibits,
which specify the starting conditions for the whole process. Instead
of only linking signal references using boolean logic, the matrices
contained ‘actions’ as cell entries, e.g. stopping a pump or closing
a valve. From the C&E matrices we selected only entries related to
measurement instruments, which are considered interlocks during
operation, while the permissives and inhibits rather pertain start-up
and shut-down procedures.

For deriving the interlocking rules of the 58 selected interlocks,
we had to analyze 23 of the 116 P&IDs. Despite several complex
piping structures most of the interlocks could be mapped to simple
interlocking rules. We created a new interlocking rule for anti-surge
control of compressors in this plant. Fig. 8 shows the (simplified)
P&ID structure this rule was based on. When valve V1 opens the
corresponding check valve V2 needs to close. However, a generic
rule should not match any two valves on connected pipes in the
plant, but only match those valves on an outlet of a compressor.
So the rule created for this case first starts a topology traversal
from the cause V1 and checks whether a controller and compressor
is connected. Then, it traverses in the opposite direction of the
material flow back to a junction point, where the material flow is
inverted. Afterwards, it matches the first valve on this outflow.

Compressor
C100

V1 V2

C001
Cause Effect

Figure 8: Example for a non-trivial traversal pattern from
plant 2 between cause (valve V1) and effect (valve V2).

While such a traversal initially appears to be a rather special
occurrence, the rule is applicable 14 times in plant 2. It is applied
for multiple times for each outlet of compressor and there are
two such compressors in the plant segment. Furthermore, the rule
is triggered by other causes (e.g., level and temperature sensors),
which open valve V1. The underlying traversal pattern is typical
for anti-surge control in industrial compressors and therefore not
plant-specific [21].

All analyzed interlocks in plant 2 could be generated with rules.
This plant did not include any special equipment, but for one com-
plex piping structure we needed a special rule that we classified as
process-specific.

6

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

Rule-based Code Generation ICSE ’20, May 23–29, 2019, Seoul, South Korea

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

6.3 Plant 3
Plant 3 is an oil refinery plant from the Middle East. The process
consists of twomain steps, a dehydration and a subsequent desalting
of crude oil. The products of this separation process are refined
oil, natural gas, and water. Special types of vessels are used in the
process that are supplied by electrical power units to drive the
electrostatic separation process. In addition, different chemicals
are used in the process to avoid clogging of pipes and reduce the
amount of dissolved oxygen from the crude oil. The automation of
the process includes about 400 IO points. The main refinery process
is captured in 8 P&IDs of which 6 were analyzed in detail.

The interlocks for the case were captured in a single C&E matrix
with roughly 40 causes and 30 effects and a total of 180 C&E entries.
75 of these interlocks were related to the handling of severe failures,
such as a plant power failure or an emergency shutdown of the plant.
Furthermore, 4 interlocks were triggering an acoustic alarm in case
one of the dosing tanks of the additionally supplied chemicals raises
a high-level alarm. We decided to exclude the C&Es for these two
categories and focused on the process-relevant interlocks. In sum,
these were 100 remaining interlocks, with causes being alarms or
failure events of process equipment as well as effects being either
tripping events for pumps and power units, closing of controlled
valves, or inhibits for the startup of a device.

After manually studying the P&IDs and understanding the flow
of the different materials involved, the definition of rules showed
to be rather straightforward. The piping at first seemed more com-
plicated than it actually was, e.g., because of the large number
of redundant connections between the separation vessels and the
water drain system. Due to the fact that a separator vessels is a com-
bination of a vessel and an electrically powered actuator, multiple
C&Es had an emergency shutdown procedure of the separator as
an effect. To capture this special type of cause, new rules had to be
added. Besides these special cases, a number of generic pump/vessel-
related rules of the previous plant cases could be reused. A few
new pump/vessel-related rules were added which are specific to the
refinery process, although, they only involve regular equipment.
Fig. 9 shows a case that occurred eight times in the plant and could
be expressed by a single, yet non-trivial, rule. Here, a high-pressure
alarm of a sensor causes the stop of the water pumps feeding into
the material flow before a vessel.

Cause

Effects

Natural Gas

PI

001

P‐208

Crude Oil

P1

P2

Crude Oil

water

water

crude oil gas

crude oil

V001

Figure 9: Example for a non-trivial traversal pattern from
plant 3 between cause (sensor PI1) and effect (pumps P1/P2).

While this traversal seems complicated first, the key to the rule
definition was to limit the matching of pipes with specific media
types.

Out of the 100 interlocks of plant 3, we found 6 interlocks which
we were not able to formulate adequate rules. We would have
immediately caused false positives, meaning that the rules would
have resulted in new interlocks that were not part of the original
C&E matrix of the plant. The remaining 94 interlocks could be
generated from only 19 rules. 14 of these rules were specific to
plant 3, with 10 of them being specific to the power units supplying
the separator vessels. While this could be considered a special
equipment, compared to the other plants, it is a common type of
equipment for oil refineries in general.

7 CROSS-CASE FINDINGS
7.1 Mined Rule Set
Table 2 provides an overview of the 92 CAYENNE rules mined in
the four case studies from which we generated 336 interlocks in
total. The actual rules are not shown for brevity and confidentiality
reasons in case of process-specific interlocks. The table sorts the
rules according the instrument that represented the cause for an
interlock. There are rules for different sensors (e.g., for flow, level,
position, pressure, temperature), while other interlocks are caused
by actuators (e.g., valves, pumps, switches).

We classified the rules into 55 ’generic’ and 37 ’process-specific’
rules, where the latter referred to rules with traversal clauses con-
taining more than three elements. We expect that the generic rules
are applicable for different cases, even if that did not occur in the
four heterogeneous cases we analyzed, as they represented differ-
ent processes. However, their traversal patterns follow plausible
physical principles and could therefore occur similarly even for
different kinds of plants if similar equipment is involved.

The table shows the number of times a rule applied for each case,
rules that matched many times are highlighted in green for easier
identification.

7.2 Effectiveness
Table 3 depicts the metrics M1-M4 measuring the effectiveness of
the rules-based approach to answer RQ1 and RQ2. M1 indicates that,
on average, 97% of the analyzed interlocks could be generated with
rules. The evaluated cases contained only few interlocks that are
beyond the current expressiveness of the CAYENNE rule language.
This result was above our target level of 80% and thus exceeded our
expectations.

M2 shows that on average we classified 73% of the rules in each
as ’generic’ while 27% were ’process-specific’. This means that
most of the rules have simple and straightforward causes, effects,
and traversal patterns, which increases the probability of being
reusable across different plants. However, 73% of generic rules lies
below our target level of 90%. A process or knowledge engineer
would need to invest some time in defining new rules or manually
specifying interlocks to address the remaining 27% given a new
plant specification to account for process specifics. M2’s value of
73% may however motivate the need for more case studies or pilot
projects to extend the rule base.

M3 indicates that 68% of the 91 rules generated multiple inter-
locks. This includes cases where a rule applied multiple times for a
single plant specification (e.g., if there are multiple similar pumps
in the same plant). Using rules instead of manual specification is

7

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

ICSE ’20, May 23–29, 2019, Seoul, South Korea Koziolek, et al.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

Category Ref Classes Equipment Type P
la

n
t

1

P
la

n
t

2

P
la

n
t

3

P
la

n
t

4

SUM

Flow FFHH1 Generic Special Equipment 2 0 0 0 2

Flow FFLL1 Generic Special Equipment 2 0 0 0 2

Flow FSLL1 Generic Regular Equipment 2 0 0 0 2

Level LSHH1 Generic Regular Equipment 3 4 0 0 7

Level LSHH2 Process-specific Regular Equipment 1 0 0 0 1

Level LSHH3 Generic Regular Equipment 0 2 18 4 24

Level LSHH4 Generic Special Equipment 0 0 4 0 4

Level LSHH5 Process-specific Special Equipment 0 0 2 0 2

Level LSHH6 Generic Regular Equipment 0 8 0 0 8

Level LSHH7 Generic Special Equipment 1 0 0 0 1

Level LSLL1 Generic Regular Equipment 1 4 14 8 27

Level LSLL2 Generic Regular Equipment 2 1 1 0 4

Level LSLL3 Generic Regular Equipment 3 0 0 0 3

Level LSLL4 Process-specific Special Equipment 1 0 0 0 1

Level LSLL5 Process-specific Regular Equipment 1 0 0 0 1

Level LSLL6 Generic Regular Equipment 0 2 0 0 2

Level LSLL7 Generic Special Equipment 0 0 4 0 4

Level LSLL8 Generic Special Equipment 0 0 4 0 4

Level LSLL9 Generic Special Equipment 0 0 4 0 4

Level LSLL10 Process-specific Regular Equipment 0 0 2 0 2

Level LSLL11 Generic Regular Equipment 7 0 0 0 7

Level LSLL12 Generic Regular Equipment 4 0 0 0 4

Level LSLL13 Generic Regular Equipment 2 0 0 0 2

Position ZSL1 Generic Special Equipment 4 0 0 0 4

Position ZSR1 Generic Special Equipment 4 0 0 0 4

Pressure PSHH1 Generic Regular Equipment 1 0 0 0 1

Pressure PSHH2 Generic Regular Equipment 0 8 0 0 8

Pressure PSHH3 Process-specific Regular Equipment 0 1 0 0 1

Pressure PSHH4 Process-specific Regular Equipment 0 2 0 0 2

Pressure PSHH5 Process-specific Regular Equipment 0 0 8 0 8

Pressure PSHH6 Generic Regular Equipment 0 0 4 5 9

Pressure PSHH7 Generic Special Equipment 0 0 2 0 2

Pressure PSHH8 Process-specific Regular Equipment 0 0 0 6 6

Pressure PSHH9 Process-specific Regular Equipment 0 0 0 6 6

Pressure PSHH10 Process-specific Regular Equipment 0 0 0 2 2

Pressure PSHH11 Process-specific Regular Equipment 0 0 0 4 4

Pressure PSLL1 Generic Regular Equipment 0 1 2 4 7

Pressure PSLL2 Generic Regular Equipment 0 5 0 1 6

Pressure PSLL3 Generic Regular Equipment 0 2 0 0 2

Pressure PSLL4 Process-specific Regular Equipment 0 0 0 6 6

Pressure PSLL5 Process-specific Regular Equipment 0 0 0 6 6

Pressure PSLL6 Process-specific Regular Equipment 0 0 0 2 2

Pressure PSLL7 Process-specific Regular Equipment 0 0 0 4 4

Pressure PSLL8 Process-specific Regular Equipment 0 0 0 4 4

Pump JI1 Generic Regular Equipment 1 0 0 0 1

Pump JI3 Process-specific Special Equipment 1 0 0 0 1

Pump JI4 Process-specific Special Equipment 1 0 0 0 1

Pump JI5 Generic Special Equipment 6 0 0 0 6

Pump JI6 Generic Regular Equipment 0 0 6 0 6

Pump JI7 Process-specific Regular Equipment 0 0 0 1 1

Pump JI9 Generic Special Equipment 2 0 0 0 2

Pump JI10 Process-specific Special Equipment 1 0 0 0 1

Pump JI11 Process-specific Special Equipment 2 0 0 0 2

Pump JI12 Process-specific Special Equipment 1 0 0 0 1

Speed SSLL1 Generic Special Equipment 6 0 0 0 6

Switch HS1 Generic Special Equipment 4 0 0 0 4

Switch HS2 Generic Special Equipment 0 0 4 0 4

Switch HS3 Generic Special Equipment 0 0 4 0 4

Switch HS4 Generic Special Equipment 0 0 2 0 2

Switch HS5 Generic Special Equipment 1 0 0 0 1

Switch HS6 Process-specific Special Equipment 2 0 0 0 2

Switch HS7 Process-specific Special Equipment 1 0 0 0 1

Switch HS8 Process-specific Special Equipment 1 0 0 0 1

Switch HS9 Generic Special Equipment 1 0 0 0 1

Switch HS10 Generic Special Equipment 2 0 0 0 2

Switch HS11 Generic Special Equipment 4 0 0 0 4

Switch HS12 Generic Special Equipment 2 0 0 0 2

Switch HS13 Generic Special Equipment 2 0 0 0 2

Switch HS14 Generic Special Equipment 4 0 0 0 4

Switch HS15 Generic Special Equipment 2 0 0 0 2

Switch HS16 Generic Special Equipment 1 0 0 0 1

Temperature TSHH1 Generic Regular Equipment 0 0 0 0 0

Temperature TSHH2 Process-specific Regular Equipment 1 0 0 0 1

Temperature TSHH3 Process-specific Regular Equipment 1 0 0 0 1

Temperature TSHH4 Generic Special Equipment 0 0 4 0 4

Temperature TSHH5 Generic Regular Equipment 0 4 0 0 4

Temperature TSHH6 Process-specific Regular Equipment 0 0 0 1 1

Temperature TSHH7 Process-specific Regular Equipment 0 0 0 1 1

Temperature TSHH8 Process-specific Regular Equipment 0 0 0 1 1

Temperature TSLL1 Process-specific Regular Equipment 1 0 0 0 1

Temperature TSLL2 Generic Regular Equipment 1 0 0 0 1

Transformer TR1 Generic Special Equipment 0 0 4 0 4

Valve YS1 Generic Regular Equipment 8 0 0 0 8

Valve YS3 Generic Regular Equipment 1 0 0 0 1

Valve YS5 Process-specific Regular Equipment 1 0 0 0 1

Valve YS6 Process-specific Regular Equipment 7 0 0 0 7

Valve YS7 Process-specific Regular Equipment 5 0 0 0 5

Valve YS8 Generic Regular Equipment 0 14 0 0 14

Valve YS9 Process-specific Regular Equipment 0 0 0 1 1

Valve YS10 Process-specific Regular Equipment 0 0 0 1 1

Valve YS11 Generic Regular Equipment 0 0 0 1 1

Valve YS12 Generic Regular Equipment 0 0 0 1 1

115 58 93 70 336

48 14 19 22 103

10 0 7 19 36

92% 100% 93% 79% 91%

86 55 81 24 246

75% 95% 87% 34% 73%

Sum of interlocks generated with rules:

Number of rules applied:

Interlocks without rules defined (unclear/complicated):

Percentage of intelocks addressed by rules

Sum of interlocks generated with "generic" rules:

Percentage of intelocks addressed by "generic" rules

Table 2: Results fromRuleMining: Categories of rules, short
reference, classification, equipment types, number times
rules applicable per plant.

Metric Description Ta
rg

et

A
ct

u
al

P
la

n
t

1

P
la

n
t

2

P
la

n
t

3

P
la

n
t

4

M1 % of interlocks that

can be generated with

rules

80% 91% 92% 100% 93% 79%

M2 % of rules classified as

"generic"

90% 73% 75% 95% 87% 34%

M3 % of rules generating

multiple interlocks

90% 68%

M4 % of rules matching in

multiple cases

50% 7%

Table 3: Metrics M1-M4 collected from the Case Studies

only justified if a rule is used multiple times, otherwise the effort
to construct the rule is higher than simply defining the interlock
directly. Most of the rules matching only once were also classified
as ’process-specific’. However, it is likely that M3 would increase
in case more specifications were analyzed, which would provide a
higher chance of their reuse.

For M4, we found that only 7% of our 91 rules were applicable
for more than one of our analyzed cases, which was way below
our target level of 50%. However, while there were only few such
rules, they actually matched a high number of times. These rules
refer to ’traversal patterns’ that occur often, thus they reduce the
manual effort significantly. We conjecture that the low value for M4
is also caused by the heterogeneity of our four cases, which both
lie in different industrial automation domains and contain different
kinds of equipment. Analyzing more similar cases (e.g., plants for
similar production processes) could lead to a higher number of
rules matching in multiple cases. Furthermore, domain experts
for specific processes may specify more reusable rules from their
experience.

7.3 Estimated Effort Reduction
For estimating the effort reduction (RQ3) of the CAYENNE rule-
based approach compared to a conventional state-of-the-art ap-
proach, we relate back to the workflow depicted in Fig. 10. Each
of the artifacts in the figure requires efforts from the engineering
contractor or automation provider. We show the estimated distri-
butions of these efforts on a percentage scale in Fig. 10, left column.
For example, the engineering contractor’s specification of an IO list
may take around 8% effort of the overall activities, while the P&ID
specification would require 17%. We do not express the efforts in
person hours or costs, since there are vastly different project sizes
as well as local salaries.

The column on the right hand side of Fig. 10 shows the estimated
effort distribution taking the CAYENNE rule-based approach into
account. The new process does not alter the creation of I/O lists,
P&IDs, logic diagrams, or control narratives, therefore these efforts
remain constant. Based on our case study results (M1-M4), the
efforts for the creation of C&E matrices could get reduced by 80%
(i.e., from 8% of the total effort to 2%). A full elimination of the
manual work for this step is unlikely, since there will still be several
special interlocks to be specified manually in each case, there is the
need for manually customizing the rule base before applying the

8

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Rule-based Code Generation ICSE ’20, May 23–29, 2019, Seoul, South Korea

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

rules, and the generation results need to be reviewed and approved
manually as before for safety reasons.

14% 11%

14%

7%

28%

24%

8%

2%

11%

11%

17%

17%

8%

8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

To
ta

l E
n

gi
n

ee
ri

n
g

Ef
fo

rt
 (

Pe
rc

en
ta

ge
s)

IO List

P&ID

Logic/Narratives

C&E Matrices

Control Logic

Process Graphics

Deployment/Tests

Without CAYENNE
100%

With CAYENNE
79%

Figure 10: Estimated Effort Reduction for Engineering

Creating the control logic could be reduced by around 15% (i.e.,
from 28% to 24%). Interlocks comprise up to 30% of the overall con-
trol logic, which for example also include PID loops, sequences, and
monitoring functions. For these 30% we estimate an effort reduc-
tion of up to 50% based on the case studies. As the rule-based code
generation covers a large portion of the interlocking control logic,
there is a reduced need for manual implementation. The generation
based on tool-validated smart P&IDs also removes the potential
for inconsistencies in the specifications, which often lead to time-
consuming feedback cycles between ‘engineering, procurement,
and construction’ contractors (EPC)s and automation providers.

The efforts for process graphics creation could be reduced by
around 50% (i.e., from 14% to 7%) due to generation from smart
P&IDs instead of manual specification. Finally, the efforts for de-
ployment and testing get reduced by 20% (i.e., from 14% to 11%),
since the automatic code generation reduces the potential for man-
ual errors and shifts testing to systematic errors in the generation.
Overall, the efforts reduction sums up to around 21%, which means
a project where these activities cost 500 KUSD could potentially
save 105 KUSD.

7.4 Domain Expert Feedback
We discussed our case study results with five domain experts, who
are regularly involved with requirements specification and control
logic engineering for the targeted production processes. All domain
experts deemed the CAYENNE rule-based approach as potentially
useful and supportive for their work, because it automates specific
manual steps. The domain experts emphasized the safety criticality
of interlocks, which requires careful manual review and formal
approval by safety experts. The generation process must respect
this context and provide the involved engineers detailed feedback
on the generation and allow humans to override the rule engine if
needed. An engineering contractor wants to retain full control of
the interlock specification due to the involved safety accountability.

The domain experts also pointed out that some rules may need
more refinement. For example, a rule checking for an overflow tank
may require taking the severity level of the tank into account. A
simple non-critical water tank would need a different treatment
than a tank dealing with acids, which may harm equipment and
humans, and thus potentially not require the same interlocks. They
also raised concerns that a rule-based generation could end up in
“too many” interlocks if the rule base was not carefully configured,
which a human engineer would have not specified due to experi-
ence. Furthermore, they mentioned that there might be additional
interlocks that may be hard to capture with the current rule spec-
ification language. Nevertheless, the domain experts encouraged
extensions, refinements, and additional case studies.

7.5 Result Validity
We discuss the construct, internal, and external validity of our case
studies. The construct validity refers to the appropriateness of the
artifacts and procedures in the case studies to resemble realistic
settings. In our case, the construct validity is supported by the use
of real plant specifications for non-trivial production plants. We did
not use customer-specified smart P&IDs so far due to missing tool
support, but created according ones based on the original P&IDs in
MS Visio.We had researchers carrying out the rule specification and
execution of the rule engine, which are not the actual target users.
However, we used iterative domain expert feedback to improve the
design of the rule language and tooling.

To assure internal validity, we compared the interlocks gener-
ated with the rule-based approach with formerly manually specified
interlocks in C&E matrices. This provides an initial validation of
our rule engine. However, when the approach and the rule set is
extended with more features and additional rules, a more system-
atic testing for false positives, contradicting rules, and possibly
redundant rules is required.

The external validity refers to the transferability of the results
to other situations. To improve the external validity, we analyzed
four different cases and found that a number of generated inter-
locks apply across different plants (Metric M3). Still, more cases in
additional application domains need to be analyzed to improve the
external validity further. It would also be helpful to focus a future
study on multiple more homogeneous plant specifications (e.g., 10
processes specifically for carbonic acid production), which could
provide a refined view of ’generic’ and ’process-specific’ rules.

8 RELATEDWORK
Automated code generation is one element of model-driven soft-
ware development, which has been researched in general software
engineering [25], as well as specifically for industrial automation
software applications [20, 29, 30].

Researchers proposed several methods for rule-based control
logic generation. Drath and Fay [12] generate C&E matrices from
AutomationML files, which can include P&ID-related information.
Steinegger et al. [26] follow a similar approach, but take more kinds
of requirements specifications into account and generate control
logic for different purposes. Grüner and Epple [15] use the Neo4J
graph database to represent a plant topology and generate control
logic using graph queries. None of these approaches was applied in

9

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

ICSE ’20, May 23–29, 2019, Seoul, South Korea Koziolek, et al.

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

larger case studies nor featured a custom-designed rule language
as the CAYENNE method.

Researchers have also worked on methods to generate IEC 61131-
3 control logic from UML diagrams instead of smart P&IDs [20]. This
requires formulating EPC requirements using UML, which goes
against current practices, as process engineers are not familiar with
the UML notation. Vogel-Heuser et al. [28] implemented code gener-
ators from UML class and activity diagrams for a commercial CASE
tool. Thramboulidis and Frey [27] sketched a model-driven develop-
ment process using P&IDs and SysML to generate IEC 61131-3 code.
Hästbacka et al. designed an UML Automation profile to express
EPC requirements in UML and generated IEC 61131-3 code from the
UML models. These approaches require an intermediate UML rep-
resentation, while the CAYENNE approach directly extracts control
logic code out of EPC requirements.

Automated model or code generation from natural language re-
quirements is another area of software engineering research. As the
requirements for software applications are mostly formulated in
natural language instead of semi-formal notations, such as C&E ma-
trices, it is much harder to use them in a code generation tool chain.
Gelhausen and Tichy [14] generate UML models from constrained
natural language representations. Deeptimahanti et al. [11] imple-
mented a tool for the generation of UML models by identifying
classes and stereotypes in natural language specifications. These ap-
proaches are mostly constrained by the capabilities of information
retrieval and text mining techniques.

9 CONCLUSIONS
This paper has reported on findings from four case studies, where
the rule-based CAYENNE approach automatically generated IEC
61131-3 control logic by analyzing formal requirements documents
(P&IDs). We have mined more than 90 code generation rules from
the cases to assess the practicability of rule-based generation ap-
proaches in general. The results indicate that potentially more than
70 percent of the interlocking logic could be generated from rules
that are applicable across plants, although our study has demon-
strated this only to a lesser extent due to the heterogeneity of the
analyzed cases. The cost savings potential was estimated to be
approximately 21 percent.

Practitioners can utilize the results to implement their own rule-
based generation approaches taking into account the expected cost
savings. Furthermore, due to the promising results, they could moti-
vate their customers to utilize standard notations for requirements
specification, such as the DEXPI ISO 15926 format for P&IDs. Re-
searchers can extend existing methods or devise new methods for
rule-based control logic generation. Interesting areas of research
are for example code generation rules for other parts of control
logic, beyond interlocks. Topological models derived from smart
P&IDs can also be exploited for simulation, HMI generation, or
training operator assistents.

As future work, we will enhance and extend the CAYENNE
approach to increase its technology readiness level. An importer for
the DEXPI ISO 15926 will enable processing P&IDs from all major
CAD-tools. Additional case studies target extending and refining
the mined rule set. Investigating more similar plants could yield

tailored rule sets for specific domains. Rules need to be established
for other kinds of control logic to save more engineering costs.

REFERENCES
[1] [n.d.]. https://de.codesys.com/.
[2] [n.d.]. https://www.beckhoff.de/twincat3/.
[3] [n.d.]. https://dexpi.org.
[4] [n.d.]. https://www.automationml.org.
[5] [n.d.]. https://plcopen.org/.
[6] [n.d.]. https://github.com/IronyProject/.
[7] [n.d.]. https://www.modelica.org/.
[8] [n.d.]. https://openmodelica.org/.
[9] Esteban Arroyo, Mario Hoernicke, Pablo Rodríguez, and Alexander Fay. 2016.

Automatic derivation of qualitative plant simulation models from legacy piping
and instrumentation diagrams. Computers & Chemical Engineering 92 (2016),
112–132.

[10] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. 1994. The goal
question metric approach. Encyclopedia of software engineering (1994), 528–532.

[11] Deva Kumar Deeptimahanti and Muhammad Ali Babar. 2009. An Automated Tool
for Generating UMLModels from Natural Language Requirements. In Proceedings
of the 2009 IEEE/ACM International Conference on Automated Software Engineering
(ASE ’09). IEEE Computer Society, Washington, DC, USA, 680–682. https://doi.
org/10.1109/ASE.2009.48

[12] Rainer Drath, Alexander Fay, and Till Schmidberger. 2006. Computer-aided design
and implementation of interlock control code. In IEEE Conference on Computer
Aided Control System Design. IEEE, 2653–2658.

[13] Clayton D. (ARC Advisory Group) Forbes, H. 2018. Distributed Control Systems
Global Market 2017-2022. ARC Market Analysis. https://www.arcweb.com/
market-studies/distributed-control-systems

[14] Tom Gelhausen andWalter F Tichy. 2007. Thematic role based generation of UML
models from real world requirements. In International Conference on Semantic
Computing (ICSC 2007). IEEE, 282–289.

[15] Sten Grüner, Peter Weber, and Ulrich Epple. 2014. Rule-based engineering using
declarative graph database queries. In 2014 12th IEEE International Conference on
Industrial Informatics (INDIN). IEEE, 274–279.

[16] Georg Gutermuth. 2010. Collaborative Process Automation Systems. ISA, Chapter
Engineering, 156–182.

[17] David Hästbacka, Timo Vepsäläinen, and Seppo Kuikka. 2011. Model-driven
development of industrial process control applications. Journal of Systems and
Software 84, 7 (2011), 1100–1113.

[18] Martin Hollender. 2010. Collaborative process automation systems. ISA.
[19] Barbara Kitchenham and Shari Lawrence Pfleeger. 2002. Principles of survey

research: part 5: populations and samples. ACM SIGSOFT Software Engineering
Notes 27, 5 (2002), 17–20.

[20] Heiko Koziolek, Andreas Burger, Marie Platenius-Mohr, and Raoul Jetley. 2020. A
Classification Framework for Automated Control Code Generation in Industrial
Automation. Submitted to Elsevier Journal of Systems and Software (2020).

[21] Terje Kvangardsnes. 2009. Anti-surge control: Control theoretic analysis of existing
anti-surge control strategies. Master’s thesis. Institutt for teknisk kybernetikk.

[22] Bela G Liptak. 2018. Instrument Engineers’ Handbook, Volume Two: Process Control
and Optimization. CRC press.

[23] Martin Naedele. 2012. ABB’s software is everywhere. ABB Review 3 (2012).
[24] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting

case study research in software engineering. Empirical software engineering 14, 2
(2009), 131.

[25] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. 2006. Model-driven
software development: technology, engineering, management. John Wiley & Sons,
Inc.

[26] Michael Steinegger and Alois Zoitl. 2012. Automated code generation for pro-
grammable logic controllers based on knowledge acquisition from engineering
artifacts: Concept and case study. In Proceedings of 2012 IEEE 17th International
Conference on Emerging Technologies & Factory Automation (ETFA 2012). IEEE,
1–8.

[27] Kleanthis Thramboulidis and Georg Frey. 2011. An MDD process for IEC 61131-
based industrial automation systems. In ETFA2011. IEEE, 1–8.

[28] Birgit Vogel-Heuser, Daniel Witsch, and Uwe Katzke. 2005. Automatic code
generation from a UML model to IEC 61131-3 and system configuration tools. In
2005 International Conference on Control and Automation, Vol. 2. IEEE, 1034–1039.

[29] Valeriy Vyatkin. 2013. Software engineering in industrial automation: State-of-
the-art review. IEEE Transactions on Industrial Informatics 9, 3 (2013), 1234–1249.

[30] Chia-Han Yang, Valeriy Vyatkin, and Cheng Pang. 2014. Model-driven develop-
ment of control software for distributed automation: a survey and an approach.
IEEE Transactions on Systems, Man, and Cybernetics: Systems 44, 3 (2014), 292–305.

10

https://doi.org/10.1109/ASE.2009.48
https://doi.org/10.1109/ASE.2009.48
https://www.arcweb.com/market-studies/distributed-control-systems
https://www.arcweb.com/market-studies/distributed-control-systems

	Abstract
	1 Introduction
	2 Control Logic Engineering
	3 CAYENNE Rule-based Engineering
	4 CAYENNE Implementation
	5 Case Study Methodology
	5.1 Goal/Question/Metric
	5.2 Case Sampling
	5.3 Data collection

	6 Case Analysis
	6.1 Overview
	6.2 Plant 2
	6.3 Plant 3

	7 Cross-Case Findings
	7.1 Mined Rule Set
	7.2 Effectiveness
	7.3 Estimated Effort Reduction
	7.4 Domain Expert Feedback
	7.5 Result Validity

	8 Related Work
	9 Conclusions
	References

