
An Empirical Investigation of the Applicability of a
Component-Based Performance Prediction Method

Anne Martens1, Steffen Becker2, Heiko Koziolek3, and Ralf Reussner1

1 Chair for Software Design and Quality
Am Fasanengarten 5, University of Karlsruhe (TH), 76131 Karlsruhe, Germany

2 FZI Forschungszentrum Informatik
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

3 ABB Corporate Research, Wallstadter Str. 59, 68526 Ladenburg, Germany
{martens,sbecker,koziolek,reussner}@ipd.uka.de

Abstract. Component-based software performance engineering (CBSPE) meth-
ods shall enable software architects to assess the expected response times,
throughputs, and resource utilization of their systems already during design. This
avoids the violation of performance requirements. Existing approaches for CB-
SPE either lack tool support or rely on prototypical tools, who have only been
applied by their authors. Therefore, industrial applicability of these methods is
unknown. On this behalf, we have conducted a controlled experiment involving
19 computer science students, who analysed the performance of two component-
based designs using our Palladio performance prediction approach, as an example
for a CBSPE method. Our study is the first of its type in this area and shall help to
mature CBSPE to industrial applicability. In this paper, we report on results con-
cerning the prediction accuracy achieved by the students and list several lessons
learned, which are also relevant for other methods than Palladio.

Keywords: Performance Prediction, Empirical Study, Controlled Experiment.

1 Introduction

A benefit of component-based development is the possibility to reason on properties of
the complete systems based on component specifications supplied by individual com-
ponent developers. With this approach, it is possible for software architects to assess the
functional and extra-functional (e.g., performance, reliability) properties of a component-
based system during early development stages. To do so, software architects combine
component specifications to form architecture specifications. The specifications are de-
sign models (e.g. in UML) annotated with performance properties. After modelling the
architecture, software architects can check performance predictions from tools analysing
the architecture specifications against their requirements. This may avoid implementing
designs with poor extra-functional properties and prevent subsequent costs for restruc-
turing an implementation after detecting design-related flaws.

Researchers have developed several methods in this context, which aim at
performance (i.e., response times, throughput, resource utilisation) predictions for
component-based designs [4]. However, there are few real-life case studies involving

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 17–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 A. Martens et al.

these compo-nent-based methods, which still lack industrial maturity. Several methods
(e.g., [8,10,20]) simply lack tool support, while other methods (e.g., [5,6,7,23]) rely
on prototypical implementations, which only have been used by their authors and re-
quire specialist knowledge. Therefore, their applicability in an industrial setting involv-
ing typical developers is unknown. Further methods for component-based performance
analysis are outside the scope of this paper as they are measurement-based (i.e. pre-
dictions are based on observation of the implemented system’s performance) and do
not target early design stages, and also do not involve reusable component performance
specifications (e.g., [13,15]).

To investigate the applicability, we conducted a controlled experiment with 19 com-
puter science students, who analysed the performance of two different component-
based designs using the Palladio method [4] as an example for a CBSPE method. We
also let the students apply the well-known SPE method [21], which is not specific for
component-based systems, on the same designs and compared the results. The study
involved training the students in the methods and the accompanying tools as well as
designing several architectural design alternatives for the analysed systems, which the
students evaluated for their performance properties.

In a former paper [17], we reported on results concerning the effort needed by the
students to model and analyse the system. We found that the effort was less than twice
as high as for a method without reusable, component-based performance specifications
(i.e., the SPE method). Therefore, the effort of creating a component performance speci-
fication could already be justified, if the component and its performance model is reused
at least once. For reasons of self-containedness, sections 2, 3.2 - 3.4, 5 and 6 are similar
in both papers, as they describe and discuss the common experiment setting.

For this paper, we have analysed the data collected during the experiment further
(also see [16]). We focus on the accuracy of the predictions achieved by the students
compared to a sample solution. Additionally, we searched for reasons for the achieved
prediction accuracy by analysing the models created during the experiment and evalu-
ating questionnaires filled out by the participants after the experiment. While the results
have been obtained for a single CBSPE method, they are also interesting for the authors
of other CBSPE methods. Therefore, we describe lessons learned during the study.

The contributions of this paper are (i) experimental results about the prediction ac-
curacy achieved by third-party users of a CBSPE method and (ii) a quantitative and
qualitative analysis for the reasons that led to the achieved prediction accuracy. Our
study is the first of its type in this area, as we are not aware of any other studies on a
CBSPE method being applied by third-party users. This may be a result of the novelty
of these methods. The study helps to bring CBSPE closer to industrial maturity and is
an important prerequisite for large scale industrial case studies.

The paper is organised as follows. Section 2 briefly describes the Palladio perfor-
mance prediction method, so that the reader can assess the experimental tasks.
Section 3 explains the goals, questions, hypotheses, and metrics used in this experi-
ment according to the GQM paradigm [3] and describes the experimental design and
conduction. Section 4 first lists the results for the formerly defined metrics collected in
this experiment and afterwards discusses lessons learned. Section 5 includes potential

Investigation of the Applicability of a CBSPE Methods 19

threats to the validity of our study to round up the experimental description. Section 6
lists related work to this study, before Section 7 concludes the paper.

2 Palladio Component Model

The Palladio Component Model (PCM) [5,19] is a meta-model for specifying and ana-
lysing component-based software architectures with focus on performance prediction.

This meta-model is divided among the separate developer roles of a component-
based development process, providing each role with a domain-specific language suited
to capture their specific knowledge [5]. The language of component developers targets
at producing independent, reusable component specifications, that are parametrised by
influence factors whose later values are unknown to the component developer. In par-
ticular, these are (i) the performance measures of external service calls, which depend
on the actual binding of the component’s required interfaces (provided by the software
architect in the assembly model), (ii) the actual resource demands which depend on the
allocation of the components to hardware resources (provided by the system deployer),
and (iii) performance-relevant input/output parameters of service calls (provided by the
domain expert in the usage model).

The parametric behavioural specification used in the PCM as part of the software
model is the Resource Demanding Service Effect Specification (RD-SEFF) which is
a control and data flow abstraction of single component services. It specifies control
flow constructs like loops or branches if they affect external service calls. Additionally,
it abstracts component internal computations in so called internal actions which only
contain the resource demand of the action but not its concrete behaviour. Calling ser-
vices and parameter passing are specified using external call actions, which only refer
to the component’s required interfaces to stay independent of the component binding.

Tool support. The PCM is supported by the PCM-Bench (see [19]), which is based
on the Eclipse platform and provides UML-like graphical editors for PCM instances.
For performance annotations, it uses a textual syntax, providing editors which help
entering the expression with auto-completions, type-checking and syntax highlighting.
OCL is applied to increase completeness and correctness of PCM model instances. A
simulation tool predicts performance measures of the G/G/n queueing system a PCM
instance represents. It uses specialised queueing networks as the performance model
and is generated from a PCM instance using model transformations.

The resulting prediction metrics are response time distributions of single external
service calls as well as for a whole scenario. They are visualised as cumulative distri-
bution functions (CDFs) or histograms. The utilisation of resources is visualised using
pie charts.

3 Empirical Investigation

For the empirical investigation, we formulated a goal, two question and derived met-
rics using the Goal-Question-Metric approach [3] The goal of this work is to empirically

20 A. Martens et al.

evaluate the applicability of the Palladio approach from a third-party user’s point of
view.

The same metrics can also be used when repeating this experiment, also for other ap-
proaches. In this paper, we focus on the results for the achieved accuracy when Palladio
is applied by third-party users. Details of the concerned two questions, their hypotheses,
and their metrics are presented in section 3.1. For comparison, with the same question
and metrics, we also investigated the SPE approach [21], which offers no special sup-
port for component-based systems. For brevity, we keep the presentation of the SPE
results short and focus on the results for Palladio.

We conducted the investigation as a controlled experiment. Section 3.2 presents
the experiment’s design, section 3.3 describes the preparation of the participants, and
section 3.4 presents the systems under study.

3.1 Questions and Metrics

Due to space limitations, only informal explanations of the metrics are given here. The
formal definitions can be found in [16, p.35]. Table 1 summarises questions and metrics.

To study the applicability of Palladio, we first carefully created performance models
of the systems under study ourselves as sample solutions. These sample solutions are
unique for the information provided in the experimental task, as adding any information
or omitting any information from the experimental task would not reflect the system
properly any more. During the experiment, we gave the students enough information to
create performance models for the different design alternatives themselves. Afterwards,
we assessed the participants’ models by comparing their prediction to predictions from
the sample solution. Thus, in the following, quality of the models is defined to be the
similarity to the sample solution. We measured the applicability in terms of how well
the participants understand the approaches and how usable the given tools are, and
therefore we asked the following questions and defined the following metrics.

Q1: What is the quality of the created performance prediction models? First, a
performance model should enable predictions that are similar to the reference perfor-
mance model (i.e. the sample solution) when analysed. Here, the predicted response
time was an important performance metric. Thus, we defined metric 1.1: Relative devi-
ation of predicted mean response times of the participants and of the reference model
(percentage).

To assess different design alternatives when designing or changing a system, the re-
lation of the respective response times is also of interest. We let the participants evaluate

Table 1. Summary GQM Questions and Metrics

Question 1 What is the quality of the created performance prediction models?
Metric 1.1 Relative deviation of predicted mean response times of the participants and of

the reference model.
Metric 1.2 Percentage of correct design decisions.
Metric 1.3 Normalised deviation in design decision rankings.
Question 2 What are the reasons for potentially deviating predictions?
Metric 2.1 Problems when creating the models and classification

Investigation of the Applicability of a CBSPE Methods 21

several design alternatives and measured how many participants correctly identified the
best design alternative in respect of its response time by stating metric 1.2: Percentage
of correct design decisions.

As a software architect does not necessarily choose the design alternative with the
best performance, but might consider other quality attributes or cost, the results for the
performance-wise inferior design alternatives are also important. Thus, next to identify-
ing the best design alternative, the participants had to rank all alternatives. The ranking
of design alternatives by the participants was compared to the ranking of the design
alternatives of the reference solution in metric 1.3: Normalised deviation in design de-
cision rankings. For this metric, we counted how many ranks lie between the position
of a design alternative in the ranking of a participant and the correct position of a this
design alternative in the ranking for the reference solution. We normalised this metric
so that a correct ranking has a deviation of 0% and the reversed ranking a deviation
of 100%. Additionally, we recognised very similar response times as virtually equal
design alternatives and did not punish rankings that permuted them.

Our hypothesis 1 was that (1) the average deviation as measured with metric 1.1 is
not larger than 10%, (2) 80% of the participants can choose the correct design decision
and (3) the rankings deviate no more than 10% in average for both Palladio and SPE.

Q2: What are the reasons for potentially deviating predictions? Several factors
might influence the quality of a prediction. First of all, the participants need to under-
stand the approaches and their various concepts. Additionally, the tools has to be usable
and support an easy creation and maintenance of the models. Problems in both areas
could lead to modelling errors and therefore to erroneous predictions. Next to modelling
problems, errors in interpreting the prediction results might lead to false conclusions.
This depended on the results the approach gave as well as on visualisation of results in
the tool.

To measure the problems, we documented questions of the participants and errors
in the final models, that appeared during the acceptance test or were found in the fi-
nal models. Each such question or error is counted as one problem in metric M2.1:
Problems when creating the models and classification.

Our hypothesis 2 was that most problems arise from a lack of understanding and tool
difficulties.

3.2 Experiment Design

The study was conducted as a controlled experiment. The participants of this study
were students of a master’s level course. In an experiment, it is desirable to trace back
the observations to changes of one or more independent variables. Therefore, all other
variables influencing the results need to be controlled. The independent variable in this
study was the prediction approach (i.e. Palladio or SPE). Observed dependent variables
were the quality of the created models in terms of similarity with a reference model and
the problems occurring during the experiments or being detected in the final models.

The experiment was designed as a cross-over trial [12] as depicted in figure 1. The
participants were divided into two groups, each applying an approach to a given task.
In a second session, the groups applied the other approach to a new task. Thus, each

22 A. Martens et al.

SPE
Media Store
9 students

Palladio
Media Store
10 students

SPE
Web Server
10 students

Palladio
Web Server
8 students

Session 1:
30.06.2007

Session 2:
07.07.2007

P
re
pa
ra
tio
n

E
xp
er
im
en
t

Lectures
10 sessions

Practical lab
8 sessions

10 Preparatory
exercises

Fig. 1. Experiment design

participant worked on two tasks in the course of the experiment (inter-subject design)
and used both approaches. This allowed us to collect more data points and balanced
potential differences in individual factors like skill and motivation between the two
experiment groups. Additionally, using two tasks lowered the concrete task’s influence
and increased the generalisability.

We balanced the grouping of the participants based on the results in the preparatory
exercises: We divided the better half randomly into the two groups, as well as the less
successful half, to ensure that the groups were equally well skilled for the tasks. We
chose not to use a counter-balanced experiment design, as we would have needed to
further divide the groups. In that case, the groups would have been to small and the
individual’s performance would have been too much an influence. We expected a higher
threat to validity from the individual participant’s performance than from sequencing
effects (also called carry-over effects, [12]).

Before handing in, the participants’ solutions were checked for minimum quality
(less than 50% deviation) by comparing the created models to the respective reference
model. This acceptance test included the comparison of the predicted response time
with the reference model’s predicted response time as well as a check for the models’
well-formedness.

3.3 Student Teaching

The 19 computer science students participating in the experiment were trained in apply-
ing Palladio and SPE in a course covering both theory and practical labs. For the theory
part, there was a total of ten lectures, each of them took 1.5h. The first three lectures
were dedicated to foundations of performance prediction and CBSE. Then, two lectures
introduced SPE followed by five lectures on Palladio. The three additional lectures on
Palladio in comparison to SPE were due to its more complex meta-model which al-
lows for reusable prediction models. In parallel to the lectures, eight practical labs took
place, again, each taking 1.5h. During these sessions, solutions to the accompanying
ten exercises were presented and discussed. Five of these exercises practised SPE and
five Palladio.

Investigation of the Applicability of a CBSPE Methods 23

The exercises had to be solved by the participants between the practical labs. We
assigned pairs of students to each exercise and shuffled the pairs frequently to get dif-
ferent combinations of students work together and exchange knowledge. Each exercise
took the students 4.75h in average to complete.

Overall, the preparation phase was intended to ensure a certain level of familiarity
with the tools and concepts, because participants who failed two preparatory exercises
or an intermediate short test were excluded from the experiment.

3.4 Experiment Tasks

To be applicable for both SPE and Palladio, the experiment tasks can only contain
aspects that can be realised with both approaches. For example, the tasks did not make
use of the separate developer roles of Palladio.

Both experiment tasks had similar set-ups. The task descriptions contained com-
ponent and sequence diagrams documenting the static and dynamic architecture of a
component-based system. The sequence diagrams also contained performance annota-
tions. The resource environment with servers and their performance properties was doc-
umented textually. The detailed task description is available on-line in [16]. For each
system, two usage scenarios were given, to reflect both a single-user scenario (UP1) and
a multi-user scenario leading to contention effects (UP2). Additionally, they differed in
other performance relevant parameters (see below).

In addition to the initial system, several design alternatives were evaluated. Four of
them were designed to improve the system’s performance, and the participants were
asked to evaluate which alternative is the most useful one. Three of these alternatives
implied the creation of a new component, one only changed the allocation of the com-
ponents and the resource environment by introducing a second machine. With the final
fifth alternative, the impact of a change of the component container, namely the intro-
duction of a broker for component lookups, on the performance should be evaluated.

The systems in both tasks were prototypical component-based systems. In the first
session, a performance prediction for a web-based system called Media Store was con-
ducted. This system stores music files in a database. Users can either upload or down-
load sets of files. The size of the music files and the number of files to be downloaded
are performance-relevant parameters. The five design alternatives were the introduction
of a cache component that kept popular music files in memory (vMS

1), the usage of a
thread pool for database connections (vMS

2), the allocation of two of the components
to a second machine (vMS

3), the addition of a component that reduces the bit rate of
uploaded files to reduce the file sizes (vMS

4) and the aforementioned usage of a broker
(vMS

5).
In the second session, a prototypical Web Server system was examined. Here, only

one use case was given, a request of an HTML page with further requests of potential
embedded multimedia content. Performance-relevant parameters were the number of
multimedia objects per page, the size of the content and the proportion of static and dy-
namic content. The five design alternatives were the introduction of a cache component
(vWS

1), the aforementioned usage of a broker (vWS
2), the parallelisation of the Web

Server’s logging (vWS
3), the allocation of two of the components on a second machine

(vWS
4) and the usage of a thread pool within the Web Server (vWS

5).

24 A. Martens et al.

The participants who used the Palladio approach were provided with an initial repos-
itory of available components and their interfaces, but not their behavioural description
(i.e., RD-SEFFs, see section 2). It made the tasks for SPE and Palladio more compa-
rable, because the participants still had to create the RD-SEFFs with the performance
annotations, which is similar to the creation of an SPE model.

4 Results

In this section, we interpret the measured data based on the GQM plan. The structure
of this section follows the two questions, each being partitioned into the presentation
of the metrics. In the paper, we only present the evaluation of the metrics for Palladio.
The results for SPE can be found in [16, p.83]. The metrics are evaluated for both tasks.
Finally, the hypothesis of each question is checked based on the measured metrics.

4.1 What is the Quality of the Created Performance Prediction Models?

Metric 1.1: Relative deviation of predicted mean response times between the par-
ticipants and the reference model. Table 2 shows the results of metric 1.1 for Palladio.

We first consider the average deviation for each task. Overall, the deviation is lower
using the Media Store and for UP1. The overall average is low with 6.9%. Interest-
ingly, the deviation varied a lot between the different design alternatives. For the Media
Store and Palladio, the alternative vMS

3 (second server), has a high deviation, and vMS
0

for the UP2, too. For the Web Server and Palladio, the deviations for the vWS
2 , the

broker alternative, vWS
0 , vWS

1 (Cache), and vWS
3 (Logging) are also high.

For SPE, we measured a slightly higher average deviation of 8.3% and also strong
variations for the different design alternatives.

Metric 1.2: Percentage of correct design decisions. For metric 1.2, we compared
the results of the reference model (cf. section 3.1) with the participants rankings and
assessed the percentage of correct identification of the performance-wise best design
alternative. Some participants did not manage to model all alternatives in the given time
and thus, their rankings were incomplete and their results cannot be used (see fig. 1 for
the total numbers of participants).

As the predicted response time of the best and second-best alternatives of the Media
Store were close to each other, we made no distinction between these two. Thus, all
participants chose right, because all of them identified either the bit rate (vMS

4) or the

Table 2. Metric 1.1: Relative deviation of the predicted response times for Palladio

vs
0 vs

1 vs
2 vs

3 vs
4 vs

5 Avg
Media Store UP1 1.93% 0.90% 0.49% 20.08% 3.02% 1.69% 4.69%
(s = MS) UP2 13.21% 2.20% 4.15% 13.23% 4.42% 3.51% 6.79%
Web Server UP1 1.00% 11.07% 1.94% 4.23% 4.55% 9.40% 5.47%
(s = WS) UP2 15.92% 20.35% 10.87% 10.67% 2.57% 3.64% 10.67%
Overall propDevMeanRespPal 6.90%

Investigation of the Applicability of a CBSPE Methods 25

cache option (vMS
1) as the best design alternative and ranked the respective other one

second-best.
For the Web Server, UP1 and Palladio, 4 out of 6 participants who ranked all

alternatives identified the second server vWS
4 as the best alternative. Of the two others,

one actually predicted a lower response time for the cache (vWS
1), the other one seemed

to have other reasons or could not correctly interpret the CDF, as the second server vWS
4

is faster for his model, too. We get percWS,UP1,Pal = 0.67. All eight SPE participants
chose the right alternative: percWS,UP1,SPE = 1.

For usage model 2, all five Palladio participants who ranked all alternatives identified
the second server vWS

4 as the best alternative. For SPE, 7 out of 8 participants who
ranked all alternatives did so: percWS,UP2,SPE = 0.88.

Combined1 we get percSPE = 0.97 and percPal = 0.85.

Metric 1.3: Normalised deviation in design decision rankings. Not all participants
ranked all alternatives, because they did not complete all predictions or missed the time
to complete the ranking, even if they completed the predictions. We still used the in-
complete rankings for the evaluation of the metrics, but were careful to weight complete
rankings stronger (cf. [16, p.86f]).

For Palladio, the ranks were wrong by 6.5% of the maximum possible permutation.
For SPE, the ranks were wrong by 7.3% of the maximum possible permutation. Thus,
SPE rankings were more permuted by factor 0.12 compared to Palladio rankings.

Hypothesis 1. With both approaches, the mean response time predicted by the partici-
pants only deviates in average 6.9% (Palladio) and 8.3% (SPE) from the mean response
time predicted for the reference model. Thus, the deviation of the average is within the
limit of 10%. However, for single alternatives, the deviation was higher (see table 2).
These pose a threat to hypothesis 1.

Most participants also were able to identify the correct design decisions, in particular
85% for Palladio and 97% for SPE, both is within the bounds of 80%. Finally, the
deviation of the ranking is also low (not more than 10% in average).

Overall, the results indicate that hypothesis 1 cannot be rejected for the average case.
However, the high variation of the deviation of the predicted mean response time be-
tween the different design alternatives hampers assessing hypothesis 1. As the alterna-
tives have differing results, it is unclear how the metrics would be evaluated for different
design alternatives.

4.2 What Are the Reasons for Potentially Deviating Predictions?

Metric 2.1: Number of problems and classification. Table 3 shows the problems
in the different areas for Palladio, first the tools, then the method itself. For the PCM
Bench (i.e. the tool), we identified the problem areas of tool usage, of interpreting the
error messages and of bugs of the tool. With Palladio, most problems were with the
usage of the tool, e.g. participants asked how to create component parameters or a usage
model. Interestingly, there were more usage problems with the Web Server task than

1 Note that the percentages for the two systems do not equally influence the results, but are
weighted by the number of decisions by definition of the metric (cf. [16, p.41])

26 A. Martens et al.

Table 3. Metric 2.1: Average number of problems per participant for Palladio

Tool Methodology

U
sa

ge

E
rr

or

B
ug

S
um

Pa
ra

m
et

er
s

C
om

po
ne

nt
pa

ra
m

et
er

s

Ty
pe

s
an

d
un

it
s

A
ss

em
bl

y

U
sa

ge
m

od
el

S
um

S
um

Media Store 0.57 0.43 0.29 1.29 1.57 1.00 0.71 0.00 0.00 3.29 4.57
Web Server 2.25 0.38 0.63 3.25 0.63 0.38 0.63 0.13 0.13 1.88 5.13
Both systems 1.41 0.40 0.46 2.27 1.10 0.69 0.67 0.06 0.06 2.58 4.85

with the Media Store task. Relatively more tool problems occurred with Palladio (in
average 2.27 per participant, that is 47% of the problems) than with SPE (in average
0.24 per participant, that is 5% of the problems). Although the number of participants
was relatively small, and outliers might strongly have influenced this result, we still give
the average values here. No clear outliers were detected, every participant was included
in both groups (because of the cross-over plan) and the effect was fairly large, thus, the
average values were still meaningful.

For the Palladio method (i.e., separated from the tool), different problem areas were
identified: (1) The specification of parameter values (e.g. specifying the number of re-
quested audio files), especially (2) the specification of component parameters (e.g. spec-
ifying the size of audio files stored in the database), (3) the handling of data types (e.g.
using string and enum values within the model) and annotation units (e.g. confusing
seconds with millisecond within one model), (4) the assembly (wiring the components)
and (5) the usage model (specifying the user flow). Here, in average most problems con-
cerned the specification of parameter values, followed by the specification of compo-
nent parameters and of types and units. Interestingly, this relation is very pronounced for
the Media Store, but less pronounced for the Web Server, where there were equally
many problems with parameters and types and units, followed by component parame-
ters. The participants using Palladio for the Web Server task had more problems with
the tool than with the methodology, the opposite applies to the participants using Palla-
dio for the Media Store task. Overall, participants using Palladio had 2.58 methodol-
ogy problems per participant in average (that is 53% of the problems). In comparison,
participants using SPE had 4.21 methodology problems per participant in average (that
is 95% of the problems). Thus, compared to SPE, participants using Palladio had more
problems with the actual tool implementation and less with the methodology itself.

For Palladio, 77% of the problems occurred during the experiment and were captured
in the question protocol, 12% in the acceptance test, and 11% were still present in
the final models. For SPE, 30% were captured in the question protocol, 26% in the
acceptance test, and 44% of the problems were still present in the final model.

Investigation of the Applicability of a CBSPE Methods 27

Hypothesis 2. Our hypothesis 2 was that most problems arise from a lack of under-
standing and tool difficulties. The number of problems detected, being in average more
than 4 per participant for both approaches, show that there was a significant number of
problems. Still, as the quality of the created models was overall satisfactory, they do not
invalidate the principle applicability of the approaches.

As expected, problems arose from a lack of understanding of the methodology and
tool difficulties. Additionally, problems with the task description were detected (not
included in the table 3 above).

4.3 Lessons Learned

Applicability: The participant in this study were able to create models with a good
quality (as defined in section 3.1): Their predictions had a low deviation compared
to a reference model, they were mostly able to choose the best design alternative
and they successfully ranked the design alternatives based on the predicted per-
formance. The results are comparable to the quality of models created with SPE.
As SPE is a mature approach also applied in industry, the results suggest that also
Palladio can be applied by third-party users.

Tool influence: A large fraction of the problems detected for Palladio concerned the
tool, i.e. the current implementation of the approach. This supports our conviction
that the tool is an important part of any study of applicability of approaches, and
must be taken into account when designing and executing them.

Methodology: The results also show that there were fewer methodology problems for
the component-based approach Palladio than for the mature SPE, even though the
meta model is much more complex: While the SPE meta model consists of 28
classes, the Palladio meta model has about 100 classes, of which most are needed in
every model. The results show that the complexity of the meta model can be hidden
in the tool and does not hinder the applicability. In the qualitative questionnaire,
most participants even stated to have understood the Palladio concepts better than
SPE constructs [16].

Occurrence of problems: Problems occurred early during the experiment for Palla-
dio, whereas for SPE, more problems remained in the final models as errors. This
suggests that a tool support with many constraint checks against the meta model
helps the user to identify problems. Thus, checks contribute to fewer errors in the
final models.

Interpretation of results: We saw that distribution functions as resulting metrics are
comprehensible for the users, although they were harder to interpret than the mean
value and resulted in more errors. More teaching effort is required to make users
familiar with the analysis results, and more effort should be spent to improve the
presentation of the prediction results.

Influence of the system under study: Finally, the study detected an influence of the
system under study on the applicability. Both the quality of the created models, the
number of problems and the needed effort (cf. [17]) depend on the actual design
decision under study. In this study, the Web Server system seems to be in general
more fitted for Palladio, whereas the Media Store system seems to be more fitted

28 A. Martens et al.

for SPE. This is also supported by qualitative results, because only some partici-
pants from the (Palladio, Media Store) group and the (SPE, Web Server) group
stated that the task at hand was too difficult. All participants from the other two
groups stated the task difficulty was adequate.

5 Threats to Validity

To enable the reader to assess our study, we list some potential threats to its validity in
the following. We look at the internal, construct, and external validity (a more thorough
discussion can be found in [16]).

The internal validity states whether changes of an experiment independent variables
are in fact the cause for changes of the dependent variables [22, p.68]. Controlling po-
tential interfering variables ensures a high internal validity. In our experiment, we eval-
uated the pre-experiment exercises and assigned the students to equally capable groups
based on the results to control the different capabilities of the participants. A learning
effect might be an interfering variable in our experiment, as the students finished the
second experiment session faster than the first one.

A potential bias towards or against Palladio was threatening the internal validity
in our experiment, as the participants knew that the experimenters were involved in
creating this method. However, we did not notice a strong bias from the collected data
and the filled-out questionnaires, as the participants complained equally often about the
tools of both approaches.

The construct validity states whether the persons and settings used in an experiment
represent the analysed constructs well [22, p.71]. Palladio and SPE are both typical per-
formance prediction methods involving UML-like design models. The SPE approach
has no special support for component-based systems, and was chosen for the exper-
iment due to its higher maturity compared to existing CBSPE approaches. Addition-
ally, SPE only supports M/M/n queueing systems and reports only mean values. We
designed the experimental tasks so that not all specific features of Palladio (e.g. sepa-
ration of developer roles in component-based development, performance requirements
using quantiles) were used to ensure a balanced comparison.

While our experiment involved student without long-time industrial experience, we
argue that their performance after the training sessions was comparable to the potential
performance of practitioners. Most of the students were close to graduating and will
become practitioners soon. Due to the training, their knowledge about the methods was
more homogeneous than the knowledge of practitioners with different backgrounds.
Studies, such as [11], suggest the suitability of students for similar experiments.

The external validity states whether the results of an experiment are transferable to
other settings than the specific experimental setting [22, p.72]. While we used medium-
sized, self-designed systems for the tasks, we modelled these system designs and the
design alternatives after typical distributed systems and commonly known performance
patterns [21], which are representative for the systems usually analysed in this area.

We tried to increase the external validity of our study by letting the participants
analyse two different systems, so that differences in the results could be traced back to

Investigation of the Applicability of a CBSPE Methods 29

the systems, and not the prediction methods. Effects that are observed for both tasks are
thus more likely to be generalisable to other settings.

Still, the systems under study were modelled on a high abstraction level due to the
time constraints of such an experiment. More complex systems would increase the ex-
ternal validity, but would also involve more interfering variables, thus decreasing the
internal validity. Furthermore, the available information at early development stages is
usually limited, which would be reflected by our experimental setting.

6 Related Work

Basics about the area of performance prediction can be found in [18,21]. Balsamo et
al. [1] give an overview of about 20 recent approaches based on queueing networks,
stochastic Petri nets, and stochastic process algebra. Becker et al. [4] survey perfor-
mance prediction methods specifically targeting component-based systems. Examples
are CB-SPE [6], ROBOCOP [7], and CBML [23].

Empirical studies and controlled experiments [22] are still under-represented in the
field of model-based performance predictions, as hardly any studies comparable to ours
can be found. Balsamo et al. [2] compared two complementary prediction methods
(one based on SPA, one on simulation) by analysing the performance of a naval com-
munication system. However, in that study, the authors of the methods carried out the
predictions themselves. Gorton et al. [9] compared predicted performance metrics to
measurements in a study, but only used one method for the predictions.

Koziolek et al. [14] conducted a study similar to the one presented in this paper. They
compared three different performance prediction methods, which were not specific for
component-based systems. The study also involved the SPE methods and attested it
the most maturity and suitability for early performance predictions and influenced our
decision to compare Palladio to SPE.

7 Conclusions

We have conducted a controlled experiment with 19 computer science students inves-
tigating the applicability of a CBSPE method (our Palladio method) by third parties.
After several training sessions, the students modelled and analysed the performance of
two different component-based designs and assessed five different design alternatives
for each system. We found that the quality of the models and predictions created by
the students deviated less than 10 % from the predictions achieved with a reference
model created by the experimentators. Furthermore, we learned that more than 80% of
students were able to rank the given design alternatives correctly. Reasons for the still
existing deviations in the predictions were traced back to problems with the involved
tools (47%) and to problems with the methodology (53%).

To the best of our knowledge, our experiment is the first empirical study involving
a CBSPE method applied by persons other than their authors. Researchers and prac-
titioners can benefit from this type of study. Researchers can use the lessons learned
during our experiment to improve their own CBSPE methods, as these lessons are not
specific for the Palladio method. For practitioners, the training material and improved

30 A. Martens et al.

tool support created for this experiment may lower the barrier to learn a CBSPE method
and conduct early performance predictions to create better software architectures.

However, our study is still a first step to rigorously assess the applicability of CB-
SPE methods. Similar experiments should be conducted once the tools and methodolo-
gies mature further. Future experiments should also compare different CBSPE methods
against each other to evaluate their specific benefits and deficits. It would be interest-
ing to compare the predictions to measurements of different implementations of the
designs, to analyse larger designs, and to also involve practitioners in the study.

Details on the experimental settings and the results can be found in [16], available
online at http://sdq.ipd.uka.de/diploma theses study theses/completed theses

Acknowledgements. We would like to thank Walter Tichy, Lutz Prechelt, and Wilhelm
Hasselbring for their kind review of the experimental design and fruitful comments.
Furthermore, we thank all members of the SDQ Chair for helping prepare and conduct
the experiment. Last, but not least, we thank all students who volunteered to participate
in our experiment.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Trans. on Softw. Eng. 30(5), 295–310 (2004)

2. Balsamo, S., Marzolla, M., Di Marco, A., Inverardi, P.: Experimenting different software
architectures performance techniques: A case study. In: Proc. of WOSP, pp. 115–119. ACM
Press, New York (2004)

3. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. In:
Marciniak, J.J. (ed.) Encyclopedia of Software Engineering - 2 Volume Set, pp. 528–532.
John Wiley & Sons, Chichester (1994)

4. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance Prediction of Component-
Based Systems: A Survey from an Engineering Perspective. In: Reussner, R., Stafford,
J.A., Szyperski, C.A. (eds.) Architecting Systems with Trustworthy Components. LNCS,
vol. 3938, pp. 169–192. Springer, Heidelberg (2006)

5. Becker, S., Koziolek, H., Reussner, R.: Model-based Performance Prediction with the Pal-
ladio Component Model. In: Proc. of WOSP, February5–8, 2007, pp. 54–65. ACM Sigsoft,
New York (2007)

6. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Performance En-
gineering into Practice. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.)
CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg (2004)

7. Bondarev, E., Chaudron, M.R.V., de Kock, E.A.: Exploring performance trade-offs of a JPEG
decoder using the DeepCompass framework. In: Proc. of WOSP 2007, pp. 153–163. ACM
Press, New York (2007)

8. Eskenazi, E., Fioukov, A., Hammer, D.: Performance Prediction for Component Composi-
tions. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS,
vol. 3054, pp. 280–293. Springer, Heidelberg (2004)

9. Gorton, I., Liu, A.: Performance Evaluation of Alternative Component Architectures for En-
terprise JavaBean Applications. IEEE Internet Computing 7(3), 18–23 (2003)

http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses

Investigation of the Applicability of a CBSPE Methods 31

10. Hamlet, D., Mason, D., Woit, D.: Component-Based Software Development: Case Studies,
March 2004. Series on Component-Based Software Development, chapter Properties of Soft-
ware Systems Synthesized from Components, vol. 1, pp. 129–159. World Scientific, Singa-
pore (2004)

11. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects - A comparative study of
students and professionals in lead-time impact assessment. Empirical Software Engineer-
ing 5(3), 201–214 (2000)

12. Jones, B., Kenward, M.G.: Design and Analysis of Cross-over Trials, 2nd edn. CRC Press,
Boca Raton (2003)

13. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-Based Sys-
tems Using Queueing Petri Nets. IEEE Trans. of SE 32(7), 486–502 (2006)

14. Koziolek, H., Firus, V.: Empirical Evaluation of Model-based Performance Predictions Meth-
ods in Software Development. In: Reussner, R., Mayer, J., Stafford, J.A., Overhage, S.,
Becker, S., Schroeder, P.J. (eds.) QoSA 2005. LNCS, vol. 3712, pp. 188–202. Springer, Hei-
delberg (2005)

15. Liu, Y., Fekete, A., Gorton, I.: Design-Level Performance Prediction of Component-Based
Applications. IEEE Transactions on Software Engineering 31(11), 928–941 (2005)

16. Martens, A.: Empirical Validation of the Model-driven Performance Prediction Approach
Palladio. Master’s thesis, Universität Oldenburg (November 2007),
http://sdq.ipd.uka.de/diploma theses study theses/
completed theses

17. Martens, A., Becker, S., Koziolek, H., Reussner, R.: An empirical investigation of the effort
of creating reusable models for performance prediction. In: CBSE 2008, Karlsruhe, Germany
(accepted, 2008)

18. Menasce, D., Almeida, V., Dowdy, L.: Performance by Design. Prentice Hall, Englewood
Cliffs (2004)

19. The Palladio Component Model, http://palladio-approach.net
20. Sitaraman, M., Kuczycki, G., Krone, J., Ogden, W.F., Reddy, A.L.N.: Performance Specifica-

tion of Software Components. In: Proceedings of the 2001 symposium on Software reusabil-
ity: putting software reuse in context, pp. 3–10. ACM Press, New York (2001)

21. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating Respon-
sive, Scalable Software. Addison-Wesley, Reading (2002)

22. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: an Introduction. Kluwer Academic Publishers, Norwell (2000)

23. Wu, X., Woodside, M.: Performance Modeling from Software Components. SIGSOFT SE
Notes 29(1), 290–301 (2004)

http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses
http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses
http://palladio-approach.net

	An Empirical Investigation of the Applicability of a Component-Based Performance Prediction Method
	Introduction
	Palladio Component Model
	Empirical Investigation
	Questions and Metrics
	Experiment Design
	Student Teaching
	Experiment Tasks

	Results
	What is the Quality of the Created Performance Prediction Models?
	What Are the Reasons for Potentially Deviating Predictions?
	Lessons Learned

	Threats to Validity
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

