
Industrial Implementation of a Documentation
Framework for Architectural Decisions

Christian Manteuffel∗, Dan Tofan∗, Heiko Koziolek†, Thomas Goldschmidt† and Paris Avgeriou‡
∗University of Groningen, The Netherlands, {c.manteuffel, d.c.tofan}@rug.nl

†ABB Corporate Research, Ladenburg, Germany, {heiko.koziolek, thomas.goldschmidt}@de.abb.com
‡University of Groningen, The Netherlands, paris@cs.rug.nl

Abstract—Architecture decisions are often not explicitly doc-
umented in practice but reside in the architect’s mind as tacit
knowledge, even though explicit capturing and documentation
of architecture decisions has been associated with a multitude
of benefits. As part of a research collaboration with ABB, we
developed a tool to document architecture decisions. This tool is
an add-in for Enterprise Architect and is an implementation of a
viewpoint-based decision documentation framework. To validate
the add-in, we conducted an exploratory case study with ABB
architects. In the study, we assessed the status quo of architecture
decision documentation, identified architects’ expectations of the
ideal decision documentation tool, and evaluated the new add-in.
We found that although awareness of decision documentation is
increasing at ABB, several barriers exist that limit the use of
decisions in practice. Regarding their ideal tool, architects want
a descriptive and efficient approach. Supplemental features like
reporting or decision sharing are requested. The new add-in,
was well-perceived by the architects. As a result of the study,
we propose a clearer separation of problem, outcomes, and
alternatives for the decision documentation framework.

I. INTRODUCTION

The perspective of looking at software architecture as a
set of architecture decisions is widely recognized [1], [2].
However, architecture decisions are often not explicitly doc-
umented in practice but reside in the architect’s mind as
tacit knowledge and are only implicit in the models that the
architect creates [2], [3]; even though explicit capturing and
documentation of architecture decisions has been associated
with a multitude of benefits, such as avoiding knowledge
vaporization, supporting change impact estimation, increasing
system understanding, improving knowledge sharing, and fa-
cilitating architecture evaluation [2], [3], [4]. This gap between
industry practice and the benefits demonstrated by research
persists, although researchers have proposed many approaches
to incorporate the documentation of architecture decisions in
architecture practice [5].

However, multiple studies identified that these tools are
often only applicable during certain stages of the architecting
process and have been designed to only support a particular
activity or only work under certain conditions [6], [7], [8].
In addition, van Heesch et al. [9] argued that the proposed
approaches, i.e. decision templates, decision models, and an-
notations, “do not frame all concerns of all stakeholders in
an adequate and useful manner”. This makes the produced
documentation only suitable for a small subset of stakeholders.
Furthermore, existing decision documentation approaches do
not integrate well with existing architecture documentation
approaches (e.g. models, diagrams, views) [9].

In a research-industry cooperation with ABB, we devel-
oped an add-in for Sparx Systems’ Enterprise Architect (EA)
that allows to document architecture decisions in a user-
friendly and efficient way. The add-in is based on a vali-
dated conceptual decision documentation framework, which
proposes a set of viewpoints to holistically address stakeholder
concerns and to provide support for all architecting phases.
This framework has been described and extended by van
Heesch et al. [9], [10]. By integrating a decision documentation
tool into an existing modeling platform, architects can use the
same tool that they use to create models, diagrams and views
of the architecture, to document the decisions that constitutes
these artifacts. This narrows the gap between architecture
documentation and architecture decision documentation.

To ensure that our tool addresses the needs of software
architects, it is important to understand the domain and
company-specific characteristics and approaches toward soft-
ware architecture and decision documentation. Therefore, we
conducted an exploratory case study to assess the status quo of
architecture decision documentation, to identify expectations
of the ideal documentation approach, and to evaluate the
advantages and limitations of the developed tool from the
perspective of software architects. This paper reports on this
exploratory case study.

The contribution of this paper is threefold. We describe
the current approach and practices of decision documentation
within a large company and contribute to the understanding of
decision documentation practices in industry. We identified a
set of key characteristics for architecture decision documenta-
tion (ADD) tools from the perspective of software architects.
We present a tool to document architecture decisions, which
is based on a validated theoretical framework and has been
assessed in an industrial setting.

The rest of the paper is organized as follows. Section II
introduces the developed add-in and the conceptual framework.
Section III reports on the industrial case study. Section IV
discusses the findings in relation to previous findings. Sec-
tion V presents related research and tools. The paper ends with
conclusions and directions for future research in Section VI.

II. INTRODUCING THE ADD-IN

To facilitate the documentation of architecture decisions
in practice, we developed a new tool, which has been imple-
mented as an add-in to Sparx System’s Enterprise Architect.
EA is a general-purpose model-driven UML tool that can
be used to create various types of models to support the

2014 IEEE/IFIP Conference on Software Architecture

978-1-4799-3412-6/14 $31.00 © 2014 IEEE

DOI 10.1109/WICSA.2014.32

225

architecting process. Enterprise Architect was chosen as target
platform because it is widely-used in industry and because it
is ABB’s tool of choice for modeling aspects of their software
architectures. The add-in is a concrete implementation of a
conceptual framework for documenting architecture decisions.
Although the conceptual framework has been validated in case
studies [9], [10], there is no tool that fully implements the
conceptual framework and is suitable for industrial use.

In Section II-A we elaborate on the conceptual framework
while in Section II-B we describe the features and the func-
tionality of the add-in

A. Conceptual Framework

The Decision Documentation Framework enables the cre-
ation of decision models that can capture implicit architec-
tural knowledge [9]. The framework consists of five decision
viewpoints, each satisfies different stakeholder concerns. In
general, it is not necessary to document all views but only
those that answer project-relevant concerns. The validation of
the framework demonstrated that the effort to create the views
is reasonable and has a low cost-benefit ratio. Moreover, it
showed that the viewpoints are particularly useful for commu-
nicating decisions and reviewing architectures.

The framework shares information between the viewpoints
via a common meta-model. This meta-model is aligned to
the meta-model of the ISO/IEC/IEEE 42010 standard and
therefore, the framework can be easily combined with other
architectural viewpoints, such as Kruchten’s 4+1 views[11].

�������	
���
������	�

�������������	�������	�
������	�

�����

������	�

����	�����
������	�

������
������	�

�������	
�����

��������������
��

��
����
�

������
���

��������	�
��������������
�
����	���������������������

���������	�
����������
���������������������

����������
�����������
��
�
��
������	�
�����������

��	�
�����������������
����	����	�����

��
��	���������
������
���
����	���������

Fig. 1. The five viewpoints of the decision documentation framework.

In the following, we briefly present each viewpoint, start-
ing with the decision detail viewpoint. The detail viewpoint
presents an overview of one decision inspired by existing
decision templates, similarly to Tyree and Ackerman [3]. As
illustrated in Fig. 1, it aggregates information stored in the
other four viewpoints, such as the evolution of the decision
or related forces. While the detail viewpoint focusses on one
particular decision, the other four viewpoints visualize multiple
decisions to optimally frame related concerns [9].

The decision relationship viewpoint illustrates dependen-
cies between decisions and their current state (e.g. idea, de-
cided, rejected). Examples of relationships between decisions
are caused by, replaces or is alternative for, e.g. MySQL
replaces SQLite. The stakeholder involvement viewpoint shows
the responsibilities of stakeholders in the decision-making
process by relating stakeholder actions on decisions to concrete
project phases, e.g. it identifies the stakeholder that proposed

a certain alternative at a particular milestone. The decision
chronology viewpoint is the only viewpoint with a temporal
component, which captures the evolution of decisions through-
out time. The viewpoint presents both, the individual evolution
of a particular decision (e.g. from an idea to a stakeholder
approved decision) and the chronology of all decisions (e.g.
the decision to use MySQL has been decided after SQLite was
rejected). The forces viewpoint relates architecture decisions
to stakeholder concerns and to decision forces [10]. A force
is any aspect that influenced the architect when making the
decisions out of multiple alternatives, such as requirements or
experience.

B. Features and Functionality of the Add-in

Implementing the framework as an add-in has the advan-
tage that the tool can benefit from the existing functionality of
the platform, such as creating diagrams, managing projects or
having a central project repository. Additionally, the learning
curve is lower since the users are already familiar with the plat-
form. In order to benefit from these advantages, we carefully
designed the add-in to meet the existing usage patterns and
practices of Enterprise Architect and consistently integrated
it into the existing user interface. For example, the add-in
follows a model-based paradigm by having decisions as first
class model elements, which implies that decisions are stored
in a central model repository along with all other Enterprise
Architect modeling elements, such as classes or components.

The add-in supports the following high-level use-cases:
(i) Documentation of architecture decisions according to the
five viewpoints from the conceptual framework. (ii) Tracing
of decisions to other modeling elements within Enterprise
Architect, such as components, classes or requirements. (iii)
Export of decision views in Word, Excel and Powerpoint.

As illustrated in Fig. 2 the user-interface of Enterprise
Architect is composed of three parts. The project browser
(right) contains all elements and diagrams of one project in
a hierarchical structure of packages and views. The diagram
(center) is the workspace to model and to layout views. The
toolbox (left) shows a list of elements and connectors, which
can be dragged and dropped onto the diagram. The selection
of elements in the toolbox depends on the type of the selected
diagram. In this case, the toolbox is related to the decision
relationship view. Hence, it contains decision elements and
connectors to model relations between decisions.

Fig. 2. A decision relationship view in Enterprise Architect with the main
interface elements: the toolbox, the diagram and the project browser.

226

1) Decision Relationship Viewpoint: The decision rela-
tionship viewpoint allows to model dependencies between
decisions. As illustrated in Fig. 2, a decision is represented
by a rounded rectangle with the name of the decision as label.
The state of the decision is shown as stereotype (i.e. �state�)
and is also encoded in the color of the decision to get a faster
overview of the overall state of the decisions. The colors were
selected carefully to express a semantic meaning. For example,
challenged decisions are indicated in red to emphasize that this
decision represents an unsolved problem and requires further
discussion. Discarded or rejected decisions are displayed in
an unobtrusive grey, while ideas resemble the bright yellow
of a light bulb. Tentative, decided and approved decisions are
visualized in a gradient from light blue to dark blue to illustrate
the increasing certainty of a decision. A tentative state mean
that a decision is seriously considered. A decided state reflects
the current position of the architect, while an approved state
means that the decision has been confirmed, e.g. during a
review meeting.

Fig. 3. A decision chronology view showing the evolution of decisions for
two milestones.

2) Chronology Viewpoint: The decision chronology view-
point shows the evolution of architecture decisions over time. It
shows decisions that have been made, current set of decisions,
the ordering of decisions, and obsolete decisions, as shown
in Fig. 3. However, keeping track of every state change of a
decision can be difficult. In order to reduce the effort required
to create this view, the add-in keeps track of changes to
automatically generate a chronology view.

Fig. 4. A stakeholder involvement view showing the actions of two
stakeholders (architect, manager) in the decision-making process.

3) Stakeholder Involvement Viewpoint: The stakeholder
involvement viewpoint explains the responsibilities of spe-
cific stakeholders in the decision-making process. It shows
decisions, actions, and stakeholders involved within one ar-
chitecture iteration. The responsibilities can be modeled by
relating decisions and stakeholders via special connectors (e.g.

proposed, validated or decided), as illustrated in Fig. 4. This
viewpoint supports a knowledge personalization strategy (i.e.
who-knows-what instead of what-is-known).

Fig. 5. A concrete decision forces view, showing forces and concerns,
alternatives and ratings.

4) Forces Viewpoint: The decision-forces viewpoint makes
relationships between decisions and decision forces explicit.
This viewpoint identifies the impact of forces on decisions,
conflicting influence of forces on a specific decision, rationale
behind a decision, and to what concerns a decision pertains.
As shown in Fig. 5, the decision forces viewpoint is a table
that lists the forces on the vertical dimension and the decisions
on the horizontal dimension. Just like the other viewpoints the
table can be created via drag and drop.

5) Detail Viewpoint: The Detail viewpoint is the default
dialog that is shown when a decision has been selected. The
decision detail viewpoint combines the information shown
in all other views by giving detailed information about a
single architecture decision including its rationale. It uses a
set of common attributes, such as the state of the decision,
issue, alternatives, and related concerns. It also aggregates all
incoming and outgoing relationships of a decision shown in the
relationship viewpoint. The detail viewpoint addresses a large
set of concerns, like conflicting impacts between decisions,
dependencies, relations, the involvement of stakeholders, and
the history of a specific decision. Fig. 6 shows the detail view
of a decision.

Fig. 6. A concrete decision detail view illustrating the arguments and
alternatives of decision.

227

6) Traceability: The add-in provides a user-friendly way to
create traces between decisions and other modeling elements.
A trace can be created by adding the decisions in the same
diagram as the component. Subsequently, a trace relationship
between the two elements can be created by using the Trace-
connector in the toolbox, as shown in Fig. 7. Even if the
decision is removed from the diagram, the trace still persists.
The tracing is bi-directional, so the user can navigate from
decisions to design elements and vice versa through the context
menu of the decision element. This allows to easily relate a
decision to the underlying design model, e.g. a decision about
a database to the actual data layer in the system.

Fig. 7. Trace between decision and baseline component.

7) Reporting: Three types of documents can be generated
out of the decision documentation: Word, PowerPoint, Excel.
The Word and PowerPoint reports present all viewpoints, while
the Excel report only contains forces viewpoints.

III. CASE STUDY

The main research goal of our study is to analyze the
decision viewpoint add-in for the purpose of evaluation with
respect to advantages and limitations from the point of view
of software architects in the context of the ABB company
environment. This goal has been formulated according to the
Goal Question Metric approach [12].

In order to assess the advantages and limitations of the
add-in, it is necessary to compare the add-in to the current
approaches of decision documentation within ABB but also to
analyze to which extent the add-in matches the expectations
of ABB software architects. Therefore, we need to understand
how architecture decisions are currently documented, how they
are used, and which challenges architects face during this
activity. Only if we understand the status-quo of decision
documentation at ABB, we can reliably assess if the add-
in is an improvement. Furthermore, we need to understand
what architects perceive as an ideal solution for tool-supported
ADD, to compare to which extent the add-in fulfills these ex-
pectations. Based on our study goal (i.e. evaluate the decision
viewpoint technology), we derived three research questions.

RQ1 What is the status-quo of architectural decision
documentation?

RQ2 What is the ideal architecture decision documenta-
tion approach from the perspective of architects?

RQ3 How do architects perceive the advantages and limi-
tations of the add-in and the decision documentation
framework?

In Section III-A we elaborate on the method, scope and
units of analysis of the study. Section III-B reports on the
background of the participants, while Section III-C describes
the data collection procedure. In Section III-D we present the
findings of the case study.

A. Method and Case

A case study was preferable over surveys or experiments,
because the use of the add-in is tightly linked to the context
of the software project, for which decisions are documented.
The context-specific factors, such as complexity, domain, size
or number of stakeholders, influence not only the quantity and
quality of documented decisions but also the willingness of
the architect to use such a tool. Therefore, we had to study the
phenomena (i.e. the use of the add-in) in its natural context[13]
The focus of this case study is a preliminary investigation of
the add-in to seek new insights and to generate new ideas
for our research, thus we conducted an exploratory study. We
chose a single case, embedded design. In embedded case-
studies “multiple units of analysis are studied within a case”
and are an appropriate design for explorative case studies when
there is no established theoretical framework[13]. We followed
the guidelines for conducting case study research described by
Runeson et al. [13].

Our concrete case is the documentation of software archi-
tecture decisions by five architects of different business units
of a large industrial-automation company. Our unit of analysis
is the decision documentation activity performed by individual
architects. The object of our study is the developed add-in. The
scope of our study is limited to the business units of ABB to
which the participating architects belong.

B. Participants and Projects

All five participants can be classified as experienced
software architects with substantial practical experience. The
participants had between 10 and 24 years of experience in
software development and three to 18 years of experience
in the field of software architecture (average 11 years). The
participants have experience in the the following domains, In-
formation Systems, Enterprise Applications, Control Systems,
Process Automation. Table I summarizes the software project
that were reported during the study. The first column indicates
the role(s) of the participant within a project. The second
column is a brief description of the context of the project,
while the third column reports about the number or frequency
of documented architecture decisions within a project.

TABLE I. ROLE AND PROJECTS OF PARTICIPATING ARCHITECTS.

Role Project Number of decisions
documented

Lead Architect,
Project Manager

Corporate consulting project, in-
ternal client, one year duration

20-30 decisions

Software
Architect

Process automation system, long-
term project

Every 1-2 week a decision

System Architect Industrial control systems, long-
term

5-6 in three years

Lead Architect Large corporate research project 15 in first six month

Software
Architect,
Project Leader

Industrial software architectures,
two project with one year dura-
tion

First project 20 - 30, second
project 30 - 40 decisions.

228

C. Data Collection

As recommended by Verner et al. [14], we used multiple
sources of data. These include existing decision documentation
of ABB, interviews with ABB architects, and direct observa-
tion of ABB architects using the add-in. The selected sources
of data are commonly used in case studies [15]. Table II shows
the mapping between selected sources of data and defined
research questions.

TABLE II. MAPPING BETWEEN RESEARCH QUESTIONS AND SOURCES

OF DATA.

RQ1 RQ2 RQ3

Requirement elicitation interviews × ×
Existing decision document ×
Pre-tool session interview × ×
Observations from tool session × ×
Post-tool session interview ×

1) Requirement elicitation interviews: Eliciting require-
ments for the tool from software architects, helped us to
understand both the status quo of AD documentation and the
ideal tool. Due to the geographically dispersion of participants
and researchers, the requirements elicitation interviews were
conducted via telephone. We used semi-structured interviews
to elicit requirements. We recorded the interview if the partici-
pant had agreed. If this was not the case, one of the researcher
took extensive notes. One architect filled out the interview
guide without being interviewed.

2) Existing decision documentation: Analyzing existing
decision documentation helped us to understand the status
quo of AD documentation at ABB. Moreover, it enabled us
to collect details to corroborate information collected from
other sources. The documentation that we received from ABB
contained architectural design decisions for two systems and
are based on real products of ABB. However, the decisions
have been obfuscated to hide any product-specific information
or component names. We investigated what kind of information
has been documented (e.g. problem, solution, how many alter-
natives were considered, relationships, stakeholders, etc.). We
also received templates that were used to document decisions
in concrete projects, modeling guidelines, and Excel forms for
evaluating alternatives against concerns.

��������	�
��

����	��������������	

����������
����������
����������

��������	
��

�������	����
�
��������

������������

���
����������

���
�����������

�
�������

Fig. 8. Outline of a session with an individual software architect.

3) Tool sessions: Most of the data collection took place
during a company-visit by three researchers. We conducted
individual sessions with five architects. All sessions followed
the same schema as illustrated in Fig. 8. We first interviewed
the participant about the status-quo of decision documentation.
The first interview was followed by a brief presentation about
the add-in. Three of the participants used the tool to document
decisions of a recent software project. At the end of each
session, we conducted another interview about their experience
and their opinion about the advantages and limitations of the

add-in. Semi-structured interviews before and after the tool-
sessions helped us to better understand the context in which the
add-in is evaluated, e.g. information about the project, the team
or the client. Each session was audio recorded and transcribed.

D. Analysis

We used constant comparison for data analysis, which is a
systematic way to identify concepts in the data by comparing
identified concepts to previous observations[16]. All interviews
and the collected documentation were intensively studied and
coded. “Coding in this context means attaching codes, or
labels, to pieces of text which are relevant to a particular
theme [. . .] of interest in the study[17].” We did not establish
a set of codes before the analysis as the objectives of the
analysis were not clear ahead of time. Instead, potential codes
were announced during analysis and explained and discussed
in a shared document. Responses of the participant that were
related to one of the research questions were labeled. During
the coding and constant comparison the researcher gets a better
understanding of the data he is looking at [16]. The identified
codes were grouped into related higher level concepts. We
compared the collected codes and the related text passages
and combined those that had commonalities. In our case,
a concept is a representation of a pattern of behavior, a
recurring statement or an expression of an opinion, e.g. about
the usefulness of a certain viewpoint. After repeating step
two and three multiple times, a set of concepts emerged.
The concepts were intensively studied and discussed. Related
concepts formed a category (cf. Table III).

In the following sub-sections we present the findings for
each research question.

1) RQ1 - Status-Quo of Decision Documentation: All
architects were familiar with the concept of architecture de-
cisions and they documented them in their daily routine (c1).
In fact, it was mentioned that the awareness for architecture
decision documentation has increased over the past three years.
However, the number of documented decisions varied and did
not depend on the duration or the size of a project, e.g. one
project had six decisions in three years while another had 40
in one year (cf. Table I).

The participants reported that they only document the
“major” decisions of the system (c2). However, there was no
common description of properties and characteristics that are
suitable to determine whether a decision can be classified as
“major” or not. Often they were just referred to as “high-
level”, “fundamental” or “big” decisions. One mentioned that
these are the decisions “that are causing discussion between
stakeholders and require common agreement”.

There was no company-wide guideline for documenting
decisions. However, the approach for decision-making was
similar. At first, the problem was identified, followed by a
preparation phase, in which the requirements were analyzed,
stakeholder were interviewed, and the design space was ex-
plored (c3). After the preparation phase, the collected infor-
mation was used as input for the decision. The final decision
was eventually made either by a single architect or by a group,
depending on the project. In some projects, the decisions were
approved or reviewed during stakeholder meetings.

229

TABLE III. MAPPING BETWEEN CATEGORIES AND PARTICIPANTS.

A
rc

hi
te

ct
1†

A
rc

hi
te

ct
2

A
rc

hi
te

ct
3

A
rc

hi
te

ct
4

A
rc

hi
te

ct
5†

E
x.

D
oc

um
en

ts

(c1) Familiar with architecture decisions × × × × ×
(c2) Primarily documented “major” decisions × × ×
(c3) Intensive-phase of preparation × × ×
(c4) Less time required to document decisions × × × ×
(c5) Tools and templates used for decision documentation × × × × ×
(c6) Maintenance of documentation is a problem × ×
(c7) Different information and fields of decisions captured × × ×
(c8) No direct perceived benefits of ADD × × × ×
(c9) Decisions are used for communication × × × × ×
(c10) Lean and flexible documentation × × × × ×
(c11) Tool should not patronize user ×
(c12) Limited time for documentation × × × ×
(c13) Compatibility with project-specific guidelines × × ×
(c14) Integration into existing platforms × × × × ×
(c15) Sharing and reusing decisions × × ×
(c16) Stakeholder specific reports × ×
(c17) Envisioned time savings × ×
(c18) Potential early adopter × × ×
(c19) Viewpoints are good to separate concerns × × ×
(c20) Forces views. useful for technology evaluation × × × ×
(c21) Limited features of forces viewpoint ×
(c22) Limited benefits of stakeholder involvement viewpoint × × × ×
(c23) Accountability of stakeholder inv. viewp. is problematic × × ×
(c24) Approved chronology viewpoint × × ×
(c25) Effort vs. benefits of chronology viewpoint ×
(c26) Ambiguous scope of chronology viewpoint × ×
(c27) Relationship viewpoint provides good overview × × × ×
(c28) Semantic of state, relations and traces unclear × × × ×
(c29) Detail viewpoint is very useful × × × ×
(c30) Integration into Enterprise Architect is good × × × × ×
(c31) Approved traceability × × × × ×
(c32) Problems with decision model × × × × ×

† Did not participate in requirement elicitation.

It was reported that a lot of effort is spent on the prepara-
tions for those “major” decisions, which could take from one
week to eight months. In contrast, the actual documentation of
decisions does not require more than a day (c4) . The exception
was one elaborated documentation approach, which included
multiple iterations and reviews.

There was no agreement on how decisions should be
documented or which tools should be used for documenta-
tion (c5). The following tools were mentioned: PowerPoint,
Excel, Word, and Enterprise Architect. These tools are rather
ineffective to manage decisions, hence maintaing decisions and
keeping track of their progress was reported to be challenging
(c6). This problem became evident in situations, when related
requirements changed or new information about a technology
became available. This shows a clear need for proper tool-
support, which is illustrated by the following quote: “Yes, in
the absence of good support in tools like Enterprise Architect
we fell back to Powerpoint tables.” Furthermore, in one case,
decisions were documented as a collection of related docu-
ments in combination with a brief summary. The summary

presented the outcome of the decision and listed the pros and
cons.

Decisions were mostly documented according to decision
templates, which were adapted to the specific needs of the
project. The templates were inspired by Zimmermann’s y-
approach1 or the ISO/IEC 42010 standard [18] (c5). This
lead to different information being recorded. For example, one
template, which was specifically tailored for technology eval-
uations, explicitly captured alternatives, stakeholders, risks,
forces and a revision history of the decision (c7).

The documented decisions were primarily used to com-
municate decisions to non-technical stakeholders (c9). For
example, decisions were presented on slides during meetings
(e.g. architecture reviews). In some cases, decisions were also
used to inform developers, but it was mentioned that they are
usually only interested in the decision outcome rather than the
design rationale.

We found that in projects that did not explicitly used doc-
umented decisions as basis for discussions, the direct benefits
of decision documentation were perceived lower compared to
those project where decisions were discussed with stakeholder,
e.g. during review meetings (c8). Instead, the architects assume
that explicitly documented decisions will become useful much
later in the project life-cycle, e.g. to avoid knowledge vapor-
ization or for system understanding. It was reported that due to
time-pressure decisions were not continuously documented in
these projects. In contrast, in those projects, where the client
was actively participating in review meetings, the architect
put a lot of emphasis on decision documentation and it was
considered a positive return on investment. “The feedback was
very positive much more appreciated than pure component
and connector documentation. [. . .] I talked about derived
decisions and documented them in a consumable way. That
made the review quite efficient.”

Summary: All studied business units document architec-
ture decisions. However, several aspects limit the documen-
tation, use and reuse of decision documentation in practice.
Such aspects include a lack of tool-support, the absence of
a standardized format and only little guidance on how to
utilize decision documentation. We have seen that for some
architects, the current approach of documenting decisions does
not provide enough direct benefits for their project, compared
to the required effort of documentation. The approach towards
decision-making is comparable between the units and is char-
acterized by an intensive phase of preparation.

2) RQ2 - Ideal AD Documentation Tool: All architects
reported that lean and flexible documentation is important
for them (c10). The tool should not enforce complete docu-
mentation but should offer the possibility to document only
certain aspects of a decision. The architect should be able
to choose how much documentation is really necessary and
which information is critical to understand the rationale of a
specific decision (c11) . This is supported by the finding that
the participants only documented those decisions, which they
considered to be important (c2).

1http://www.sei.cmu.edu/library/assets/presentations/zimmermann-
saturn2012.pdf [Online accessed: 25/08/13]

230

Four of the architects mentioned that hard time constraints
of the project limited the number of documented decisions.
Because of this, documentation needs to be as efficient as
possible (c12). Decision documentation approaches with com-
plex semantics, rules and formalisms are not seen as beneficial
since a lot of effort has to be spent to be correct and
precise. One architect summarized this as follows: “Do not
give them too many options and too many things to do. Try
to make them efficient in their work by minimizing the time
they have to spent in creating a decent decision log”. In
this context, the participants also mentioned automation as
a method to reduce required effort, e.g. by generating parts
of the decision documentation out of existing documents. A
tool should automatically fill in information that can be easily
inferred from the context of the documentation activity, e.g.
date and time, author, revision history, etc.

It was reported repeatedly that the decision documentation
approach should be adaptable to corporate guidelines and ex-
isting development processes (c13) . Furthermore, the decision
documentation tool should interface with tools that are used
during architecting (c14), such as modeling tools, requirements
management tools or document management systems. Being
able to link decisions to existing design artifacts is seen as
important, as documentation can be speed up by pointing to
information instead of duplicating data, e.g. pointing to results
of technology evaluations. Furthermore, linking decisions and
other artifacts could reduce maintenance effort as changes can
be synchronized with the decision documentation and thus
would allow to perform sanity checks to keep the documen-
tation up-to-date. For instance, a warning could be issued if a
requirement has been changed, which is linked to a decision.

As indicated by (c16), the tool should be able to generate
stakeholder-specific reports out of the stored decisions. This
correlates with the fact that the main purpose of decision
documentation within the observed units was stakeholder
communication (c9). It was reported that a lot of effort is
spent to create and optimize decision reports for non-technical
stakeholders. The group of stakeholders usually do not require
the level of technical detail that a developer would expect.
As stated by one participant: “Stakeholder are really on the
other side, you have marketing people and management there
and you really need to adapt to their mind”. On the contrary,
developers might not be interested in financial aspects of a
decision.

We also identified a need to effectively share architectural
knowledge across business units, in particularly the results of
technology evaluations (c15). A lot of time is spent on evaluat-
ing technologies against certain criteria. It was mentioned that
a shared repository of these evaluations could provide valuable
insights on how other architects have assessed a technology
and which factors and risks they have considered. “ So we can
look at other investigations and how these are documented and
what they did. If those were easy to find this would help.”

Summary: The following characteristics of the ideal ADD
tool emerged during the interviews. It should be lean and
flexible, efficient, and compatible with existing processes.
Besides documenting decisions, the architects found it very
important that the tool interfaces with existing tools, exports
stakeholder-specific reports, and provides the possibility to
share and reuse decisions.

3) RQ3 - Advantages and Limitations of the Add-in:
We received very positive feedback about the add-in. Three
of the architects stated that the presented tool would allow
them to document decisions faster, compared to their current
approach (c17). Three participants also mentioned that they
would immediately start using a stable and complete version
of this add-in (c18).

The approach to separate concerns in different decision
viewpoints was widely accepted (c19). The importance of
different perspectives is illustrated by the fact that there were
different opinions about the usefulness of individual view-
points. The same viewpoint was regarded as highly beneficial
by some architects and as having no immediate benefit by
others. However, each architect considered at least one of the
five viewpoints as useful.

The forces viewpoint was seen as useful, since it resembles
one of the templates used for technology evaluation. Thus, the
viewpoint immediately seemed familiar and could be used to
capture the results of these evaluations (c20). However, we also
received comments regarding the limited capabilities compared
to the Excel template. The participants were missing features
like grouping, filtering or coloring to manipulate and analyze
data (c21). One architect used a qualitative approach for
evaluation (i.e. quality attribute scenarios) and thus wouldn’t
use the forces viewpoint.

The reception of the stakeholder involvement viewpoint
was mixed. Four architects reported that they would probably
not use this viewpoint in their current project, as they do
not see an immediate value (c22). On the other hand, one
architect saw the advantage “of having a connection between
project management and architecture decision-making”, which
he considered to be the advantage of this viewpoint. However,
the accountability introduced by this viewpoint (c23) was seen
as critical as it might create tension within the team.

The chronological viewpoint was regarded to be positive
(c24). However, it was stated that the effort to create this
viewpoint would not justify the insights gained from this view-
point (c25). Hence, the possibility to automatically generate the
viewpoint was highly appreciated. However, it was remarked
that the viewpoint can get very large with an increasing number
of decision and thus, it would become difficult to comprehend
the evolution of decisions. It was suggested to reduce the size
of the viewpoint by hiding, filtering or merging state changes
that are less important (c26).

The relationship viewpoint was considered very positive
(c27) as it provides a good overview of the decisions in the
project. As indicated by (c28) the concept of decision states
and the meaning of relations was not intuitively understood
by the architects and requires some training. The ability
to trace decisions with other modeling elements was highly
appreciated by all architects (“That’s a dream coming true”)
(c31). Furthermore, the close integration with EA was praised
as it helps them to get started (c30).

A general concern that was raised by all participants was
that the add-in does not clearly separate between problem,
alternatives and outcome of decisions (c32). The architects
wanted to model those aspects of a decision individually, which
would resemble their way of working and thinking.

231

Summary: The add-in was perceived very positively. Hav-
ing different viewpoints for different concerns was appreciated,
especially since there was no agreement on the usefulness
of individual viewpoints. This finding is perfectly compatible
with the decision framework and the tooling as it is up
to the architect which viewpoints to use. Two suggestions
for improvements could be identified: limit the scope of the
chronology viewpoint and separating problem, alternatives and
outcome in the decision model.

E. Limitations

The validity of a study is an indicator of the trustworthiness
of the results and to what extent the results are true and
not biased by the researcher’s subjective point of view [13].
Internal validity does not apply because we do not examine
causalities in our data [15].

Construct validity reflects to what extent the operational
measures that are studied really represent what was intended
to be studied. To ensure that our operational measures are
suitable, we established a research protocol that was re-
viewed by two researchers with experience in conducting case
study research. We used multiple sources of data (interviews,
participant-observations and the analysis of work artifacts) to
limit the effects of one interpretation of a single data source
[13], this included interviews, participant-observations and the
analysis of work artifacts. We also took different perspectives
into account and investigated differences between projects and
business units, which improves the strength of our conclusions.

External validity reflects the extent of generalizability of
the findings, and to what extent the findings are of interest
to other people outside the investigated case. Statistically
representative samples can typically not be achieved in cases
studies and thus, the emphasis is usually put on analytical gen-
eralization, which explains why the findings are representative
for other cases with common characteristics [13].

The participants of the study were professional software
architects with multiple-years of experience in architecting
software systems. Moreover, ABB and the studied business
units are representative for companies developing software
intensive systems. Therefore, we argue that the subject popu-
lation in the study is representative for the larger population
of experienced software architects that have a similar approach
to architecting and decision-making as the study participants.
There is a risk that the cultural background influenced the
results as all participants were German. However, since ABB
is an international corporation and since the participants were
working in multinational projects in Europe and Asia, we argue
that the impact on the results is less substantial.

Additionally, we conducted two pilot-studies to train the
interviewers and to identify problems with the questions[13].
In our study design we ensured that the interview about the
current state of decision documentation is not biased by the
demonstration of the add-in and the decision framework. With
respect to our findings for RQ1 and RQ2, our findings are
partly generalizable as they are supported by other studies
that were conducted in different domains and with different
subjects, e.g. [7], [19]. With respect to RQ3, external valid-
ity is limited as further replications with multiple-cases are
necessary [15].

Reliability is concerned to what extent the operations of a
study can be repeated. We addressed reliability by defining a
rigor study protocol and interview guides [13]. We created a
case study database that contains all collected data both raw
and coded, so that the analysis can be verified and traced. We
mitigated the risk of biasing our findings towards a positive
outcome by asking open-ended questions and also asked the
participant to motivate their answers. However, the risk of a
researcher bias also affects analysis. Therefore, the analysis
was conducted by two researchers and the findings were
discussed with a third researcher, who did not participate in the
analysis but in data collection, to get an unbiased perspective.

IV. DISCUSSION

In the following sub-sections, we discuss the findings and
compare them to existing literature.

A. Lack of Tool-Support and Standard Approach

The analysis of RQ1 showed that architecture decisions
are documented within the selected business units, which
indicates that the importance of ADD in the architecting
process is increasingly recognized by practitioners. The finding
is supported by a survey conducted by Tang et al. [19] in
2005 that showed that, contrary to popular believe, decisions
are indeed documented in practice although not all aspects of
a decision are captured, such as considered alternatives. Our
findings showed that the information being recorded differs
from project to project. Some architects documented decisions
thoroughly with alternatives, justification and consequences,
while others focussed solely on the outcome.

An explanation for that could be a missing standardized
approach and the use of general purpose tools. In contrast
to general purpose tools, a specialized tool can present the
architect with a template and provide assistance, thus in-
creasing the quality of decisions and providing a uniform
format. Furthermore, general purpose tools are unsuitable for
maintaining architecture decisions. This finding is supported
by a recent study by Anvaari et al. [20] on decision making in
the Norwegian electricity industry. In general, the lack of good
tool support might discourage architects to capture knowledge
in the first place.

B. Sharing and Reusing Decisions

We have seen in RQ1 that the preparation of a decision
requires a lot of effort. This is aligned with the findings from
van Heesch and Avgeriou [21] on the reasoning process of
professional architects. Despite the effort that is being spent
on these activities, we found that decisions are not shared
within the company but are only consumed within the context
of a project. However, reusing existing decisions as a basis
for upcoming decisions could significantly reduce the effort of
collecting and researching information. Of course, decisions
cannot be applied without a critical reflection since the contexts
of projects differ. Nevertheless, decisions can be used as a
source of inspiration and information (e.g. “Which alternatives
were considered?” or “How where they evaluated?”). Another
aspect of sharing is the ability to make decisions available
for stakeholders by exporting stakeholder-specific reports. We
found that this is an important use-case for architects, since

232

decisions are often used for communication with stakeholders,
e.g. during review meetings.

C. Perceived Benefits, Efficiency and Flexibility

RQ2 showed that there is only limited time available for
documentation. This is supported by the study conducted
by Tang et al. [19], who identified time-pressure as one of
the main barriers for documenting decisions. However, not
enough time for documenting decisions can be seen as an
indicator that the architects did not see enough direct benefits
to make decision documentation a higher priority task. Al-
though, all participants reported long-term benefits of decision
documentation, such as avoiding knowledge vaporization, the
immediate benefits of documenting decisions were not that
evident. Architects only mentioned direct benefits in those
projects, in which decisions were immediately used for reviews
or where the project focussed on extending the knowledge-
base of the company, e.g. creating architecture prototypes of
emerging technologies.

With regards to the important characteristics of the ideal
ADD tool, we have seen that efficiency is very important. In
general, the effort of documenting and maintaing decisions
should be as low as possible, which can be achieved with
dedicated tool-support and automation. In our case, generating
viewpoints would be a possibility to increase the quality of
documentation (i.e. completeness) and reduce the required
effort.

We identified that a flexible approach is essential. The
tool should not patronize its users by enforcing a certain
way of documentation. The architect wants to decide when
to document, what to document and how much documentation
is necessary. This finding is supported by Farenhorst et al. [7],
who emphasize that due to the creative nature of architecting,
tools should be descriptive rather than being prescriptive.

D. Reinforced Findings about the Framework

One of the motivations of the decision documentation
framework is that the architect can choose to document only
a subset of viewpoints depending on the characteristics of
the concrete project and the available time [9]. The analysis
of RQ3 showed that this goal has been accomplished as the
participants considered different viewpoints to be useful for
their project. This emphasizes the importance of providing
different perspectives on decisions as it is impossible to address
all concerns in a single viewpoint.

Our study confirms several findings of prior studies about
the framework. This includes that the stakeholders concor-
dantly stated that the relationship view provides a good
overview of the decisions made [9]. Furthermore, our study
supports the presumption that the accountability introduced by
the stakeholder involvement viewpoint might cause architects
to neglect the use of this viewpoint [9].

E. Improvement of the Decision Model

A result of RQ3 is that a clearer separation between the
problem, the alternatives and the outcome of a decision needs
to be achieved. The fact that the problem and outcome are
embodied in the same element caused difficulties for the

participants to model their decisions in the add-in. We observed
that the architects start with the identification of a problem,
which requires a decision. After that, multiple alternatives are
considered and evaluated. Eventually, one or a combination
of the alternatives will be chosen. Since the model does
not separate the outcome of a decision from the underlying
problem and the considered alternatives, it does not adequately
represent the architect’s thought and work process.

V. RELATED WORK

In the past ten years, different approaches emerged to sup-
port architectural knowledge management using architecture
decisions as basic knowledge entities. For example, the Knowl-
edge Architect tool suite is based on a common knowledge
repository, which is accessed by clients to store and retrieve
AK [22], e.g. a Word and Excel plugin to annotate AK in ex-
isting documents. Another example is the Architecture Design
Decision Support System (ADDSS), which is a web-based tool
for storing, managing, and documenting architectural decisions
along with candidate architectures [23]. The tool allows to
visualize the evolution of AK over time by capturing AK and
architecture in an iterative process. Furthermore, it supports
requirements traceability and reporting.

Another web-based tool is the Process-centric Architecture
Knowledge Management Environment (PAKME), which is built
on top of a open source groupware platform [24]. PAKME’s
features can be categorized into knowledge acquisition, knowl-
edge maintenance, knowledge retrieval, and knowledge pre-
sentation [6]. Archium, proposed by Jansen et al. [1], takes a
different approach by defining a component language extension
for Java, which allows to model design decisions and relate
those to components. This makes a single language act as an
architectural knowledge repository and an implementation of
a system.

The proposed tools were evaluated and compared by sev-
eral studies. In 2010, Tang et al. conducted a study that com-
pared five architectural knowledge (AK) management tools
based on a framework, which represented how AK manage-
ment is used in the architecture life-cycle [6]. They found that
there is no tool that supports all activities of the architecture
life-cycle, i.e. analysis, synthesis, evaluation, implementation,
and maintenance. The results also show that the capability to
provide different perspectives on AK is limited, as the tools do
not support the concept of views and viewpoints. Furthermore,
it was noted that knowledge sharing features are not fully
supported by the tools yet. This finding is also supported by
an earlier study conducted by Farenhorst et al. in 2007 [7]. In
this study, the authors analyzed five tools from academia and
industry from a knowledge sharing perspective. The results
show that AK personalization strategies are not sufficiently
supported and that the tools do not provide the possibility
to generate stakeholder-specific content. The latter was also
identified by Tang et al. [6]. In 2009, Liang and Avgeriou [8]
surveyed nine existing tools to what extent they support the
following categories of use cases: consuming AK, knowledge
management, intelligent support, and producing AK. They
found that the tools lack of the ability to identify stakeholders,
to apply decisions to produce the design (synthesis), to evaluate
AK, and to support the assessment design maturity.

233

VI. CONCLUSION

In this project we gained further insights into the challenges
and the context of decision documentation and presented an
add-in to document architecture decisions. The add-in was
validated in an industrial case study, which has shown that it is
very well received by practitioners and that the integration into
Enterprise Architect is well done. For example, the ability to
create traces between decisions and other modeling elements
was regarded as beneficial. The theoretical foundation of the
add-in, the decision documentation framework, ensured that
the developed add-in is able to holistically address stakeholder
concerns and provide support for the various architecting
life-cycle phases. Hence, having different viewpoints was
appreciated, giving the architect the freedom to choose which
viewpoints to use. As suggested by this study, our add-in needs
to be extended. Therefore, we propose a clearer separation of
problem, outcomes, and alternatives for the decision documen-
tation framework and we suggest to improve the scope of the
chronology viewpoint.

The findings of the study showed that awareness of decision
documentation is increasing at ABB, but still several barriers
exist that limit the use of decisions in practice. Such aspects
include a lack of tool-support, the absence of a standardized
format and only little guidance on how to utilize decision doc-
umentation. Furthermore, we identified a set of characteristics
that describe the architect’s expectations of the ideal ADD tool.

The results of this project will help future tool development
efforts to better understand the problems and the needs of
practitioners with respect to decision documentation. Some of
the questions that follow from the presented work are: (i) How
can we further minimize the effort to document decisions? (ii)
How can decisions sharing and reusing decisions support the
decision-making process? (iii) How to integrate the separa-
tion of problem, alternatives and outcome into the decision
documentation framework and the add-in? In the future, we
continue to improve the add-in and we plan to conduct a
second industrial study to empirically validate the add-in.

ACKNOWLEDGMENT

We would like to thank all participants of the case study. Es-
pecially, we would like to thank Spyros Ioakeimidis and Antonis
Gkortzis for their contribution to the add-in as well as Zengyang
Li and Werner Buck for piloting our study. This research has been
partially sponsored by the ABB Software Research Grant Program
and the ITEA2 project 11013 PROMES.

REFERENCES

[1] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural
Design Decisions,” in WICSA ’05: Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture (WICSA’05. IEEE
Computer Society, Nov. 2005, pp. 109–120.

[2] P. Kruchten, R. Capilla, and J. C. Dueñas, “The Decision View’s Role
in Software Architecture Practice,” IEEE Software, vol. 26, no. 2, Mar.
2009.

[3] J. Tyree and A. Akerman, “Architecture decisions: demystifying archi-
tecture,” Software, IEEE, vol. 22, no. 2, pp. 19–27, 2005.

[4] J. S. van der Ven, A. Jansen, P. Avgeriou, and D. K. Hammer,
“Using architectural decisions,” in Proceedings of the 2nd International
Conference on the Quality of Software Architectures (QoSA). Karlsruhe
University Press, 2006, short paper.

[5] M. Babar, T. Dingsyr, P. Lago, and H. van Vliet, Software Architecture
Knowledge Management: Theory and Practice. Springer, 2009.

[6] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar,
“A comparative study of architecture knowledge management tools,”
Journal of Systems and Software, vol. 83, no. 3, pp. 352 – 370, 2010.

[7] R. Farenhorst, P. Lago, and H. Van Vliet, “Effective tool support for
architectural knowledge sharing,” in Software Architecture. Springer,
2007, pp. 123–138.

[8] P. Liang and P. Avgeriou, “Tools and technologies for architecture
knowledge management,” in Software Architecture Knowledge Man-
agement, M. Ali Babar, T. Dingsøyr, P. Lago, and H. van Vliet, Eds.
Springer Berlin Heidelberg, 2009, pp. 91–111.

[9] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation frame-
work for architecture decisions,” Journal of Systems and Software,
vol. 85, no. 4, Apr. 2012.

[10] ——, “Forces on Architecture Decisions - A Viewpoint,” in Software
Architecture (WICSA) and European Conference on Software Architec-
ture (ECSA), 2012 Joint Working IEEE/IFIP Conference on, 2012, pp.
101–110.

[11] P. Kruchten, “Architectural blueprints—The “4+ 1” view model of
software architecture,” IEEE Software, vol. 12, no. 6, pp. 42–50, 1995.

[12] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, 1994.

[13] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. John Wiley and
Sons, Inc., 2012.

[14] J. M. Verner, J. Sampson, V. Tosic, N. A. A. Bakar, and B. A.
Kitchenham, “Guidelines for industrially-based multiple case studies in
software engineering,” in Research Challenges in Information Science,
2009. RCIS 2009. Third International Conference on, 2009, pp. 313–
324.

[15] R. K. Yin, Case Study Research: Design And Methods (Applied Social
Research Methods). Sage Publications, Inc, 2008, vol. 5.

[16] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering, vol. 16, no. 4, Aug. 2011.

[17] C. B. Seaman, “Qualitative Methods in Empirical Studies of Software
Engineering,” IEEE Transactions on Software Engineering, vol. 25,
no. 4, pp. 557–572, July/August 1999.

[18] “ISO/IEC/IEEE 42010 systems and software engineering — architec-
ture description,” Jan 2010.

[19] A. Tang, M. Babar, I. Gorton, and J. Han, “A survey of the use and
documentation of architecture design rationale,” in Software Architec-
ture, 2005. WICSA 2005. 5th Working IEEE/IFIP Conference on, 2005,
pp. 89–98.

[20] M. Anvaari, R. Conradi, and L. Jaccheri, “Architectural decision-
making in enterprises: Preliminary findings from an exploratory study
in norwegian electricity industry,” in Software Architecture. Springer
Berlin Heidelberg, 2013, pp. 162–175.

[21] U. van Heesch and P. Avgeriou, “Mature architecting-a survey about the
reasoning process of professional architects,” in Software Architecture
(WICSA), 2011 9th Working IEEE/IFIP Conference on. IEEE, 2011,
pp. 260–269.

[22] P. Liang, A. Jansen, and P. Avgeriou, “Knowledge architect: A tool
suite for managing software architecture knowledge,” University of
Groningen, Tech. Rep., 2009.

[23] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas, “A web-based tool for
managing architectural design decisions,” SIGSOFT Softw. Eng. Notes,
vol. 31, no. 5, Sep. 2006.

[24] M. Babar and I. Gorton, “A tool for managing software architecture
knowledge,” in Sharing and Reusing Architectural Knowledge - Archi-
tecture, Rationale, and Design Intent, 2007. SHARK/ADI ’07: ICSE
Workshops 2007. Second Workshop on, 2007, pp. 11–11.

234

