
A Classification Framework for Automated Control Code Generation
in Industrial Automation
Heiko Kozioleka, Andreas Burgera, Marie Platenius-Mohra and Raoul Jetleyb
aABB Corporate Research Center Germany, Wallstadter Str. 59, D-68526 Ladenburg, Germany
bABB Corporate Research, Bhoruka Tech Park, ITPL Main Rd, Mahadevapura, Bengaluru, Karnataka 560048, India

ART ICLE INFO
Keywords:
Software Design and Implementation
Industrial Automation
Control Engineering
Model-driven Development
Code Generation
UML / SysML

ABSTRACT
Software development for the automation of industrial facilities (e.g., oil platforms, chemical plants,
power plants, etc.) involves implementing control logic, often in IEC 61131-3 programming lan-
guages. Developing safe and efficient program code is expensive and today still requires substantial
manual effort. Researchers have thus proposed numerous approaches for automatic control logic gen-
eration in the last two decades, but a systematic, in-depth analysis of their capabilities and assumptions
is missing. This paper proposes a novel classification framework for control logic generation ap-
proaches defining criteria derived from industry best practices. The framework is applied to compare
and analyze 13 different control logic generation approaches. Prominent findings include different
categories of control logic generation approaches, the challenge of dealing with iterative engineering
processes, and the need for more experimental validations in larger case studies.

1. Introduction
Software development for industrial automation appli-

cations requires substantial design and implementation ef-
forts [1]. Besides various client-server applications for su-
pervision and monitoring in this domain, time-critical con-
trol software runs on real-time controllers andmanages com-
plex production processes of chemical plants, power plants,
oil platforms, pulp and paper mills, or steel mills [2]. Con-
trol engineers often create this control software in program-
ming languages according to IEC 61131-3, namely function
block diagrams, structured text, sequential function charts,
ladder diagrams, or instruction lists [3]. The software exe-
cutes cyclically and computes control signals for actuators,
such as valves, motors, or robots, based on periodically sam-
pled sensor signals as inputs (e.g., for temperature, flow,
pressure, level, etc.). The software ensures efficient and safe
execution of the production process. The development of
this software is embedded into a larger engineering process
that also covers hardware engineering, HMI development,
and device configuration [1].

Engineering industrial plants is an expensive process to-
day and may require several person years for a mid-sized
plant with several thousand I/O points [1]. Requirements
and designs for such plants come from automation cus-
tomers or engineering contractors, who often provide mostly
informal specifications. Control engineers of automation
providers partially import these specifications into engineer-
ing software tools and manually interpret them to implement
the required control logic [4]. This process exhibits media
discontinuities, where data is manually transformed between
different formats. This may lead to data inconsistencies re-
quiring time-consuming feedback loops with the customer.
Furthermore, control engineers often use low-level program-
ming abstractions [5] and execute repetitive implementation
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tasks because of missing reusable components [6]. Manu-
ally written code needs to be tested thoroughly to ensure safe
plant operation.

Due to the high engineering costs, practitioners and re-
searchers have sought methods and tools for automating con-
trol logic development [7]. Practitioners introduced bulk en-
gineering to semi-automatically deal with list-based specifi-
cations and created engineering libraries to bundle reusable
functionality [1]. Researchers worked on higher-level mod-
eling languages (e.g., applyingUMLor SysML for industrial
automation [8]) and proposed rule-based code generation
approaches [9]. An overview of these approaches is missing,
which complicates identifying and selecting an appropriate
approach or to identify research opportunities. Existing lit-
erature reviews in this area [7, 5, 10, 11, 12] usually do not
focus on the aspect of automatic code generation and rather
provide coarse-grained descriptions of several selected ap-
proaches. They do not provide detailed classification frame-
works nor mirror existing approaches against requirements
from practice. In this work, we aim to close this gap.

The contribution of this paper is a classification frame-
work for automated code generation approaches for IEC
61131-3 control logic. The classification framework de-
fines categories and criteria to evaluate such code genera-
tion approaches. This can help researchers and practition-
ers to compare different approaches regarding their capabili-
ties. Using the classification framework, this paper analyzes
13 different code generation approaches from literature in
the last 15 years. This analysis identifies patterns and com-
monalities between the approaches as well as research gaps.
Based on findings from the comparison, this paper also dis-
cusses implications and required future work.

The 13 approaches map into three different categories:
rule-based engineering, higher-level programming, and
higher-level programming using a plant structure as input.
Approaches within the same category use similar input spec-
ifications. Most approaches have been demonstrated on
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small lab examples so far, some approaches were tested in
student experiments. Challenges for all approaches are miss-
ing support for standard input formats, iterative engineering
processes, and dealing with natural language requirements.
Recent standardization initiatives could improve the situa-
tion, warranting further research and more extensive valida-
tions.

This paper is structured as follows. Section 2 recaps
basics of control logic generation using a running exam-
ple, sketches a generic transformation process, and surveys
inputs available in practice. Section 3 describes the re-
search methodology underlying this study, provides a short
overview on the identified approaches, and then proposes
and explains our classification framework. Section 4 applies
the classification framework to the 13 identified approaches
and provides a detailed analysis of their inputs, transforma-
tions, and outputs. Section 5 discusses selected findings
from the comparison in Section 4 and sketches challenges
to be tackled in future work. Section 6 analyzes threats to
validity of the present study, and Section 7 summarizes re-
lated work. Section 8 concludes the paper.

2. Control Logic Generation: Basics and
Requirements
Control engineers design and implement control logic

based on customer requirements and design specifications
as well as available control libraries and industrial stan-
dards [1]. This section provides an overview of the avail-
able customer inputs in practice, requirements, methods, and
tools for model transformation and code generation, as well
as different types of outputs, in terms of the different control
logic parts and storage formats. Fig. 1 provides a generic
process model for control logic generation, whose different
elements will be detailed in the following. Section 2 de-
scribes the available inputs in detail, Section 2 explains each
of the six transformation steps starting with “Input Valida-
tion”, and Section 2 provides concepts and examples for out-
puts of the transformation.

Today, the implementation of control logic in practice
is usually only partially making use of code generation, for
example by importing information from I/O lists to cre-
ate signal variables for the control code [1]. As a result,
the implementation process still requires control engineers
a significant amount of manual interpretation to translate
the customer specifications into control algorithms, which
makes this procedure time-consuming and error-prone. Ap-
proaches for control logic generation aim to increase the
amount of generated code, both to shorten implementation
time and to improve quality. This section uses a running
example of a simple production process to illustrate the con-
cepts. It is based on the Festo MPS PA Compact Worksta-
tion1, a minimal didactic plant for educational purposes [13].

1https://bit.ly/2XWjmfk

2.1 Inputs
The inputs used by engineers for control logic imple-

mentation vary across different application domains. Ac-
cording to ANSI / ISA 5.06.01-20072 (Functional Require-
ments Documentation for Control Software Applications),
a User Requirements Specification (URS) includes piping
and instrumentation diagrams (P&IDs), an instrument list,
and process flow diagrams. From these artifacts, instrument
tag table (or I/O list), interlock matrix, sequence matrix, and
Human Machine Interface (HMI) are developed. These ar-
tifacts are used as the Functional Requirements Specifica-
tion (FRS), which also pertains other aspects besides con-
trol logic. However, projects often do not strictly follow this
guideline and provide other or alternative artifacts. The fol-
lowing paragraphs detail P&IDs, I/O lists, logic diagrams,
control narratives, and flow charts, because they are the most
important inputs specifically for designing and implement-
ing the control logic.

P&IDs: A P&ID provides a graphical overview of a
plant segment. There can be hundreds of P&IDs to describe
a larger plant. For control logic engineering, they provide an
important overview of a plant and show the connections be-
tween the different instruments besides some explicit control
loops. Fig. 2 shows an exemplary P&ID for a process where
two substances are mixed, heated, and then pumped into an-
other tank. The diagram includes two large tanks (column
shapes T101, T102), a pump (large circle with inner spike),
a motor (circle labeled ’M’), valves (small triangles), pipes
(lines), and various instruments (circles), which are typical
P&ID elements. The instruments describe required temper-
ature / flow / pressure / level sensors, controllers, and actua-
tors (e.g., valves, heaters). There are different standards for
the shapes (e.g., ISO 10628, ANSI/ISA 5.1) and identifica-
tions in P&IDs (e.g., IEC 62424/ISO 3511, ISO 14617-6,
ANSI/ISA 5.1) [14].

Nowadays, engineers usually specify P&IDs with ded-
icated CAD tools, such as AutoCAD P&ID3, SmartPlant
P&ID4, COMOS P&ID5, or OpenPlant P&ID6. Addition-
ally, generic drawing tools support P&ID visual shapes (e.g.,
from ISO 10628), such as Visio7, Edraw8, or Lucidchart9.
Common file formats are AutoCAD DWG for generic draw-
ings (binary) and the AutoCAD DXF interchange format
(plain text). Several tools also support exports of equipment
and instrument lists to Microsoft Excel tables. However, in
today’s engineering projects P&IDs are often only available
as PDF exports containing bitmaps for control engineers.
Typically, this is not a problem to date, as they are usually
subject to manual interpretation.

For automatic control logic generation, such an input is
2https://www.isa.org/store/ansi/isa-50601-2007-functional-

requirements-documentation-for-control-software-applications/116719
3https://www.autodesk.com/
4https://hexagonppm.com/
5https://www.siemens.com/comos
6https://www.bentley.com/
7https://visio.microsoft.com/
8https://www.edrawsoft.com/
9https://www.lucidchart.com/
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Figure 1: Generic control logic generation process: six transformation steps with numerous inputs and outputs
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Figure 2: Running Example: P&ID describing equipment and
instruments.

however problematic. To overcome the challenge of dealing
with bitmaps or vector-graphics, there are proposals to per-
form optical symbol and character recognition on the PDF
files [15, 16]. Additionally, the DEXPI initiative10 is work-
ing on a common XML P&ID file format based on ISO
1592611. The CAEXXML file format (IEC 6242412) as part
of AutomationML (IEC 6271413), can be coupled with ad-
ditional P&ID libraries (e.g., PandIX [17]). However, there
are hardly any commercial CAD tool P&ID exporters for
CAEX [18] available so far.

I/O lists: Fig. 3 shows a simplified I/O list for the run-
ning example. A complete I/O list may include thousands of
signals. Each row is dedicated to a single signal. There are
many columns specifying properties of signals (tag name,
revision, service description, location, value ranges, engi-

10https://dexpi.org/
11http://15926.org/
12https://webstore.iec.ch/publication/25442
13https://webstore.iec.ch/publication/32339

Tag Number Service Location P&ID …

Point 

Type Signal Type …

Range 

Min

Range 

Max

Engin. 

Unit …

Alarm 

Low

Alarm 

High

Controller 

Algorithm …

LS101.1 T101 Level P-12001 1234 AI 4-20 mA 0 100 % 20 80 PID ideal

TI101.2 T101 Temp. P-12001 1234 AI 4-20 mA 15 95 °C 20 85 PID std

LS101.3 T101 Level P-12001 1234 AI 4-20 mA 0 100 % 20 80 PID ideal

LAS101.4 T101 Level P-12001 1234 AI 4-20 mA 0 100 % 20 80 PID ideal

YS101.5 Inlet T101 Valve P-12002 1234 DO 24 VDC - - - - - -

FI101.6 Flowmeter P-8 P-12001 1234 PI Pulse 0 100 m³/h - - -

UC101.7 Pump Motor P-12003 1234 DO 24 VDC - - - - - PID std

NC101.8 Pump Motor P-12003 1234 DO 24 VDC - - - - - PID std

YS101.9 Outlet T101 Valve P-12004 1234 DO 24 VDC - - - - - -

LI102.1 T102 Level P-12005 1234 AI 4-20 mA 0 100 % 10 90 PID ideal

LS102.2 T102 Level P-12005 1234 AI 4-20 mA 0 100 % 10 90 PID ideal

YS103.1 Inlet T102 Valve P-12006 1234 DO 24 VDC 0 100 % - - -

YS103.2 Inlet T101 Valve P-12007 1234 DO 24 VDC 0 100 % - - -

E104 Heater T101 P-12005 1234 DO 24 VDC 0 100 % - - PID std

Basic Point Data I/O  Data HMI Data Operating Data

Figure 3: Running Example: IO List describing signal proper-
ties.

neering units, alarm limits, typical assignment, wiring types,
references to P&IDs, etc.). There are no industry standards
for these properties, but companies usually use guidelines or
internal standards. I/O lists are also known as tag lists, in-
strument or signal indices. Control engineers consider them
as one of the most important inputs and they are usually pro-
vided in the form of large tables [1].

In the context of control logic generation, I/O lists can
be automatically imported into control engineering tools to
create tags and I/O objects that then can be connected with
function blocks to form the whole control logic. Control en-
gineers then need write glue logic (e.g., recipes, interlocks)
among them. In addition to I/O lists, there can be electrical
plans according to IEC 60617 [13].

Control Narratives [1]: These prose writings describe
the intended control algorithms in an informal way, usually
in a Microsoft Word document or PDF file. They may re-
fer to tag names from the I/O list and provide steps for the
startup/shutdown of a plant or setpoints for regulatory con-
trol as well as alarm procedures. This notation is easy and
fast to create. It also allows the engineering contractor to ab-
stract from technical specifics of the target automation sys-
tem (e.g., available typical libraries), and thus enables con-
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Figure 4: Running Example: Recipe as �ow charts.

trol engineers to optimize the logic (e.g., by mapping the
intended logic to vendor-specific typicals).

Logic Diagrams: ISA5.2-1976 (Binary Control Logic
Diagrams for Process Operations)14 provides guidelines to
create diagrams for binary interlock and sequencing systems
for startup, operation, alarm, shutdown of equipment and
processes. Input and output signals can be connected via
AND/OR/NOT gates, as well as symbols to express timing
relations. This notation is already similar to the actual con-
trol logic and therefore comparably easy to translate to it.
Engineering contractors usually create logic diagrams with
CAD tools or generic drawing tools. The structure and for-
mat of the used logic blocks may vary between different or-
ganizations, which can complicate the control logic genera-
tion.

FlowCharts: Sequential control flow or recipes can also
be expressedwith ordinary flow charts15. Fig. 4 shows a flow
chart for the running example plant in a notation similar to
UML activity diagrams. It consists of three phases. First,
by opening valve 103.2, tank T102 is drained to transfer
both substances in T101. Subsequently, the reaction starts
in phase 2. The valves 101.5 and 101.9 open. Afterwards,
the heater E104 and the pump driven byNC101.8 start. Once
the temperature reaches 70 degree Celsius, pump and heater
switch off and valve 101.5 closes. Finally, tank T101 is
drained using the pump in phase 3.

A specific flow chart notation is GRAFCET (“GRAphe
Fonctionnel de Commande Etapes/Transitions”, IEC
6048416). It is a standardized graphical modeling language
for designing controller behavior [19]. GRAFCET was
developed in France in the late 1970s, where it gained some
industry adoption, and was also integrated into the cur-
riculum of control practitioners in Germany. IEC 61131-3
Sequential Function Charts (SFC) are based on GRAFCET
and are considered as one of its possible implementations.

14https://goo.gl/VpfpD4
15https://www.iso.org/standard/11955.html
16https://webstore.iec.ch/publication/36840

UML or SysML17-based flow chart notations are rather
uncommon for engineering contractors and control engi-
neers [20, 21, 19]. Researchers have previously developed
several UML profiles for process automation (e.g., UML-
PA [22]), but they never became formal OMG specifica-
tions18. CODESYS UML19 and TwinCAT3 UML20 allow
the specification of class and state diagrams, but are meant
for control engineering programmers, not automation cus-
tomers. ANSI/ISA-8821 provides a standard notation for
recipes in batch applications. While a mapping from UML
state diagrams to IEC 61131-3 may be possible, an addi-
tional modeling tool adds complexity to the tool chain [19].
Some engineering contractors therefore directly use SFCs to
specify sequences.

Other Inputs: Additional inputs may assist control en-
gineers in designing and implementing control logic.

• Alarm Lists [13]: specify alarm limits and support
writing control logic to handle alarms.

• Cause & Effect Matrices (C&Es) [23, 9]: provide a
streamlined table to interconnect signals, which en-
ables generating interlocking control code. They can
be partially or fully provided from engineering con-
tractors due to safety regulations (ISO 10418).

• Control Logic Libraries [24]: containing pre-specified
function blocks that capture higher-level domain
knowledge.

• Legacy Control Code [25, 26]: often available in mi-
gration (brownfield) projects. They can sometimes be
translated into the control code of the target automa-
tion system.

• Domain Specific Inputs: these include for exam-
ple System Control Diagrams (SCD) for NORSOK-
compliant oil and gas facilities [18], or Scientific
Apparatus Makers Association (SAMA) logic draw-
ings22 for power generation plants.

2.2 Transformations
Transforming the available inputs into valid control logic

output requires a number of steps (Fig. 1) as detailed in the
following.

Input Validation: Inputs for control logic generation re-
quire consistency and completeness checks [27]. Human en-
gineers specify these artifacts often in an incremental man-
ner with multiple data exchanges between engineering con-
tractor and automation provider. Therefore, the data may be
incomplete and the different artifacts may be inconsistent.
For example, the I/O list in Fig. 3 may be missing specified
ranges or specific tag names might be inconsistent with the

17https://sysml.org/
18https://www.omg.org/spec/category/uml-profile
19https://store.codesys.com/codesys-uml.html
20https://www.beckhoff.com/english.asp?twincat/tf1910.htm
21https://www.isa.org/isa88/
22https://automationforum.co/what-is-sama-diagram/
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P&ID. The P&ID may contain unconnected pipes or miss-
ing properties of certain instruments. Sometimes the utilized
CAD tools already provide consistency and completeness
checks, but in other cases input validation by the automation
provider is required. This is crucial for control logic gener-
ation, since the applied algorithms cannot reliably compen-
sate for invalid inputs in contrast to a human engineer.

Pre-processing: Some input artifacts are subject to pre-
processing, usually to simplify the later translation or to sup-
port different output formats. This may be implemented us-
ing in-place model transformations (i.e., endogenous trans-
formations) or mapping to intermediate models (i.e., ex-
ogenous transformations) [28]. For example, the P&ID in
Fig. 2 could be enhanced with flow paths to simplify code
generation [9]. A code generation approach can also map
heterogeneous input data artifacts to a common intermedi-
ate model so that the code generation becomes less com-
plicated [13, 16]. Unstructured data, such as Control Nar-
ratives, may require human labeling or annotations, so that
text mining approaches can perform appropriate information
retrieval. For example, a setpoint for the motor controller of
the running example could be obtained from a narrative via
text mining and then later be used in code generation.

Translation: Additional exogenous transformations
translate input artifacts conforming to specific meta-models
to output artifacts conforming to other meta-models [28]. In
case of logic diagrams or flow charts (cf. Fig. 4) being used,
this involves an almost straightforward mapping to function
block diagrams or sequential function charts (Fig. 5). In
these cases, the underlying meta-models have a high simi-
larity.

Other input artifacts, such as P&IDs and control narra-
tives, require specially prepared code generation rules stored
in a knowledge base [29]. Such rules can encode domain
knowledge, e.g. referring to the running example “if the
filling level of a tank (e.g., T101) is too high, then close
a valve (e.g., via YS103.2) connected to an inlet to the
tank” [9]. Rules may pertain different aspects of control
logic, such as safety interlocks, sequences, diagnostic rou-
tines, or optimizations. Rules may be generic, domain-
specific, or project-specific. Ideally, they are formulated in
a domain-specific language familiar with the control engi-
neers [30, 31].

Merging: The incremental nature of the engineering
process, where partial input artifacts are exchanged multi-
ple times between customers, engineering contractors, and
automation providers in successively higher refinement and
completion states, makes a one-shot translation impracti-
cal [27, 29]. In the running example, an engineering contrac-
tor may add new instrumentation to the P&ID and I/O list,
e.g., a new pressure sensor for one of the pipes, or change
specific tagnames or alarm limits. Blindly overwriting code
from former generation iterationsmay be problematic in case
control engineers have already enhanced or optimized the
codemanually. Therefore, code generation has tomerge new
additions from these refinements into IEC 61131-3 code al-
ready generated in previous translations. The model trans-

formation first needs to analyze the formerly generated code
and properly merge the new additions. It also needs to pro-
tect manually written code and report any inconsistencies or
incompleteness back to the control engineer.

Documentation: A control engineer needs to under-
stand the model transformation process to be able to detect
systematic errors and to speed up root cause analysis in case
of code generation errors. To support this requirement, a
model transformation can, for example, create a report of the
code generation process, that provides a detailed list of the
applied code generation rules as well as any warnings and
errors that may have occurred in the process. Ideally, such a
report allows directly accessing the erroneous input artifacts,
affected rules or the code generation output to check. Be-
sides creating more confidence of the control engineer, such
a documentation could also support testing and qualification
processes.

Backpropagation: Manual additions and changes to the
generated code may need to get propagated back to the in-
put artifacts. This supports a shared understanding for the
engineering contractor and control engineer and also serves
documentation purposes (i.e., to always have an up-to-date
design and specification). For the running example, changed
tag names or alarm limits may need to get translated back
from the control code to the P&IDs or I/O lists. This require-
ment suggests that the model transformation should support
some form of bidirectionality. The level of bidirectionality is
naturally higher formeta-models with higher similarity (e.g.,
flow charts and sequential function charts). In practice, such
a return path from the control code back to the engineering
contractor is rarely seen today because of the expensiveman-
ual overhead. This practice often leads to outdated and in-
consistent planning documents over the course of the plant
life-cycle.

To implement the described transformation steps, there
is a plethora of method and tools for model-to-model (M2M)
and model-to-text transformations (M2T). Transformations
can be implemented with generic programming languages,
such as Java, C++, C# in case the input artifacts are avail-
able as object-oriented models. XML files may directly
be mapped to other XML files using XSLT/XQuery. The
OMG’s QVT (Query/View/Transformation) is a standard-
ized set of languages for model transformations, including
imperative (QVT-O) and declarative (QVT-R) transforma-
tion languages. The Eclipse ecosystem includes a num-
ber of M2M-transformations (Epsilon, Eclipse MMT) and
M2T-transformations (Acceleo, JET, Xpand, Xtext), besides
a common metamodel (Ecore) and tools to create graphi-
cal editors. There are extensible IDEs for control logic code
available (e.g., 4DIAC23 or Hardella24 based on mbeddr25).
2.3 Outputs

Many commercial automation systems are still based
on software development platforms mostly compliant to

23https://www.eclipse.org/4diac/i
24https://github.com/Hardella/ide61131
25http://mbeddr.com/
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the IEC 61131-3 specification [32] for programmable con-
trollers. This standard was originally published in 1993
and defines five programming languages: ladder diagrams
(LD), function block diagrams (FBD), sequential function
charts (SFC), structured text (ST) and instruction lists (IL).
IEC 61499 was published in 2005 as a partially backward-
compatible enhancement of IEC 61131-3 with event-driven
concepts, but has not gained widespread adoption in practice
so far [33], although a number of academic approaches used
it.

SFC: Fig. 5 shows an IEC 61131-3 SFC based on the
recipe specification for the running example in Fig. 4. It in-
cludes four steps, which, in the tables on right-hand side,
each trigger the setting (S) and resetting (R) of certain sig-
nals. The transitions between the steps (black bars) are trig-
gered by function blocks on the left-hand side and involve
simple timers and threshold conditions. This kind of control
logic can be generated for example by mapping flow charts
to SFCs or interpreting control narratives.

FBD: Fig. 6 shows an IEC 61131-3 FBD for a number of
interlocks within the running example. On the left-hand side
the diagram lists input signals, which trigger specific output
signals on the right-hand side. In this example, inputs and
outputs are connected by simple boolean (AND) and arith-
metic (LE, less equal, GE, greater equal) function blocks as
well as timers (TON/TOF).

ST: Fig. 7 shows an IEC 61131-3 ST code snippet from
the running example. The syntax of ST is similar to the
Pascal programming language. It supports variable assign-
ments, if/case/for/while/repeat statements, as well as point-
ers and function calls. The language also provides constructs
to define function blocks as higher-level programming con-
structs. ST is often preferred for more complex mathemati-
cal computations in control logic.

Other outputs: Ladder diagrams are particularly popu-
lar in North America, where many control engineers are not

interlocks

Seite: 1

P101_ON_var

AND

IN1

IN2

IN3

OUT O_P101_ON

O_P101_ctrlMode

AND

IN1

IN2

OUT

AND

IN1

IN2

OUT
LE

IN1

IN2

OUT

I_LS_101_3

TON0

TON

IN

PT

Q

ET

I_FI_101_6

0.7

O_P101_ON

T#2s

TOF0

TOF

IN

PT

Q

ET

AND

IN1

IN2

OUT

AND

IN1

IN2

IN3

OUT

LE

IN1

IN2

OUT

T#2s

O_YS_103_1_open

GE

IN1

IN2

OUT

AND

IN1

IN2

IN3

OUT O_E104_ON

O_YS_103_1_open

O_P101_ON

90

I_LI_102_1

V103_1_open_var

I_TI_101_2

120

I_LS_101_3

E104_ON_var

Figure 6: Running Example: Function Block Diagram (FBD).

IF I_TI_101_2 >= 70 THEN (* t empe ra tu re > 70 deg r e e s *)
P_101_ON_VAR := FALSE ; (* s top pump *)
E_104_ON_VAR := FALSE ; (* s top heat exchange r *)
CMD_TMR( IN := 2 . 0 ) ; (* wa i t f o r 2 seconds *)

END_IF ;

Figure 7: Running Example: Structured Text (ST).

familiar with the IEC 61131-3 standard26, while FBD, ST,
and SFCs are more popular in other parts of the world. ILs
have been labeled ‘deprecated’ in the latest release of the
IEC 61131-3 specification. The PLCopen association pub-
lished the first XML formats for IEC 61131-3 in 2005 [32],
and has by now refined the specification as IEC 61131-10
PLCopen XML exchange format.

Today, control logic implementation is often based on
instantiating template function blocks, so-called “typicals”,
e.g., for valves, motors, from a function block library. A
code generator can largely automate this task by exploiting
properties in I/O lists which often allow a one-to-one map-
ping of signals to typicals available in specific libraries, also
known as bulk engineering [1]. Besides the initial variables
for signals and the instantiated function blocks, the control
logic code consists of a number of different segments for dif-
ferent purposes [34]. These include handling the nominal
sequence (e.g., PID loops), alarms, startup/shutdown, asset
monitoring, operations, diagnosis, interlocks, controller-to-
controller communication and timeouts. Code generation
should address as many of these segments as possible to
lower the manual implementation effort.

Besides the control logic generation itself, a model trans-
formation tool chain for typical customer input artifacts can
also be exploited for other purposes. The generation of sim-
ulation models can support factory acceptance tests or plant
modifications [35, 16]. Connections to HMIs may be gen-

26https://www.controleng.com/articles/iec-61131-3-whats-the-
acceptance-rate-of-this-control-programming-standard/
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erated and also process graphics can be partially generated
out of P&IDs [36, 37]. Intermediate models for code gener-
ation may also be used during the plant life cycle to create
queries about the plant and to find root causes of plant-wide
disturbances [38].

3. Classification Framework
3.1 Methodology

The objective of the present study is to classify research
approaches for IEC 61131-3 code generation from the view-
point of a practicing control engineer. A detailed breakdown
of each method’s inputs and outputs helps to better under-
stand the context the researchers assumed and the method’s
capabilities. The classification supports identifying patterns
between the approaches and to assess their maturity levels.

We identified corresponding approaches using Google
Scholar, IEEE Digital Library, and ACM Library using the
search term “61131 AND control AND code AND (gener-
ation OR transformation OR automatic OR automated OR
model-driven)” [39]. The search initially identified 5350
works. From the search results, we applied the following in-
clusion criteria to focus on our research objective and view-
point:

• IEC 61131-3 control code: Included approaches use
at least one of the five IEC 61131-3 languages as out-
put to cover a large range of commercial and open
source control systems. Excluded are approaches
for example involving IEC 61499 [40, 41, 42, 43],
C-code, Simulink, or other PLC programming lan-
guages, because they are either less widespread in
practice or tackle different application domains.

• Code Generation: Included approaches provide con-
cepts and possible implementations aiming at actual
code generation. Excluded are approaches that ap-
ply model transformation on automation requirements
for other purposes (e.g., simulation [35, 16], test case
generation [44], asset management [45], loop per-
formance assessment [38], HAZOP analysis [46]).
While additional transformation targets are helpful to
improve engineering, we limit the study to details of
code generation as we aim at a deeper understanding
of that process.

• Uses Inputs typically used in Practice: Included
approaches rely on at least one of the inputs listed
in Section 2, e.g., I/O lists, P&IDs, flow charts.
This excludes approaches requiring for example Petri
Nets [47, 48, 49, 50] or timed automata [51] as input,
which are not used in practice today.

• Journal/Conference publication: Included are peer-
reviewed approaches published in a Journal or confer-
ence proceedings. Approaches embedded into a com-
mercial offering may be highly relevant for practition-
ers (e.g., Simulink PLCCoder, CODESYSUML [52],
TwinCAT3 UML), since they include commercial

tooling and support. However, they are excluded
from the following classification to not favor a par-
ticular commercial vendor or because of a lack of re-
liable information sources. Rivops AutoGen27 gener-
ates control logic from an equipment list using Python
scripts, andmost commercial DCS products offer sim-
ilar functionality (e.g., Simatic PCS7, Yokogawa Au-
tomation Design Suite). DEIF PLC Link28 provides
special modeling means for wind power applications
and can produce PLCopen code. Actifsource Work-
bench29 and 4DIAC30 are examples for IDEs that can
generate control code, but are also considered out of
scope for this paper.

• Published after 2004: Included are papers less than
15 years old to keep the classification concise, so that
approaches from the 1990ths are neglected. We as-
sume that the conceptual contributions of these early
approaches have influenced the design of the more re-
cent approaches classified within this paper.

We applied a forward/backward reference search [53]
on the identified approaches to increase literature cover-
age. We combined multiple papers from the same authors
if they referred to the same approach (e.g., [13, 29, 54] or
[55, 56, 19, 57, 58]. Some of the excluded works will be
discussed in Section 7.
3.2 Approaches Overview

Our survey contains 13 approaches from 2005-2018
(Fig. 8) within the inclusion criteria. In total they have been
referenced by other works 679 times. All approaches origi-
nate from European researchers (only Lukman et al. [5] has a
co-author from the US). This corresponds to the observation
from Section 2 that IEC 61131-3 is more popular in Europe.

The approaches can be coarsely divided into three
classes:

1. Rule-based Generation based on Plant Structure:
These approaches [M1,M2,M3] require control en-
gineers to create a knowledge base of rules that are
later automatically applied to formalized requirements
and design documents to generate IEC 61131-3 code.
The main benefits are the high degree of automation
and the seamless integration into existing engineering
workflows and tools. Drawbacks are the difficulty to
construct robust, generic rule bases (i.e., applicable
for many projects) and the need for formalized input
artifacts so that the rules can be automatically applied.
These approaches correlate with the application do-
main process automation.

2. Higher-level Programming: These ap-
proaches [M4,M5,M6,M7,M8,M9,M10] require

27http://www.rivops.com/autogen
28https://www.deif.de/wind-power/technology/plc-link-code-

generation
29http://www.actifsource.com/
30https://www.eclipse.org/4diac/
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Figure 8: Map of Approaches (2005-2018): Arrows indicate
citations. The approaches can be divided in three classes de-
pending on whether they use a plant structure as input and
whether they use domain rules for code generation.

control engineers themselves to formalize require-
ments and design in a higher-level modeling language
(UML/SysML/GRAFCET) and then establish a
mapping between the elements of the higher-level
language and IEC 61131-3 constructs. Early Petri
Net-based approaches would also be in this class.
The main benefit is that the control engineers may
be more productive using a high-level notation than
directly IEC 61131-3. Drawbacks are the limited
amount of automation and the challenge to learn and
maintain two different notations. These approaches
mainly originate from discrete manufacturing.

3. Higher-level Programming using Plant Structure:
These hybrid approaches [M11,M12,M13] both take
the plant structure into account and require con-
trol engineers to formalize additional requirements in
higher-level languages, such as UML or SysML. They
do not use rule-based generation. While these ap-
proaches may provide a richer starting point by utiliz-
ing the plant structure, they inherit the same benefits
and drawbacks from the other higher-level program-
ming approaches.

Fig. 9 provides a high-level overview of the rule-based
generation approaches:
[M1] CAEX Transformer: This approach takes a P&ID
encoded as a CAEX XML as input and first enhances the
file with the LogIX Model to group related equipment into
lines. Afterwards it applies a set of interlocking rules on the
resulting model and generates a C&E matrix, which can be
reviewed and enhanced by control engineers. From the re-
sulting C&E matrix, a generator directly creates IEC 61131-
3 ST or FBD code.
[M2] Vienna Code Generator: The authors suggest to map
various requirements and design documents into a reference
ontology based on CAEX. Using pre-defined rules from a

LogIX Model 
Enhancer

CAEX 
P&ID

Interlock 
Generator
(Rule Base)

IEC61131-3 
Generator
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LogIX

C&E 
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Vienna Code Generator

CAEX
Importers

CAEX
Graph-query 
based Rule 

Engine
ACPLT Runtime

Neo4J 
DB

FBD ctrl 
logic

ACPLT Rule Engine

Figure 9: Rule-based generation: high-level overview. The
approaches extract information from plant topology models
and apply rule engines to generate control logic.
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Figure 10: Higher-level programming: high-level overview.
The approaches require an upfront modeling in UML/SysML
or similar notations, which are directly mapped to control logic.

knowledge base, an inference engine generates instances of
an IEC 61131 ontology containing for example interlocking
or diagnostic logic. A code generator processes this ontol-
ogy and produces 61131-3 code.
[M3] ACPLT Rule Engine: An importer converts a CAEX
plant structure XML file into a graph structure for the
Neo4J31 graph database. Using Cypher32 queries on the
graph database allows to identify certain patterns in the plant
structure and directly generating FBD control logic or dis-
covering flow paths. In this approach, the Cypher queries
encode both domain specific rules and code generation tem-
plates.

Fig. 10 shows the higher-level programming approaches,
which usually do not import any specifications, but require
manual modeling:
[M4] UMLPATranslator: A control engineer uses Artisan

31https://neo4j.com/
32https://neo4j.com/developer/cypher-query-language/
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Real-Time Studio to model units of manufacturing equip-
ment (e.g., a sorting facility) as UML classes, possibly en-
hanced by using theUML-PAprofile for process automation.
Each method of a class is further specified via a UML state
diagram. The approach proposes a mapping of these models
to IEC 61131 function blocks.
[M5] icsML: This approach requires engineers to create
XML files modeling hardware and software resources, there
is no CASE-tool support foreseen. Using XML stylesheets,
the files are mapped into PLCopen XML and then into
controller-specific languages.
[M6] PLC-Statecharts: This more formal approach is fo-
cused on providing adequate PLC semantics for UML state-
charts. Eventually, the approach was implemented for the
CODESYS framework, where a UML class diagram and
state diagram editor are provided. The approach aims at a bi-
directional mapping of the UML constructs and IEC 61131-
3 code, so that ideally, the contol engineer does not have to
deal with 61131-3 code at all.
[M7] MAGICS: Instead of using UML, the authors of
this approach defined their own domain-specific modeling
language called ProcGraph. It includes entity diagrams
and state transition diagrams and features an IEC 61131
code generator. The whole approach is accompanied by an
Eclipse-based modeling tool that allow graphical editing of
the models.
[M8] GRAFCET-Translator: This approach starts from
a GRACET (IEC 60484) specification of processes mod-
eled using Microsoft Visio and a specific stencil set. A
transformer coverts the Visio file into a Petri Net XML file
(PNML), which is then normalized to certain restricted con-
structs and finally mapped into PLCopen XML using 28
transformation rules.
[M9] SysML-AT Transformer: The authors define the
SysML-AT notation to extend SysML requirements and
parametric diagrams. The control engineer models a system
using this notation and can trigger a model-to-text transfor-
mation to get IEC 61131-3 ST.
[M10] MeiA Framework: This Eclipse-based framework
provides multiple domain-specific modeling languages for
signals and phases, for use cases, and other constructs.
While the framework supports different types of analyses, it
can also translate instances of the model into PLCopen XML
encoding IEC 61131-3 SFCs.

Finally, Fig. 11 shows three hybrid approaches that
take the plant structure into account and introduce a form
of higher-level programming. None of these approaches
however uses rule-based engineering:
[M11] SysML4IEC61131: The authors propose a
CAEX2SysML Transformator to import IEC 62424-
compliant P&IDs into the UML/SysML modeling tool
Enterprise Architect33. To reduce the gap between CAEX
and SysML, the authors propose the SysML4IEC61131
profile. The resulting SysML requirement diagrams are
semi-automatically refined with SysML block definition
diagrams and can be transformed into PLCopenXML.

33https://www.sparxsystems.de/
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Figure 11: Hybrid approaches: high-level overview. These ap-
proaches extract information from plant topology models into
higher-level programming models, let the engineers complete
the models, and then generate control logic.

[M12] AUKOTON: The AUKOTON tooling takes P&IDs,
IO lists and C&E matrices as input and maps them into
domain-specific AUKOTON models implemented using
Ecore34. Afterwards, control engineers can refine the
models further, before a PLCOpen Generator processes
them to produce IEC 61131-3 control logic.
[M13] Munich Code Generator: This approach performs
an object recognition on P&IDs images. It tries to derive
the plant hierachy from this operation and map certain
patterns in the P&IDs to pre-specified ISA-88 compliant
plant modules. A model-to-text transformation finally
produces IEC 61131 code for these modules.

After briefly introducing each approach, the following
will define detailed classification criteria to be able to com-
pare the approaches better.
3.3 Classification Criteria

Fig. 12 shows our classification criteria for the IEC
61131-3 code generation approaches. These criteria are de-
fined based on artifacts in practice (Section 2), an assumed
comprehensive transformation process (Fig. 1), and discus-
sions with domain experts for processes in oil and gas, chem-
ical, and power generation applications. The input classifi-
cation was inspired by Steinegger and Zoitl [13], while the
output classification was inspired by Guttel et al. [34]. The
following subsections will briefly explain each criterion.
3.2.1 General Properties

The General Properties cover high-level information to
understand the context and maturity of each approach. The
Publication Venue states in which journal or conference the
authors published the main approach, where journal pub-
lications may indicate a higher maturity. The Application
Domain distinguishes between discrete manufacturing and
process automation, because different inputs and constraints
may be available in a given domain. A short description of
each approach’s main Application Example helps the reader
to better understand an approach’s original context and the
maturity of each approach.

The Generation Approach summarizes the main trans-
lation idea. The Tooling summary lists accompanying soft-

34https://www.eclipse.org/modeling/emf/
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Figure 12: Classi�cation criteria for automated control logic generation approaches: inputs available in practice, transformation
steps, types of output

ware tools including external libraries and framework. Fi-
nally, the Validation categorizes how the authors evaluated
their approach. This may potentially span from minimal ex-
amples executed by the authors themselves as a proof-of-
concept up to multiple, heterogeneous real-world case stud-
ies carried out in independent studies to demonstrate actual
cost and benefits. Ideally, the authors should characterize
how much manual work an approach saved or how large the
fraction of generated code was in the analyzed cases.
3.2.2 Inputs

The second dimension of our classification framework
are the inputs. These can be considered as the requirements
for the control code. As there is no industry standard, we
used different sources for the input classification. Section 2
has surveyed the available input artifacts in practice. Häst-
backa et al. [59] consider P&IDs and spreadlists (I/O lists,
C&E lists) as inputs. Steinegger and Zoitl [13] provided a
list of different artifacts potentially involved in code genera-
tion, which included P&IDs, recipes, electrical plans, alarm
lists, and logic diagrams. We also analyzed ABB-internal
guidelines for inputs from customers.

Our classification abstracts from particular artifacts and
rather distinguishes the approaches based the content in
these artifacts. This avoids overlaps (e.g., I/O signal refer-
ences both in I/O lists and P&IDs) as well as multiple kinds
of artifacts for similar content (e.g., P&ID, SCD, PFD mod-
eling the plant structure). Depending on the particular ap-
plication domain, an approach may be able to generate more
code if it takes more inputs into account.

The first kind of input are I/O signals, which may be
specified in I/O lists, P&IDs, control narratives or other ar-
tifacts. They later form input and output signal references
in the IEC 61131-3 control code. Function Block (FB) Li-
brarieswith a list of typicals may be used to directly include
higher-level domain concepts into the generated IEC 61131-
3 code, which may potentially ease code generation signifi-
cantly. Using type attributes for I/O signals from an I/O list,
matching typicals can directly be instantiated by the code
generation, e.g., function blocks for motors or valves.

FB Parameters may be available for example from de-
tailed I/O lists or control narratives, for example alarm lim-

its, setpoints, or tuning parameters. If available, the code
generation can directly copy them into the control logic.
Typicals in control engineering libraries can potential have
more than 100 input and output parameters, although many
of these are often kept on default values. If not directly avail-
able, a code generator could potentially synthesize FB pa-
rameters using domain rules.

Sequences cover any kind of steps describing the con-
trol flow. These may for example refer to recipes in batch
application or startup/shutdown or emergency procedures.
When provided by a customer or engineering contractor, se-
quences may be specified for example in control narrative,
flow charts, or logic diagrams. Boolean Logic may directly
describe state-based control or interlocks. Specifications
may be available as logic diagrams, tables, control narra-
tives, or C&E Matrices.

Approaches may consider formal specifications of the
Plant Structure to generate control logic based on the en-
coded relationships between equipment and instruments.
This may support generation of sequencing logic, interlock-
ing logic, or diagnostic functions. Approaches could poten-
tially exploit the topological structure for synthesizing start-
up sequences if the material and information flow can be
extracted unambiguously. Notations for plant structures in-
clude P&ID, SCD, PFD, and building plans and with differ-
ent levels of formalization (e.g., bitmap, vector-based draw-
ing, object-oriented model with formal semantics).

Legacy code may be available as input for a code gen-
erator. According to ARC [60], only 35 percent of yearly
distributed control system projects revenues are for new
constructions (greenfield), while the remaining 65 percent
are for replacements, upgrades, or expansions (brownfield).
Even in greenfield projects, code from similar plants or fac-
tories may be available, which could be partially reused. In
brownfield projects, also legacy control logic code, poten-
tially in a proprietary programming language may be avail-
able. If an approach is able to deal with existing code, it can
potentially also better support iterative development with
multiple generations corresponding to the incremental avail-
ability of customer artifacts. In case of replacements, this
may involve translation of legacy control code [61], while in
case of upgrades, this may involve merging new code into
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existing code [29].
Finally, Domain Rules may allow a code generator to

synthesize control logic. These rules may encode interlock-
ing concepts, naming conventions, safety standards, PID pa-
rameters, or other concepts. They form a knowledge base,
which is potentially applicable across different projects and
essentially turn the code generator into an expert system for
control logic engineering.
3.2.3 Transformation

The third dimension of the classification pertains the
Transformation process. The selected criteria map to
the generic transformation process sketched in Section 2,
which is based on a general description of engineering pro-
cesses [1] as well as discussionswith several domain experts.

Input Validation assesses whether an approach checks
for completeness, validity, and consistency within and
among the different input artifacts. This is more relevant if
an approach integrates multiple artifacts with possibly over-
lapping contents. Pre-processing ranges from manual inter-
pretation and formalization of inputs to intermediate model
transformations that translate the inputs into other formats
for rule application and/or simplified code generation.

Most approaches employ an intermediate model that is
either manually specified or automatically created. The ac-
tual translation converts this intermediate model to IEC
61131-3 code (e.g., M2T transformation), for example by
performing a direct mapping of concepts (e.g., in case of
logic diagrams) or by applying domains rules. In most prac-
tical cases, generated code would be subject tomergingwith
existing code, which must avoid overwriting manually spec-
ified code and creating duplicates.

Providing an appropriate documentation of the transfor-
mation process (e.g., with indication of applied rules or is-
sues in the input artifacts) is essential for practical adoption
and acceptance by control engineers. Finally, propagation of
manual changes or additions to the control logic back to the
inputs is an important feature to keep the plant specification
up to date [62, 58].
3.2.4 Outputs

Our classification framework considers the Outputs of
the code generation both in terms of the format (i.e., which
IEC 61131-3 language) and the contents (i.e., what parts of
control logic. Guttel et al. [34] provided a detailed break-
down of the different aspects of PLC functions, categorizing
more than 20 different functions. We deemed this catego-
rization too detailed for our classification scheme, and thus
selected a number of functions and let multiple domain ex-
perts from our company rank their estimated implementation
effort. Table 1 shows the consolidated result. While the re-
sults are difficult to generalize and may vary a lot between
different projects, the numbers at least give notion of higher
importance, which is sufficient for the creation of a classifi-
cation scheme.

Table 1 shows that the nominal sequence requires the
most efforts implementation wise, although the amount of

Segment  of 
Control 
Logic Description

Estimated 
fraction of total 

control code

Estimated 
implemen-tation 

effort
Nominal 
Sequence

1) Instantiation of Typicals
2) Parametrization of Typicals
3) Interconnection of Typicals
4) Definition of sequence control

30% 60%

Interlocks Protection functions combining two or 
more types of  equipment

20% 10%

Tags / I/O 
objects

References to signals, IO objects 15% 1%

Alarms Hardware alarms for range violations, 
process alarms for process range 
violations

10% 1%

Start-Up Initialization Sequences, may require 
operator interaction

5% 7%

Shutdown Shutdown sequences, also emergency 
shutdowns

5% 7%

Diagnosis For example Profibus DP Slave Device 
Diagnostics, EtherCAT Diagnostics, etc.

5% 5%

Commu-
nication

Peer to peer communication between 
controllers. 

5% 5%

Restart / 
Reset 

Manual reset, or reset after energy 
failure, safe stop

2% 2%

Asset 
Monitoring

Detect abnormal behavior, react upon 
error signals or proactively search 

2% 1%

Time-out Monitor whether time limits are 
exceeded

1% 1%

Operation 
and 
Monitoring

Automated population of OPC Servers 
for HMI stations

n/a n/a

SUM 100% 100%

Table 1

Breakdown of di�erent control logic segments: estimated frac-
tion of source code and e�orts.

control codemay be low. Especially interconnecting typicals
and definition of sequence control requires efforts for inter-
preting different inputs and designing an appropriate control
strategy. Interlocks represent a significant portion of the con-
trol logic, but are comparably easy to implement, since they
may either be already fully specified by customers due to
safety regulations or require the manual application of sim-
ple domain rules. Other types of control logic may make up
only smaller parts of the overall code.

We included the creation of variables / instantiation of
typicals as first criteria into our classification framework.
Each approach supports this in some sense as it is required
for IEC 61131-3 code. The parameterization of typicals
is another criterion normally requiring the use of a FB li-
brary. In our classification, it also includes alarms. We com-
bined different kinds of sequential logic into a single crite-
rion, which comprises start-up, shutdown, as well as recipes
(called “Definition of sequence control” in Guttel et al. [34]).

Safety functions and interlocking logic sum up all kinds
of boolean logic, such as emergency procedures and re-
sets. Diagnostic logic may gather data about the system
and field devices and may inform a human operator. Fi-
nally, we summed up all other types of logic from Tab. 1
in Other Logic. For each of these classification criteria,
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we identified whether it was explicitly supported by the ap-
proach and which IEC 61131-3 language was used. It should
be noted that using IEC 61131-3 code generation, each ap-
proach could potentially support each type of output, but the
output classification helps to better understand on which par-
ticular content an approach focused.

4. Comparison of Approaches
Using the classification from Figure 12, the following

compares the approaches. Each subsection deals with one of
the four parts of the classification and uses a table to provide
an overview to what extent the approaches meet the criteria.
4.1 Comparison of General Properties

Tab. 2 lists the approaches’ general properties. The pub-
lication venues are mainly journals and conferences on soft-
ware/system engineering as well as automation and manu-
facturing.

Since IEC 61131-3 logic is not specific for any appli-
cation, each approach is applicable in any application do-
main. However, most of the surveyed approaches originate
either from a discrete manufacturing setting or a process au-
tomation setting, which leads to different inputs, constraints,
and assumptions. An indicator is themain application exam-
ple of each approach. These are predominantly small-scale
lab automation systems or didactic plants. MAGICS [M7]
and Vienna Code Generator [M2] use application examples
based on sub-segments of real-world plants.

The generation approaches are either based on match-
ing domain-specific rules on specifications provided as in-
puts, or mapping a higher-level notation into IEC 61131-
3. For the latter, several approaches employ a model-to-text
transformation. The Munich Code Generator [M13] aims
at a generation by a mapping to pre-specified modules, al-
though it also foresees manually specifying the control logic
for modules that are not yet provided in a library.

The tooling is tightly connected to the generation ap-
proach. Several approaches use UML modeling tools and
extend them with prototypical enhancements. AUKO-
TON [M12], MAGICS [M7], and MeiA [M10] make ex-
tensive use of the Eclipse modeling framework and pro-
vide Ecore models besides graphical editors and model-to-
text transformations. Only CODESYS UML from PLC-
Statecharts [M16] is available as a commercial offering by
the company 3S. All other tools remain in a proof-of-concept
maturity and are not openly available for independent test-
ing.

For validation, most authors apply their own approach on
a single example. This provides an initial proof-of-concept
validation, but does not qualify an approach for practical use.
Whether practitioners could repeat a published approach
independently or whether the approach runs into scalabil-
ity, maintenance, or robustness issues remains unclear. For
PLC-statecharts [63] and SysML-AT Transformer [64], the
researchers carried out experiments with around 30 students
each and showed that a higher-level programming language
can lead to higher productivity. The MeiA approach [65]

has been applied by a number of developers in 15 simple,
experimental projects (approx. 50 I/O signals), but the doc-
umented validation results are difficult to interpret.

Researchers have tested rule-based generation ap-
proaches only using small rule bases that cover minimal as-
pects, but are insufficient for practical application. Large
rule bases may lead to inconsistencies, overlaps, and scal-
ability issues. Larger experiments, pilot projects, and ap-
plications to entire projects would be needed to facilitate
technology transfer. The code generation as such is seldom
measured or precisely characterized. Only the MAGICS ap-
proach [5] states that 80 KByte of executable control logic
had been generated from higher-level constructs, which was
68 percent of the overall code.
4.2 Comparison of Inputs

The surveyed approaches based their code generation on
a range of different inputs (Tab. 3).

The approaches take information to define I/O signals
and control variables either from natural language specifi-
cations or use structured customer inputs, such as P&IDs.
Higher-level programming approaches require the control
engineer to model the required signal references, for ex-
ample using class diagrams. Rule-based engineering ap-
proaches as well as hybrid approaches instead derive the
signal references from CAEX representations of P&IDs di-
agrams. Only the AUKOTON [M12] explicitly imports
Excel-based I/O lists which are often available in practice.
SysML4IEC61131 [M11] uses a combination of transform-
ing a CAEX-based P&ID to SysML and then manually
adding requirements to the model.

Function block libraries are another important ingre-
dient for code generation. The SysML4IEC61131 ap-
proach [M11] intends to integrate different kinds of unspec-
ified FB libraries. AUKOTON [M12] uses a self-defined
DCS library, and the Vienna Code Generator [M2] cre-
ated two libraries with one and two function blocks respec-
tively, specifically for diagnostics. The Munich Code Gen-
erator [M13] relies on a library of pre-defined process mod-
ules according to ISA-88, but details remain to be specified
in a given project. Other approaches do not deal with func-
tion block libraries, although integration should be fairly
easy. The used libraries may determine on what abstraction
level the control engineer and the code generation can work.
Highly aggregated function blocks as in [M13] may reduce
the required manual work significantly, since it only requires
to connect a few large blocks, instead of creating a detailed
low level specification. However, function block libraries
are often domain-specific or even project-specific.

Function block parametersmay pertain configuration pa-
rameters, alarm ranges, set points, and other values, which
could be derived from information provided by the customer
or also based on experience in similar projects. Most ap-
proaches seem to neglect that these parameters could be de-
rived from customer specifications or using domain rules. In
AUKOTON [M12], ranges and setpoints can be taken from
the I/O list, while the Vienna code generator provides a con-
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Approach Venue Application Domain Application Example Generation Approach Tooling Validation

[M1]

(CAEX Transformer)

IEEE Conf. on Computer 

Aided Control Systems 

Design

Process Automation 

(example for chemical)

Generic plant unit (1 tank, 

1 motor, 3 valves)

Matching rules from a 

knowledge base

Tool prototype processing 

CAEX files

Authors applied own 

approach, single sample 

case

[M2]

(Vienna Code Generator)

IEEE Int. Conf. On Emerging 

Technologies and Factory 

Automation

Process Automation 

(examples for hot rolling 

mill, chemical)

SMS Simag AG Hot Rolling 

Mill , FESTO Compact 

Workstation didactic plant 

(2 tanks, 4 valves, 1  pump)

Translation of ISA-88 

recipes, generation based 

on safety rules

Unnamed tool prototype 

(logi.CAD, Apache Jena, 

Protege, JAXB)

Authors applied own 

approach, two  industry-

derived case studies

[M3]

(ACPLT Rule Engineering)

IEEE International 

Conference on Industrial 

Informatics

Process Automation 

(example for chemical)

Minimal plant (1 pump, 1 

valve)

Matching rules (defined as 

graph database queries)

Unnamed tool prototype 

based on Neo4J, Cypher

Authors applied own 

approach, single sample 

case

[M4]

(UML PA Translator)

IEEE Int. Conf. on Control 

and Automation

Discrete Manufacturing / 

Process Automation

Lab prototype for a sorting 

facility

Mapping UML to IEC 61131-

3

Tool prototype using 

Artisan Realtime Studio

Authors applied own 

approach, single sample 

case,  discussed with 

industry experts

[M5]

(icsML)

Springer Journal on 

Advanced Manufacturing 

Technology

Discrete Automation No specific application 

example, only generic XML 

templates

Translation of a self-

defined XML-schema to 

61131-3

XML schemas and 

stylesheets provided

Authors sketched mapping 

to two commercial IEC 

61131-3 runtimes

[M6]

(PLC-Statecharts)

Elsevier IFAC Proceedings Discrete Manufacturing Lab example involving error 

handling routine for a 

pneumatic cylinder

Translation of UML 

statecharts to IEC 61131-3 

ST

CODESYS UML Student experiment with 

30 participants, informal 

reasoning

[M7]

(MAGICS)

Elsevier Journal of Control 

Engineering Practice

Process Automation Grinding Titanium Dioxide 

in Slovenia (50 devices, 400 

signals)

Translation of an extended 

finite state machine + ST, 

manually derived from 

P&ID

ProcGraph Eclipse tooling 

(EMF / GMF / oAW / 

Mitsubishi GX IEC 

Developer, CODESYS)

Authors applied own 

approach, single industry-

derived case study (68% of 

code generated)

[M8]

(GRAFCET-Translator)

Elsevier Journal of Control 

Engineering Practice

Discrete Manufacturing / 

Process Automation

Plant for checking 

electromech. parts 

(conveyor belt, rotary 

table,100 signals)

28 transformation rules 

from GRACET to 61131-3

GRAFCET Editor & 

Translator

Authors applied own 

approach, single industry-

derived case study

[M9]

(SysML-AT Transformer)

Elsevier Journal on 

Mechatronics

Discrete Manufacturing Laboratory Pick & Place 

Unit (stamp, crane, stack, 

sorter)

Model-to-text 

transformation using 

MOFM2T

Unnamed tool prototype 

for SysML-AT

Student experiment with 

36 participants, hypotheses 

testing

[M10]

(MeiA Framework)

IEEE Transactions on 

Automation Science and 

Engineering

Discrete Manufacturing SMC FMS-200 training 

Mechatronic Station 

(Conveyor + Actuators) 

PLCopen converter 

framework (M2T 

transformation)

Eclipse-based MeiA tooling Developers applied the 

approach in 15 projects 

with about 50 I/O signals 

each

[M11]

(SysML4IEC61131)

SciRes Journal on Software 

Engineering and 

Applications

Discrete Manufacturing / 

Process Automation

FESTO Modular Production 

System

Translation of SysML block 

diagrams to 61131-3 via 

SysML Profile

SysML4IEC61131 Profile, 

SysML2IEC61131 

Translator, MARTE Profile 

(not implemented)

No implementation, only 

conceptual approach 

described

[M12]

(AUKOTON)

Elsevier Journal of Systems 

and Software

Process Automation 

(example for chemical)

Lab example for a water 

treatment plant segment

Translation of P&IDs, IO 

Lists, C&E matrices into an 

intermediate UML model,  

IEC61131 FBD

UML AP Tool (Eclipse, 

Topcased, SmartQVT), 

includes importers for CAEX 

and IO lists

Authors applied own 

approach, single sample 

case,  discussed with 

industry experts

[M13]

(Munich Code Generator)

IEEE International Systems 

Engineering Symposium

Process Automation myJoghurt lab-scale CPPS 

demonstrator (pump, 

filling, heating, mixing 

units)

P&ID image recognition, 

module identification and 

matching from library, then 

M2T transformation

C++ prototype using SQLite, 

RI-CAD, CODESYS, TIA-

Portal

Authors applied own 

approach, single sample 

case

Legend:  n Rule-based Engineering approaches, n Higher-level Programming approaches, n Higher-level Programming using Plant Structure

Table 2

General Comparison: most approaches originate either from discrete manufacturing or pro-
cess automation. There are diverse generation approaches, validations are often performed
using simple examples.

cept to retrieve parameters using electrical plans. Higher-
level programming approaches require the user to set these
parameters in UML classes that are later mapped to function
blocks.

Multiple approaches use notations based on UML state-
charts to model sequences due to the similarities with IEC
61131-3 SFCs. The UML PA Translator [M4] uses UML
state charts enhanced with the UML PA profile and maps
them with included variables to SFCs. icsML [M5] pro-
vides an XML schema for software resources that can ex-
press sequences. PLC-statecharts [M6] enhance UML stat-
echarts with user-defined priorities for transitions. Due to
IEC 61131-3’s cyclic nature, these statecharts cannot be trig-
gered by events, and the approach introduces behavioral se-
mantics as in polling real-time systems. The Vienna code
generator [M2]may use recipes being available in a notation

conforming to ISA-88, while the MAGICS approach [M7]
provides self-defined state transition diagrams and state de-
pendency diagrams that the control engineer models.

The GRACET translator [M8] is centered around the
GRAFCET notation (IEC 604848) for specifying sequences.
The approach provides formal semantics for GRAFCET en-
closing steps, forcing orders and time constraints, and is thus
able to utilize the full GRAFCET notation in code gener-
ation. A number of student experiments [66] suggest that
UML-based modeling can be more productive than directly
writing IEC 61131-3 code, if well integrated into an IEC
61131-3 development environment with round-trip func-
tionality. Challenges for adopting such approaches in indus-
try are developer training, work processes, and integration
with legacy code. Approaches processing P&IDs often do
not deal with sequential specifications explicitly, but instead
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Approach I/O Signals FB Libraries FB  Parameters Sequences Boolean Logic Plant Structure Legacy code Domain Rules

[M1]

(CAEX Transformer)

Instruments from 

CAEX (IEC 62424)

n/a n/a n/a n/a P&ID in CAEX (IEC 

62424) + self-defined 

logistics model called 

LogIX

n/a Interlocking rules 

(XML)

[M2]

(Vienna Code Generator)

Instruments from 

CAEX, elec. plans (EN 

60617) +  IEC 81346

61131-3 lib for 

Profibus DP / 

EtherCAT Diagnostics

Instruments from 

CAEX, elec. plans (EN 

60617) +  IEC 81346

Recipes (ISA-88)* Logic Diagrams (ISA-

S5.2), C&E Diagrams 

(ISO 10418)

P&ID in CAEX (IEC 

62424) + PandIX / IEC 

62424 based Ecore 

Model

PLCopen (XML) 

exported from 

Rockwell RSLogix 

5000

Interlocking + 

diagnotic rules 

(SPARQL)

[M3]

(ACPLT Rule Engineering)

P&ID in CAEX (IEC 

62424) + PandIX

n/a n/a n/a n/a P&ID in CAEX (IEC 

62424) + PandIX

n/a Interlocking rules 

(Cypher)

[M4]

(UML PA Translator)

Attributes in Class 

Diagrams

n/a n/a Activity Diagrams, 

State Charts

n/a n/a n/a n/a

[M5]

(icsML)

XML schema for 

software resources

n/a n/a XML schema for 

software resources

XML schema for 

software resources

n/a (XML schema for 

controllers and I/O 

devices)

n/a n/a

[M6]

(PLC-Statecharts)

Attributes in Class 

Diagrams

n/a n/a PLC-statecharts n/a n/a n/a n/a

[M7]

(MAGICS)

Signal List (manually 

processed)

n/a Signal List (manually 

included)

ProcGraph State 

Transition Diagrams, 

Functional 

Specification

Safety Requirements P&ID diagram 

(manually processed)

n/a n/a

[M8]

(GRAFCET-Translator)

Variables in Grafcet 

(IEC 60848)

n/a n/a Grafcet (IEC 60848), 

Control Interpreted 

Petri Net

Grafcet (IEC 60848), 

Control Interpreted 

Petri Net

n/a n/a n/a

[M9]

(SysML-AT Transformer)

SysML Parametric 

Diagram + SysML AT 

Profile

n/a SysML Parametric 

Diagram + SysML AT 

Profile

SysML Parametric 

Diagram + SysML AT 

Profile

n/a n/a n/a n/a

[M10]

(MeiA Framework)

Part of MeiA model n/a Part of MeiA model Design Organization 

Units (DOU) derived 

from MeiA model

Design Organization 

Units (DOU) derived 

from MeiA model

n/a n/a n/a

[M11]

(SysML4IEC61131)

Instruments from 

CAEX (IEC 62424), 

SysML Requirement 

Diagram

Undefined standard / 

domain-/ project-

specific libraries 

(PLCopenXML)

SysML Requirement 

Diagram

n/a SysML Requirement 

Diagrams for 

interlocks / safety 

and security 

requirements

P&ID in CAEX format 

(IEC62424)

n/a n/a

[M12]

(AUKOTON)

I/O List (Excel) AUKOTON DCS 

Library

I/O List (Excel) n/a C&E Matrix (Excel) P&ID in CAEX format 

(IEC62424)

n/a n/a

[M13]

(Munich Code Generator)

Instruments 

recognized from 

P&ID

Self-defined Process 

Module library with 

ISA-88 compliant 

modules

n/a From module 

references 

recognized in P&ID

n/a P&ID as SVG file n/a n/a

Legend:  n Rule-based Engineering approaches, n Higher-level Programming approaches, n Higher-level Programming using Plant Structure

Table 3

Comparison of the Inputs of each approach: most approaches support only speci�c inputs,
some of them require manual modeling of customer requirements.

focus on logic directly derived from the P&ID.
Boolean logic may be used for interlocks, emergency

shutdowns, but also model sequences. While logic diagrams
are often available in practice as requirements, only the Vi-
enna Code Generator [M2] discusses processing them, but
provides no implementation. AUKOTON [M12] can im-
port C&E matrices that express interlocks as a special kind
of boolean logic and turn them into control logic. Tools

are available to transform C&E matrices directly into IEC
61131-3 control logic [M1].

Approaches in process automation usually take
the plant structure or topology into account as a
P&ID [M1,M2,M3,M11,M12,M13]. The CAEX Trans-
former [M1] uses the connections between equipment an
instruments in P&IDs to apply rules to generate interlocking
logic. The SysML4IEC61131 approach [M11] extracts
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process control engineering (PCE) requests, control func-
tions, and loops from P&IDs and maps them to SysML
requirements diagrams. AUKOTON [M12] follows a
similar approach and maps PCE requests in P&IDs to UML
class diagrams stereotyped as Automation Requirements.
The Vienna Code Generator [M2] uses CAEX and PandIX
as inputs and extracts PCE requests, signal connections
needed for interlocks, and PCE control functions to group
multiple signals. Schüller and Epple [17] showed prototyp-
ically how PandIX P&IDs could be extracted from a native
XML-export of COMOS P&ID.

MAGICS [M7] in turn requires the control engineer to
manually interpret the P&ID and formulate the contents in
the ProcGraph notation. The Munich Code Generator im-
ports P&IDs as SVG35 files to perform image recognition in
order to identify modules that can be mapped to higher-level
function blocks.

Higher-level programming approaches often originate
from discrete manufacturing scenarios without an explicitly
modeled plant structure. They foresee modeling structures
using UML class diagrams. In this context, Grüner et al.
[67] proposed so-called product flow diagrams (PFDs) as a
notation analog to P&IDs but for discretemanufacturing sce-
narios.

Except for the Vienna code generator [M2], none of
the approaches takes existing, potentially proprietary legacy
control code into account for the code generation. This could
feed a direct translation into low-level IEC 61131-3 control
logic [26], but could also require mapping existing higher-
level function block libraries. There are numerous com-
mercial offerings to migrate control logic between control
systems of different vendors (e.g., migrations to Emerson
Delta V36, to Siemens SIMATIC PCS737, to ABB 800xA38).
Legacy code could also be available as IEC 61131-3 in a mi-
gration project, then the goal of code generation would be to
seamlessly integrate with the existing code. [M2] considers
this case explicitly, as it adds interlocking logic to already
existing PLC code and uses an interlock redundancy elimi-
nation mechanism based on the Z3 theorem prover.

Three approaches use Domain rules in order to generate
interlocking or diagnostic logic ( [M1,M2,M3]). Other ar-
eas for applying domain rules (e.g., generating alarms, star-
tup/shutdown sequences, recipes, etc.) may be more compli-
cated and remain unexplored. The CAEX Translator [M1]
directly encodes these rules in XML [45], while the Vienna
code generator [M2] uses SPARQL queries, and the ACPLT
Rule Engineering [M3] executes Cypher queries on Neo4J
graph databases. Krausser et al. [30] proposed to use di-
rectly IEC 61131-3 to formulate such rules, so that control
engineers can work with a familiar notation.

In summary, UML/SysML-based approaches put much
of the requirements formalization workload on the control
engineer, who models requirements and design in UML or

35https://www.w3.org/TR/SVG2/
36https://bit.ly/2U6HxSx
37https://sie.ag/2VAZNoE
38https://bit.ly/2UPzWvY

SysML. In other approaches, which are mostly from pro-
cess automation, the control engineer may already work with
semi-formal or formalized requirements and derive a design
and implementation.

Regarding completeness of input artifacts, the Vienna
code generator [M2] provides the most holistic view, ad-
dressing all of the input elements of our classification. How-
ever, the approach does not provide tooling to process these
inputs automatically, but instead assumes that an appropriate
CAEX model is already available from these artifacts.
4.3 Comparison of Transformations

None of the surveyed approaches explicitly deals with in-
put validations, except icsML [M5] which executes syntax
checks on the used XML models. Several approaches as-
sume a valid, i.e., consistent and syntactically correct CAEX
files as input. Other approaches require a formalization of
unstructured inputs by the control engineer, which then im-
plicitly includes an input validation performed during man-
ual interpretation. Syntax, semantic, and plausibility checks
on individual artifacts could be tackled by the CAD tools
creating them. Consistency checks between different arti-
facts may be facilitated by mapping them into a common
representation, e.g., a database, graph, ontology, or CAEX
file, so that the mapping logic could also ensure consistency.

The surveyed approaches show a wide range of pre-
processings and intermediate models. Several approaches
require a manual modeling of requirements and designs in
UML [M4,M6,M12], SysML [M9,M11], or other propri-
etary notations, such as icsML [M5], ProcGraph [M7], and
MeiA [M10]. UML/SysML models are augmented using
profiles, such asUMLPA [8], SysML4IEC61131 [68], UML
AP [59], and SysML AT [64].

UML PA [M4] adds time constraints on an architec-
tural level, timed state charts, as well as ports, capsules,
protocols, and roles from the UML-RT profile. Further-
more, it uses special object diagrams to express mappings
between hardware and software. SysML4IEC61131 [M11]
follows a slightly different approach and is closely mod-
elled after IEC 61131-3 concepts, such as Controller,
PLC, Application, POU, Program, Task, and Physical I/O.
AUKOTON [M12] consists of four subprofiles for require-
ments (e.g., instrumentation requirements), automation con-
cepts (e.g., control loop, PID algorithm), devices and re-
sources (e.g., EDDL, FDT), and distribution and concur-
rency (e.g., distributed components and concurrency mech-
anisms). SysML-AT [M9] adds function block instances,
classifiers, flows, and restrictions to SysML to allow an eas-
ier mapping to IEC 61131-3 ST. None of these profiles has
been applied outside of the respective authors’ own work so
far.

icsML [M5] uses XML to describe hardware, software,
and relationships among them. The ProcGraph [M3] do-
main specific language proposes entity diagrams, state tran-
sition diagrams, and state dependency diagrams to specify
structural and behavioral information and ultimately an easy
mapping to IEC 61131-3 FBD and ST. The MeiA frame-
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Approach Input Validation Pre-processing Intermediate Model Translation Merging Documentation Backpropagation

[M1]

(CAEX Transformer)

n/a (assumes valid CAEX 

files as input)

Augmentation with flow 

path using LOGIX model

CAEX (IEC 62424) 

enhanced with LOGIX 

line model

Applying XML 

interlocking rules to 

generate a C&E Matrix, 

then FBD/ST

n/a n/a n/a

[M2]

(Vienna Code Generator)

n/a (assumes valid CAEX  

and other  files as input)

Mapping inputs to 

reference ontology 

(based on CAEX)

CAEX (IEC 62424) + 

PandIX model

Applying rules from a 

knowledge base to 

create FBD  (SPARQL 

queries)

Importer for existing 

control logic code to 

reference ontology

n/a n/a

[M3]

(ACPLT Rule Engineering)

n/a (assumes valid CAEX 

files as input)

Translation of CAEX into 

Graph (neo4J)

Self-defined graph 

notation

Applying rules encoded 

as Cypher graph queries 

to generate FBD

n/a n/a n/a

[M4]

(UML PA Translator)

n/a Manual modelling of 

UML class diagrams and 

state charts

UML for Process 

Automation profile (UML 

PA)

Direct translation of 

state charts to SFC

n/a n/a n/a

[M5]

(icsML)

Applying rules on XML 

models (syntax checks)

Manual modeling of 

hardware, software in 

XML

icsML including 

hardware, software, and 

relationsships

XML stylesheet to map 

to PLCopen XML, then 

ISaGRAF and Simatic

n/a n/a n/a

[M6]

(PLC-Statecharts)

n/a Manual modelling of 

UML class diagrams and 

state charts

UPPAAL timed automata Direct translation of 

state charts to ST

n/a n/a Bidirectional mapping 

between FB and UML 

class diagrams

[M7]

(MAGICS)

n/a (manual re-modeling 

of input artifacts)

Creation of ProcGraph 

model, writing of ST 

statements

ProcGraph DSML (Entity 

Diag., State Trans. Diag., 

State Depend. Diag.)

Mapping to ProcGraph 

elements to FBD, 

copying ST statements

n/a n/a n/a

[M8]

(GRAFCET-Translator)

n/a Transform Visio to 

PNML, normalize PNML 

file

GRAFCET in PNML 

(ISO/IEC15909-2)

Applying 28 

transformation rules 

from GRAFCET to SFC

n/a n/a Multiple concepts for 

round-trip engineering 

discussed

[M9]

(SysML-AT Transformer)

n/a (assumes valid 

SysML Requirements 

diagrams)

Manual modeling of 

SysML Parametric 

Diagrams

SysML Parametric 

Diagram + SysML-AT 

profile

MOFM2T / OCL 

transformation into ST

n/a n/a (generated code to 

be reviewed by 

developer)

n/a

[M10]

(MeiA Framework)

n/a Manual modeling of 

MeiA model

MeiA model 

(signal/phases), Use 

Case Model, GEMMA 

model, AML IML

IML to PLCOpen XML 

Generation for SFCs

n/a n/a n/a

[M11]

(SysML4IEC61131)

n/a (assumes valid CAEX 

files as input)

CAEX2SysML 

transformation, add 

requirements

SysML requirements 

diagram + proposed 

SysML4IEC61131 profile

SysML2IEC61131 Model 

Transformer

n/a n/a n/a

[M12]

(AUKOTON)

n/a (inputs are not 

validated before 

automated import)

Manually adding 

requirements for 

feedback control

UML AP profile 

(Requirements, Aut. 

Concepts, Devices, 

Distribution) 

Direct mapping of UML 

AP to FBD, use of 

platform-specific profiles

n/a n/a n/a

[M13]

(Munich Code Generator)

n/a Object recognition on 

P&ID, connection 

analysis, module 

recognition

Tree-based 

representation of plant 

hierarchy (C++/SQLite)

Mapping to Process 

Module library, M2T to 

PLCopen

n/a n/a n/a

Legend:  n Rule-based Engineering approaches, n Higher-level Programming approaches, n Higher-level Programming using Plant Structure

Table 4

Comparison of Model Transformations: all approaches use an intermediate representation
before generating code. Support for merging, documentation, and backpropagation is
limited.

work [M10] uses four different models: MeiA_MM (e.g.,
phases, steps, signals), UseCase_MM (e.g., actor, use case,
NonFuncReq), GEMMA_MM (e.g., state, line, operation),
and Design_MM (i.e., the intermediate modeling layer of
AutomationML, which includes GRAFCET and SFC ele-
ments).

Approaches operating on a plant structure often use
the CAEX format as a common syntactical container and
add additional information, such as the LogIX logistics
model [M1] to identify equipment between two junction
points, or the PandIX model for PCE requests [M2,M3].
[M11] sketches a CAEX2SysML transformation and a
manual addition of requirements by the control engineer.
The ACPLT Rule Engineering [M3] proposes converting
CAEX-based P&IDs into a Neo4J graph notation, so that
a graph query language can be used to process the model
during translation. The Munich code generator [M13] uses
a tree-based model to express the plant hierarchy extracted

from P&IDs.
The GRAFCET Translator [M8] requires the control en-

gineer tomodel sequences inGRAFCET using a self-defined
shape library for Microsoft Visio. The GRAFCET Transla-
tor can then convert the Visio XML format into the Petri Net
Markup Language (PNML), which includes a normalization
of the model. Besides code generation, the PLC-Statecharts
approach [M8] provides a mapping to UPPAAL timed au-
tomata to enable model checking.

Although all approaches produce IEC 61131-3 code,
their intermediate processings vary a lot. This is caused
by different inputs but also by different focuses regarding
the code generation (e.g., interlocks, state-based behavior).
Augmenting standardized notations, such asUMLor CAEX,
for intermediate models can utilize the abstractions devel-
oped and accepted by a standardization body in a formal pro-
cess, which can foster tool support and developer training.
There is also potential to combine or link different notations
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into a comprehensive approach, e.g., plant structures and be-
havioral notations, as for example shown in AutomationML.
Ontological notations may lend themselves to a reuse of ex-
isting inference engines to support code generation.

In most approaches, the actual translation of the inter-
mediate model to IEC 61131-3 constructs is rather straight-
forward. Function blocks expressed in UML are mapped
to IEC 61131-3 function blocks, states in state charts are
mapped to steps in SFCs. The GRAFCET Translator [M8]
applies 28 transformation rules to map GRAFCET to SFCs.
There are also M2T transformations to ST [M6,M7,M10].
Other approaches use a rule engine to apply domain-specific
rules on the intermediate models and generate the code out
of these rules [M1,M2]. The ACPLT Rule Engineering ap-
proach applies the Cypher graph query language to apply
such rules [M3].

Merging generated code into existing code is only con-
sidered by the Vienna Code Generator [M2]. Dealing with
generated and hand-written code in parallel is not discussed
by any of the approaches. None of the approaches lays spe-
cial emphasis on documenting the code generation process,
so that the control engineer receives useful feedback on how
the inputs were processed. An implicit assumption is that the
control engineer inspects the generated code and continues
working with it.

Backpropagation is also rarely considered by the ap-
proaches, although PLC-Statecharts [M6] assumes a bidi-
rectional mapping between UML and FBDs, so that the con-
trol engineer can ideally only work on the level of UML
diagrams. The authors of the GRAFCET-Translator [58]
discuss concepts for bidirectional transformations between
GRAFCET and SFCs. However, backpropagating, for ex-
ample, tag names changes or parameter updates into the re-
quirements specifications is not considered so far.
4.4 Comparison of Outputs

Tab. 5 summarizes the outputs produced by the surveyed
approaches. Several approaches create signal references by
a direct mapping from UML class diagrams, or derived from
P&IDs. Only AUKOTON [M12] imports an I/O list for sig-
nal creation. The Vienna Code generator [M2] instantiates
diagnostic typicals into FBDs from a library. The Munich
CodeGenerator [M13] instantiates typicals for process mod-
ules from a library. There are no common standard libraries
used by the approaches for code generation. Some vendors
may consider their function block libraries as differentiator
and competitive advantage. Domain- or project-specific typ-
icals are discussed [M3,M11], but not demonstrated in any
of the surveyed code generations.

A few proposals discuss the parametrization of typi-
cals. SysML4IEC61131 [M11] intends to incorporate tim-
ing constrains using the UML MARTE profile, but remains
vague on details. AUKOTON [M12] parameterizes instan-
tiated function blocks with ranges, alarm limits, and engi-
neering units taken from an I/O list. The Vienna code gen-
erator [M2] takes parameters for diagnostic functions from
hardware configuration files into account. Due to the hetero-

geneous inputs and different generation approaches, there is
no consensus on this element of code generation. Mecha-
nisms to map information on parameter values to domain-
or project-specific typicals could improve code generation.

Most of the approaches express sequential logic for
recipes and start-up sequences as SFCs or ST. A few of them
use FBDs, but no approach generates LL or IL. As data for-
mat, most approaches use PLCOpenXML TC6, which some
of them map to vendor-specific formats. For example, ic-
sML [M5] creates an ISaGRAF XML representation and a
Siemens STEP7 representation from PLCopenXML. MAG-
ICS [M7] generates code for Mitsubishi PLCs. The Vienna
code generator [M2] creates RSLogix5000 code for Rock-
well controllers.

The approaches express safety functions and interlock-
ing logic mostly as FBDs, some also use SFCs and ST. The
CAEX transformer [M1] first produces a C&E matrix for
interlocking logic, which can be manually adapted and ex-
tended. The final matrix can then be converted into either
FBD or ST for an ABB controller.

Most of the other functions of control logic [34] are
not explicitly considered by the approaches. The Vienna
code generator produces FBDs for diagnostic logic, and
the SysML4IEC61131 approach considers timing proper-
ties. The SysML-AT transformer [M9] considers control
logic for controller-to-controller communication.
4.5 Comparison Summary

The previous subsections have shown that the identified
approaches cannot be directly compared in terms of effi-
ciency, quality, or expressiveness, because they require dif-
ferent kinds of inputs, apply different kinds of transforma-
tions, and generate different kinds of outputs. Also their
tooling is often not or no longer available for independent
replication studies or benchmarking. Nevertheless, the sur-
vey allowed a categorization into 1) rule-based engineering
approaches, 2) higher-level programming approaches, and
3) higher-level programming approaches using a plant struc-
ture. The next section will interpret and analyze the survey
findings further.

5. Discussion
This section discusses multiple observations and ana-

lyzes of the surveyed approaches.
Heterogeneous Research Scopes Although all surveyed
approaches produce IEC 61131-3 code, their individual
goals and scopes are diverging. Selecting an approach for
a particular project mainly depends on the available inputs
and the expected outputs.

Rule-based generation approaches try to limit manual
coding efforts, by letting control engineers encode simple
engineering tasks into a rule base. The aim is not to cre-
ate a higher-level programming interface, but rather to avoid
manual coding as much as possible by automating simple,
repetitive tasks. The approaches demonstrated rule-based
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Approach

Creation of Variables / 

Signal References +  

Instantiation of Typicals

Parametrization of 

Typicals (incl. set points, 

alarm limits, PID 

parameters)

Sequential Logic 

(incl. recipes, start-Up, 

shutdown, ...) 

Safety Functions and 

Interlocking Logic 

(incl. reset, emergency 

stop, etc.)

Diagnostic Logic 

(e.g., process/system 

diagnosis, field devices) 

Other Logic

(e.g., asset monitoring, 

controller 

communication, etc.)

[M1]

(CAEX Transformer)

n/a (implicitly extracted 

from CAEX)

n/a n/a Cause&Effect Matrix 

converted to 61131-3 ST, 

FBD (ABB)

n/a n/a

[M2]

(Vienna Code Generator)

Yes, from self-defined 

Profibus + Ethercat 

Diagnotics FB Lib

Yes, some parameters 

from hardware config 

file

IEC 61131-3 SFC 

(PLCopen XML)

IEC 61131-3 FBD 

(PLCopen XML)

IEC 61131-3 FBD 

(PLCopen XML)

n/a

[M3]

(ACPLT Rule Engineering)

Yes, via Cypher query. Yes, queries refer to 

function block types.

IEC 61131-3 FBD n/a n/a n/a

[M4]

(UML PA Translator)

Yes, from UML class 

diagram

Possible from UML class 

diagram

IEC 61131-3 SFC, ST n/a n/a n/a

[M5]

(icsML)

Yes, from XML file. n/a IEC 61131-3 ST 

(PLCOpenXML)

n/a n/a n/a

[M6]

(PLC-Statecharts)

Yes, from UML class 

diagram

Possible from UML class 

diagram

IEC 61131-3 ST 

(CoDeSys)

n/a n/a n/a

[M7]

(MAGICS)

n/a ( interpretation of 

P&ID, creation of 

ProcGraph model)

n/a IEC 61131-3 SFC, ST 

(PLCopen XML)

IEC 61131-3 SFC, ST 

(PLCopen XML)

n/a n/a

[M8]

(GRAFCET-Translator)

n/a (implicitly extracted 

from GRAFCET)

Possible using time 

constraints

IEC 61131-3 SFC, ST 

(PLCopen XML)

IEC 61131-3 SFC, ST 

(PLCopen XML)

n/a n/a

[M9]

(SysML-AT Transformer)

Yes, generation of FB 

based on SysML model

n/a IEC 61131-3 ST n/a n/a Controller to Controller 

Communication

[M10]

(MeiA Framework)

Yes, signal references 

manually created in 

Meia model

n/a IEC 61131-3 SFC 

(PLCopen XML)

n/a n/a n/a

[M11]

(SysML4IEC61131)

n/a (possible via SysML 

Stereotypes)

Via OMG MARTE profile IEC 61131-3 SFC, FBD 

(PLCopen XML)

IEC 61131-3 FBD 

(PLCopen XML)

n/a Timing properties via 

OMG MARTE profile

[M12]

(AUKOTON)

Yes, by mapping IO list to 

AUKOTON DCS Library

Parameters taken from 

IO List

n/a IEC 61131-3 FBD 

(PLCopen XML)

n/a n/a

[M13]

(Munich Code Generator)

Yes, instantiating 

predefined process 

modules

n/a IEC 61131-3 ST

(PLCopenXML)

n/a n/a n/a

Legend:  n Rule-based Engineering approaches, n Higher-level Programming approaches, n Higher-level Programming using Plant Structure

Table 5

Comparison of Transformation Outputs: all approaches produce IEC 61131-3 SFC, FBD,
and ST. Primary focus is on sequential logic and interlocking logic.

engineering only on simple examples, scalability and robust-
ness remains unexplored. Expert systems based on rules are
known to become brittle if facing unfamiliar settings [69],
so a more thorough investigation is needed to better assess
the usefulness of rule-based engineering.

Approaches based on higher-level programming lan-
guages, such as UML or SysML intend to make manual
coding more productive, in terms of understandability and
quality by utilizing object-oriented concepts and raising the
abstraction level. They include automated code generation
as a translation to a lower-level notation, but rather treat it
as a side-effect while the focus is on providing an adequate
higher-level notation. Accordingly, the evaluations of such
approaches focus on programming efficiency and user sat-
isfaction and do not differentiate between manually written
and generated code. They implicitly assume that all code
can be expressed in the higher-level notation and that a bidi-
rectional mapping to the lower-level IEC 61131-3 notation
is possible.

Although the classes of surveyed approaches have dif-
ferent goals, they do not exclude each other and could be

combined. To some extent, this is demonstrated by the hy-
brid approaches that take a plant structure into account to
generate a UML/SysML-based structure model, which then
can be manually enhanced in a modeling tool.

The scope of the academic research was focused on the
three different classes of approaches shown in the survey.
In practice, there are additional methods for lowering con-
trol engineering efforts, which are hardly investigated by the
surveyed approaches:

• Copying Code: Often, individual engineers simply
copy and adapt code from former projects to speed up
programming. Methods could be developed to recom-
mend similar former source code or to support cre-
ating reusable engineering libraries based on analyz-
ing engineering artifacts of similar projects, which re-
quires extensive domain knowledge.

• Engineering Libraries: Engineers create engineer-
ing libraries encoding higher-level functionality in
reusable function blocks. This works well in appli-
cation domains with limited customized functionality,
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e.g, steel making or aluminium smelting, but is harder
for other domains, such as chemical plants, that often
exhibit an amount of specialized functionality.

• Modular Automation: As a more coarse-grained ap-
proach to control logic reuse, engineers segment a pro-
duction process into smaller package units, which in-
dependent subcontractors build together with an in-
cluded automation. The engineering configuration
of these package units follows the NAMUR Mod-
ule Type Packages (MTP) [70]. Besides standard-
ized hardware connectors, each unit provides a mod-
ule type package that serves asmodule description and
input to system-wide engineering tools. An orches-
trating, supervising control system can then provide
high-level commands to each unit (e.g., start, stop) and
use the modules to execute specific recipes.

The Munich code generator included in this survey [71]
is potentially applicable for Modular Automation, since it
works with higher-level ISA-88 based module descriptions
similar to NAMUR MTP. However, the challenges for auto-
matic code generation change significantly in case of mod-
ular engineering. Because the modules are too small to be
concise, they usually do not include a large amount of IEC
61131-3 logic. Thus, the benefit of code generation for each
module provider is rather limited. Module providers can
rather exploit economies of scale if they produce their firmly
defined modules in large quantities, each time reusing the
same control logic.

Based on the survey findings, it seems unlikely that there
ever will be an all-accompanying approach for automatic
code generation in industrial automation. The different ap-
proaches may work well in specific domains, but not in oth-
ers, depending on how standardized the processes are. Com-
bining approaches that exploit plant topology models, ex-
ecute code generation rules, and rely on higher-level pro-
gramming to some extent is possible and should be investi-
gated in future research. Rule-based engineering can reduce
the amount of trivial, repetitive implementation tasks, while
higher-level programming can reduce efforts for implement-
ing required custom control logic.
Iterative Code Generation As user requirements usually
become available in several iterations, code generation can-
not assume a one-shot translation of the inputs. The survey
has shown that many approaches work with the assumption
of a one-shot translation and thus may be misaligned with
practice. Some approaches assume that the generated IEC
61131-3 codemay not be alteredmanually [8], others allow a
bidirectional mapping between UML/SysML notations and
IEC 61131-3 [63]. The Vienna code generator [54] first im-
ports and analyzes existing control logic before adding gen-
erated code in an informed manner.

Best practices for model-driven software develop-
ment [72, 73] suggest to separate generated and non-
generated code, for example in different files, so that an iter-
ative development is supported. A code generator can then

easily overwrite files with generated code in a re-engineering
scenario without affecting manually written code. There are
different methods for joining generated and non-generated
code, including interfaces, design patterns (e.g., factory,
strategy, bridge), and template methods, which are spe-
cific for object-oriented programming languages. For IEC
61131-3 code generated and non-generated code may for ex-
ample be arranged in different diagrams. During manual
IEC 61131-3 coding, the control engineer needs to take care
not to contradict the generated control logic.

Versioning and file comparison tools are another means
for merging generated and manually written code during it-
erative code generation. This often works almost automated
in case of additive actions, but may require manual inter-
vention in case of changes to existing code. None of the
surveyed approaches discusses these possibilities though.
Input Data Validation Validation of customer inputs is
often a time-consuming problem in practice, which may re-
quire multiple feedback cycles between engineering contrac-
tor and automation vendor. Most of the surveyed approaches
do not deal with this issue beyond syntactical XML checks
or assuming that a prior mapping to AutomationML/CAEX
produced well-formed inputs.

In practice, there are different methods to address this
issue. Engineering contractors can use a common database,
such as SmartPlant Instrumentation39, to assure consistency
of instrument indices. Additionally, they can utilize ad-
vanced CAD tools that allow validations of diagrams. But
this approach is challenged if multiple subcontractors are in-
volved in the engineering [74]. There are also engineering
platforms, such as COMOS40, EPlan41, or EBase42, which
may support automation vendors in consistency and com-
pleteness checks. Nevertheless, more research into cross-
tool data consistency and completeness checks may be valu-
able.
Dealing with Natural Language Requirements Another
finding of the survey is that none of the approaches is able
to process informal customer requirements. As Section 2
showed, part of the customer requirements are often for-
mulated using informal language in user requirement doc-
uments or control narratives. Additionally, P&IDs or logic
diagrams may contain annotations in prose writing, which
may provide important information for control logic engi-
neering.

Requiring customers and engineering contractors to fully
use formal requirements specifications may be unrealistic.
However, there is a large body of literature on text min-
ing [75] and information retrieval [76], which have been ap-
plied on informal requirements in other application domains.

Gelhausen and Tichy [77] propose to annotate require-
ment documents using a purpose-built language, so that they
can be transformed into UML diagrams. Deeptimahanti and

39https://hexagonppm.com/
40https://www.siemens.com/comos
41https://www.eplan.de/
42https://www.aucotec.com/
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Babar [78] propose a tool to generate UMLmodels from nat-
ural language requirements by identifying classes and stereo-
types. The tool implements a set of syntactic reconstruc-
tion rules to process complex requirements into simple re-
quirements. Le et al. [79] present a system for synthesizing
smartphone automation scripts from domain-specific nat-
ural language descriptions. System components and their
partial dataflow relations are inferred from the natural lan-
guage description using a specialized parser. Tichy et al.
[80] presents nlrpBENCH, a benchmark consisting of over
50 requirements documents to train model extraction and
text correction approaches. Chalkidis et al. [81] describe and
experimentally compare several contract element extraction
methods that usemanually written rules and linear classifiers
(logistic regression, support vector machines) with hand-
crafted features, word embeddings, and part-of-speech tag
embeddings.

Most of these approaches still work on rather simple re-
quirements texts that are sometimes heavily constrained or
annotated to allow processing. If texts are constrained into
semi-formal language, the customer benefit of creating such
requirements fast and with limited special expertise may be
invalidated. If pre-annotation of the text requires too much
effort, control engineers would likely fall back to manual in-
terpretation, which in addition may be more robust. Practi-
cal problems, such as local languages, ambiguities in the re-
quirements, and non-standard terminology may complicate
natural language processing approaches further. However,
the limits for text mining in this context are still not well un-
derstood.
Standardized File Formats Both the rule-based ap-
proaches and higher-level programming approaches using
the plant structure in this survey rely on standardized input
file formats. However, in practice, the file formats are often
not yet readily available. As described in Section 2, many
artifacts from customers are still exchanged on paper or as
unstructured PDF-files that complicate automated process-
ing [16]. This has multiple reasons as detailed in the follow-
ing.

In some cases (e.g., for P&ID diagrams) there is a lack
of standardized formats so far, or a lack of adoption of exist-
ing formats from the software vendors. Smart P&IDs with
an database underlying the drawing capturing properties of
instruments and equipment are still uncommon, the Auto-
CAD DWG format is often used for convenience, since it is
also used for many other types of drawings and is supported
by many general purpose drawing tools. The DEXPI ini-
tiative is working on an ISO15926-based exchange format
for P&IDs. AutomationML (IEC 62714) is gaining more
support, but remains far from broad industry adoption [18].
There is no agreed format for I/O lists, but companies often
work with specific guidelines. GRAFCET is a standardized
notation, but suffered from a missing agreed file format and
tooling, and it is known only in specific regions [55].

Furthermore, some automation customers or engineer-
ing contractors are concerned about losing intellectual prop-

erty if specifications are exchanged in object-oriented and
standardized notations. They fear that production processes
may be more likely replicated by competitors if the files are
easier to distribute and process. These concerns need to be
addressed in a manner that does not complicate automated
code generation, e.g., filtering or obfuscating certain IP sen-
sitive specifications or enforcing confidentiality using pro-
cesses.

Another factor is the high heterogeneity of application
domains, engineering workflows, and information models.
The CAEX standard (IEC 62464) acknowledged this fact
explicitly and separated syntactic standardization (in XML)
from semantic standardization (using role class libraries).
This allows to syntactically treat engineering artifacts in a
uniform way, even if the semantics are understood only par-
tially. Drath and Barth [74] developed additional concepts
concepts reqarding tool interoperability and data ownership
on top of CAEX. Such concepts have so far been applied only
in company-internal settings (e.g., Daimler [82], ABB [83])
for the exchange of engineering data, but not across different
organizations [84].

Nevertheless, numerous customer organizations, such as
NAMUR,OPAF, DEXPI are pushing for more standards and
their adoption, which may prove beneficial for automated
code generation approaches directly processing customer ar-
tifacts.
Cost/Benefits of Code Generation The survey did not
find any cost/benefit studies for automated code generation
in industrial automation. Return on investment for IEC
61131-3 code generation is not yet well validated and re-
mains vague. Setting up a tool chain for code generationmay
be costly and require a series of multiple similar projects to
actually pay off. Control engineers need to create importers
for their engineering tools, set up knowledge bases, and elicit
domain rules. They may need to train developers in modi-
fied UML/SysML versions. Whether the code generation is
robust and reliable in a realistic project is not well investi-
gated.

While several experiments [66, 85] have demonstrated
that control engineers can be more productive using a UML-
based notation, it remains unclear if this benefit outweighs
the drawback of introducing an additional UML tool. Con-
trol engineers may be bound to the engineering tools their
employer provides for a commercial system, which may
make it hard to introduce additional external tools.

It is unclear how much code can be generated, and
how much code is better created manually. For example,
complex multicascading logic involving sophisticated algo-
rithms may require human expertise for the foreseeable fu-
ture and might be difficult to generate automatically. An
elaborated code generation approach may make the appli-
cation implementation intransparent for control engineers,
who might lose confidence in the generation if it proves un-
reliable.

Benefits regarding higher code quality or saved time in
relation to the overall engineering time lack hard evidence.
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Case studies need to be carried out with industry to better
characterize cost and benefits of code generation considering
different application domains and their constraints.

6. Threats to Validity
The comparison of code generation methods in this pa-

per aimed to analyze the prerequisites and capabilities of the
all relevant published methods. The following threats to va-
lidity of this survey have been explicitly considered and ad-
dressed:

• Non-Representative Selection of Approaches: Sec-
tion 3 has documented the used search facilities,
search terms, and inclusion criteria of this paper.
Excluding approaches generating IEC 61499 control
logic as well as other programming languages is a
threat to the representativeness of the survey, but was
decided for conciseness and practicality [33].

• Irrelevant Classification Criteria: The classifica-
tion criteria depicted in Fig. 12 are derived from the
inputs required in practice, the necessary transforma-
tion steps for a working code generation, and the typ-
ical outputs of such approaches. We used external
references [13, 34] to make these criteria representa-
tive, more relevant, and reduce subjective author bias.
We also contacted domain experts and reviewed nu-
merous customer requirements specifications to get a
deeper understanding of the inputs available in prac-
tice.

• Incorrect Analysis of Approaches: Wewere not able
to test the approaches by executing their tooling on
self-defined cases. For almost all of the approaches,
the tooling was not readily available for reproduction.
Thus, the analysis of the approaches is purely based
on literature review.

• Author Bias: The authors of this survey are affiliated
with an automation company that provides commer-
cial products for industrial automation. This may lead
to a bias towards the contexts and perspectives of the
authors. However, none of the surveyed approaches
is currently used by the authors’ company, therefore
assuring a level of objectivity.

7. Related Work
Related Surveys Although there is no classification and
comparison of IEC 61131-3 control logic generation in lit-
erature, there are several publications providing overviews
of different model-driven approaches and code generators
for industrial automation applications. Vyatkin’s state-of-
the-art review of software engineering in industrial automa-
tion [7] summarizes several approaches for model-driven en-
gineering according to the OMG standardsMDA, UML, and
MOF. This coarsely maps to the higher-level programming
approaches from our survey, but also includes approaches

dealing with IEC 61499 control logic. The paper does not
deal with ruled-based code generation approaches and de-
scribes its included approaches on a higher abstraction level.

The survey by Yang et al. [10] is also broader and less
detailed than our survey, reviewing MATLAB Simulink,
SCADE, OpenRTM, and IEC 61499 engineering concepts
and tools. Vogel-Heuser et al. [12] describe general chal-
lenges and research directions for software development for
automated production systems. They point out that round-
trip engineering, tool integration, tool usability, and edu-
cation are major challenges for model-driven engineering
in industrial automation. They also list a number of UM-
L/SysML related approaches, however without classifying
them.

Lukman et al. [5] provided a short state-of-the-art analy-
sis of process control engineering approaches, without in-
cluding rule-based approaches. They also included IEC
61499 approaches as well as approaches not generating clas-
sical control logic. They attributed the limited industry
adoption of these approaches to a “lack of automatic PLC
code generation, lack of development process definition and
guidelines, and non-existent or immature tools support, be-
sides the use of device-centric abstractions”. Liebel et al.
[11] assessed the state-of-practice regarding model-driven
engineering for embedded systems, but did not specifically
deal with IEC 61131 control logic.
Related but Excluded Approaches Several related ap-
proaches have been excluded for different reasons. FU-
JABA [86] is an integrated tool environment, where Siemens
PLC code can be generated from SDL block diagrams, UML
class diagrams, and UML behavior diagrams. This approach
has been developed more than 15 years ago. The FAVA
approach [87] translates SysML requirements diagrams and
manually specified models to Continuous Function Charts
that can be loaded into many PLCs.

Researchers have proposed several IEC 61499 ap-
proaches involving code generation, but none of them were
developed into a robust tooling. Hussain and Frey [40] gen-
erate IEC 61499 FB networks and test cases out of UML
use case, component, sequence, activity, and state diagrams.
Panjaitan and Frey [41] map UML and component dia-
grams to IEC 61499 FB networks. Thramboulidis and Buda
[42], Thramboulidis [43] propose the 3+1 SysML model
to generate IEC 61499 code. Wenger et al. [88] propose a
converter to transform IEC 61131-3 control logic into IEC
61499 logic to be able to utilize its additional features. Dai
and Vyatkin [89] discuss migrating distributed IEC 61131-3
PLC code to IEC 61499 function blocks and illustrate three
different migration methods on a conveyor belt system.

Yang et al. [90] propose a method to transform IEC
61850 system configuration language (SCL) specifications
into logical connections in an IEC 61499 substation automa-
tion control application. This involves creating an ontol-
ogy from the specifications in the Web Ontology Language
(OWL), which is then transformed into logical connections
of IEC 61499 function blocks using the enhanced Semantic
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Web Rule Language (eSWRL). Voinov et al. [91] created an
automatic HMI generator for this method. Furthermore, the
authors extended the approach to use restricted natural lan-
guage (RNL) using Boilerplate models as input [92]. While
this overall method was demonstrated for smart grid sys-
tems, the mechanisms behind it could be transferred to other
domains as well.

Furthermore, several older code generation approaches
use formal modeling notations, such as Petri nets or timed
automata. Cutts and Rattigan [47] propose a PLC code gen-
eration method with Petri Net-based modeling techniques
for a three-stage manufacturing system. Jörns et al. [48] in-
troduced signal interpreted Petri nets and translated them to
LD or IL code. Frey [49] propose a PLC code generation
approach by arranging code fragments which directly cor-
respond to Petri net elements. Thieme and Hanisch [93]
present a modeling formalism to generate modular control
logic using IEC 61131 functions blocks. Music et al. [50] ap-
ply real-time petri nets to generate control logic implemen-
tations. Sacha [94] proposes a formalization for transforma-
tions of timed finite state machines into PLC control code.
Endsley et al. [95] generate control logic for a conveyor sys-
tem out of finite state machines but do not specifically aim
at IEC 61131-3 code. Flordal et al. [96] generate executable
interlocking policies implemented in PLC programming lan-
guages for industrial robot cells. Bergert et al. [97] generate
IEC 61131 SFCs from Pert charts encoded in XML. [51] use
timed automata and create an automated translation into LD.

8. Conclusions
This paper classified 13 control logic generation ap-

proaches for IEC 61131-3 programming languages. Au-
tomating the task of software implementation for real-time
controllers in industrial automation could result in a signifi-
cant cost reduction for the engineering process of industrial
plants. The classification criteria used in this paper origi-
nate from the customer specifications available in practice
(inputs), an idealized model transformation process, and the
typical outputs of control logic formats and kinds. The anal-
ysis of the 13 approaches showed that they have different
goals and follow different patterns, which complicates direct
comparisons for quality attributes, such as performance or
specification coverage. Most approaches remain in a proof-
of-concept maturity.

The classification framework in this paper can bene-
fit practitioners and researchers. Practitioners get a con-
densed state-of-the-art review for code generation in indus-
trial automation and can thus faster assess the benefits and
drawbacks of each approach. Although practitioners cannot
apply most approaches directly in real projects due to the
likely mismatch of available inputs and immature tool sup-
port, they can evaluate the potential of code generation inde-
pendently and work towards using the standard file formats
suggested by the approaches. Researchers get a blueprint
to better compare and categorize existing and future ap-
proaches. Research challenges derived from the compar-
ison revolve around powerful and robust knowledge bases

for rule-based engineering, processing natural language re-
quirements, and supporting iterative engineering processes
with input validation, bi-directional transformations, and
code merging. Combinations of rule-based engineering ap-
proaches and higher-level programming approaches should
be investigated.

Upon a maturation of the surveyed approaches, a bench-
mark for automatic IEC 61131-3 code generation should be
developed to better compare their capabilities and give out
research challenges to extend the code generation capabil-
ities. Such a benchmark should include representative in-
puts artifacts available in practice in different file formats.
It could include natural language requirements to test text
mining approaches. Benchmark scores could be defined
for specification coverage, efficiency, and user-friendliness.
Such a benchmark would need to be maintained periodically
and be updated with new community challenges.

In the future, control logic generation approaches may
produce IEC 61499 control logic or other programming lan-
guages and interface with approaches for Modular Automa-
tion (NAMURMTP [70]), if these languages and initiatives
achieve a higher market penetration. User studies should
be conducted to assess control logic generation approaches.
Criteria or specific project contexts should be defined to help
practitioners to decide for or against code generation given
certain project constraints.
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