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Abstract

Formal performance prediction methods, based on queueing network models, allow evaluating software ar-
chitectural designs for performance. Existing methods provide prediction results such as response times
and throughputs, but do not guide the software architect on how to improve the design. We propose a
novel approach to optimise the expected performance of component-based software designs by automati-
cally generating and evaluating design alternatives. The design space spanned by different design options
(e.g. available components and configuration options) is systematically explored using metaheuristic search
techniques and performance-domain heuristics. The gap between applying formal performance predictions
and actually improving the design of a system can thus be closed. This paper presents a formal description
and a prototypical implementation of our approach with a proof-of-concept case study.
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1 Introduction

Performance problems are continuously prevalent in many software systems [16].

Model-based prediction methods [1] try to tackle these problems during early de-

sign phases to avoid the problem of implementing architectures which are not able

to fulfil certain performance goals. Based on architectural models of the system

(e.g. UML models), the software architect can create formal analysis models (e.g.

queueing networks [9]) to predict performance metrics such as mean response time

or throughput.
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However, most existing approaches do not provide further help after recognising

that performance requirements are not met. The software architect currently needs

to map the results back in the design model and then find new alternatives to the

current design (e.g. by changing the selection of components, the configuration

of components and containers, the sizing of resources) manually. It is hard to

quantify the effect or choose the best from a set of design alternatives [12]. Some

approaches [18,5] use heuristic rules, stating for example to increase the processing

speed of bottleneck resources, to help the software architect. Mostly, however,

these approaches are not automated. Additionally, the rules can only make use of

the performance domain knowledge actually codified in these heuristics and cannot

explore regions of the design space for which no prior knowledge exist. For example,

the design choice for one of two available functional-equivalent components for a

certain task can not be made in general, because the performance impact of the

components depends on the specific system and its usage.

Additionally, the isolated improvements of performance properties alone is prob-

lematic, because changes to improve performance usually affect other properties of

the system, e.g. cost or maintainability. Decisions to change the software architec-

ture must take other extra-functional properties into account.

To meet the difficulty of solving detected performance problems, we propose

an approach to automatically optimise the performance of a component-based soft-

ware systems by automatically generating and evaluating design alternatives based

on performance analyses of the software architecture. The novelty of our approach is

the use of metaheuristic search techniques [6,8] (such as random-restart hill climb-

ing, genetic algorithms or others) together with performance domain knowledge

formalised as heuristics to systematically create and evaluate new architecture can-

didates. For example, bottleneck resources can be resolved by finding a better

allocation of components to servers or changing the sizing of resources. In addi-

tion to solutions based on performance domain knowledge, we undirectedly (e.g.

randomly) generate new candidates and integrate them in the search to allow a

larger search space to be explored. In this work, we present a list of design change

operations for the Palladio Component Model (PCM) [2] performance prediction

approach. Additionally, we discuss how other extra-functional properties can be

considered as constraints or even as additional decision criterion in a multicriteria

optimisation in future versions of our approach.

In addition to the benefits of model-based performance prediction in general [1],

the automated approach benefits software architects in two more ways: 1) The

approach saves them time, as they do not have to explore the design space manually

(by creating new candidates and evaluating them) and 2) the approach might result

in better architectures than a manual exploration, as many more candidates can be

evaluated in a shorter time.

The contributions of this paper are (i) an automated approach that applies

metaheuristics using both performance domain knowledge and undirected, random

search to improve the performance of component-based software systems on the

model level and (ii) a proof-of-concept case study of a prototypical implementation

of this approach. We aim to evolve the prototype into a framework for extra-

functional property optimisation for component-based software systems.
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The paper is structured as followed: Section 2 introduces the idea of optimisation

of extra-functional properties in general using both heuristics and undirected search.

Section 3 presents our approach which is specific to performance predictions for

component-based systems and presents our current prototype implementation based

on the PCM. In section 4, we present our proof-of-concept case study and explain

the behaviour of the prototype step-by-step. Finally, section 6 presents the related

work in the area of model-based software performance improvement, and section 7

concludes.

2 Extra-functional Property Optimisation on the
Model Level

This section will first describe the optimisation problem for extra-functional prop-

erties (such as performance, reliability, or cost) on the model level formally (Sec-

tion 2.1), before it sketches a generic, automated solution (Section 2.2).

2.1 Formal Description of the Design Space

We call the possibility to change a component-based system (including its allocation)

in a certain way without affecting the functionality an (extra-functional) design

option. For example, a component A in a design could be replaced by a number

of components B, C and D that offer the same functionality, but have different

performance characteristics. Also, resources offer design options, for example the

number of replications of an application server or the processing speed of a CPU.

Let now I be a finite index set and Di, i ∈ I be our available design options

and let M = {Mi}, i ∈ I be the set of their value domains, which are assumed

to be arbitrary, but countable sets. To continue with our examples, the value

domain of a design option DaltComp: “replacing component A in the system” is

MaltComp = {A,B,C,D}. The value domain of a design option DCPU1speed: “change

processing speed of CPU 1” is MCPU1speed = N if measured in clock speed (e.g. in

hertz).

The design space is defined as the Cartesian product DS = Πi∈IMi. A candidate

c is a tuple from this design space: c ∈ DS with ci ∈Mi for i ∈ I.

The evaluation of a candidate for a extra-functional property q is a function

Φq : DS → QAq, where the codomain QAq is the set of possible values of the

extra-functional property q. Then, Φq(c) denotes the evaluated value of a extra-

functional property q for a candidate c ∈ DS. For example, when evaluating the

mean response (mrt) time of a candidate, QAmrt = R+. When evaluating the

probability of failure on demand (POFOD) of a candidate, QApofod = [0, 1]. For

example, for a specific candidate c, Φpofod could evaluate to Φpofod(c) = 0.005

Not all candidates as defined above are valid for a system. We reflect this by

including three types of constraints:

(i) Contradiction Constraints: Some design option values of different domains

might be incompatible. For example, component B might not work with with

one of the available application server implementations, e.g. with the Sun

Glassfish implementation.
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(ii) Software Architect Constraints: The software architect may have reasons

to exclude some values of a design option or constrain a design option to a

certain value. For example, he might chose to use the SOAP communica-

tion protocol for all communications in between the components, as this is a

company-wide standard. Thus, all candidates using other protocols (e.g. RMI)

are not considered in this case.

(iii) Quality Requirements Constraints: Requirements might be formulated

that enforce a certain level for a extra-functional property, while other at-

tributes are optimised. For example, the reliability in terms of probability of

failure on demand of the system can be required to be lower than 0.05, while

the target of the search is optimal performance.

The first two cases result in a number of candidates being invalid. As they refer

to the design space, we call them design space constraints. We define a forbidden

area on the design space DS:

DesignSpaceConstrainedDS := {c ∈ DS |c is invalid}

As this set of tuples can also be seen as a mathematical relation, any language

to specify relations could be used to allow an easier specification of the constraints

than by enumerating all forbidden candidates. For some modelling languages and

meta-(meta-)models, specialised constraint languages already exist. For example,

if the candidate modelling uses the Meta-Object Facility [14] (MOF), we can use

the Object Constraint Language [15] (OCL) for constraint specification. However,

as the design space is finite, there is no difference in principle.

The third type of constraints applies to the codomains of the evaluation functions

Φq. As they refer to the extra-functional properties of a candidate, we call them

extra-functional constraints. To define the constraints, we denote ≤q as the total

order on the extra-functional property domain QAq for which

a ≤q b⇔ a is better than or equal to b in terms of the extra− functional property q

with a, b ∈ QAq

For example, a response time of 2 seconds is better than a response time of 5

seconds. For probability of expected service delivery on demand, 0.9 is better than

0.8. The order >q is defined as the opposite, but in this case strict order: a >q b⇔ a

is worse than b in terms of the extra-functional property q.

Note that there might be quality domains in which such an order does not come

naturally, for example response time distribution functions. However, we can define

functions on the extra-functional property domain and define the order based on

that function. To continue the example, we could define a function of whether 90%

of all requests are completed within 5 seconds on the response time distribution

functions, and define the total order on the codomain {yes, no}.
Now, we can define extra-functional constraints. Let reqq ∈ QAq be the re-

quirement in terms of a maximum allowed value for extra-functional property q.

Then, we define the set of all candidates c ∈ DS with an evaluated extra-functional
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property q worse than reqq:

ExtraFunctionallyConstrainedDS := {c ∈ DS |Φq(c) >q reqq }

Thus, the set of valid candidates is constrained by all these types of constraints:

V alidDS := DS \(DesignSpaceConstrainedDS∪ExtraFunctionallyConstrainedDS)

The optimisation problem for a single extra-functional property q then is to

minimise Φq(c) while c is a valid candidate:

Optq : min≤qΦq(c) subject to c ∈ V alidDS

For multi-criteria optimisation of different extra-functional properties we can

either weight the single attributes creating a combined evaluation function Φ, or

study Pareto optimality [6]. An interesting extra-functional property for multi-

criteria consideration is the cost of a candidate. Here, trade-off decisions between

performance and cost can be automatically explored, interesting candidates can be

detected and presented to the software architect to make the final decision.

2.2 Automated Solution

The design-space consists of numerous, but countable number of candidates. The

value domains of the design options are discrete. Thus, for the optimisation, we

face a combinatorial optimisation problem [3, Def. 1.1]. Metaheuristics have been

successfully applied to similar problems in software engineering [8].

Metaheuristics are general strategies that guide the search process using un-

derlying problem-specific heuristics (see [3] for a more thorough characterisation).

Examples are genetic algorithms, simulated annealing, or random-restart hill climb-

ing [3]. The use of metaheuristics allows the automated search to pass over local

optima that are not global optima. In contrast to that, pure rule-based approaches

might be stuck in local optima and cannot make use of model parameters whose

influence on the extra-functional property to be optimised is unknown.

Listing 1: Automated Extra-functional Property Improvement
Inputs : C ⊂ DS A s e t o f i n i t i a l cand idate s

R = {req1, ..., reqn} Requirements on f u r t h e r extra−f u n c t i o n a l p r o p e r t i e s
{q1, ..., qm}

q0 extra−f u n c t i o n a l property that i s to be opt imised
P = {Φ0, ...Φm} Evaluat ion f u n c t i o n s for extra−f u n c t i o n a l p r o p e r t i e s

{q0, ..., qm}

r epeat {
Cnew ←generateNewCandidates (C , DesignSpaceConstrained , R , P \ Φ0 ) ;
C ← chooseNext I te rat ionCand idates (Cnew , C , Φ0 ) ;

} u n t i l ( a stop c r i t e r i o n i s f u l f i l l e d )
return c ← bestOf (C ) ;

Listing 1 shows the general idea: metaheuristics iteratively create and evaluate

new candidates. Thus, a current solution (or solution set) is evolved until some

stop criterion is fulfilled (e.g. “no more improvements could be found in the last

10 steps”). During the search, additional constraints on the search space must be

considered. Listing 1 illustrates the general idea based in terms of our design space
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problem for optimising a extra-functional property q0 for a system and is explained

below. As an aside, q0 could also be a function that weights several extra-functional

properties, e.g. “0.4 ∗ cost + 0.6 ∗ mean response time”.

As long as better candidates are found with each iteration, the search advances.

Each iteration consists of two steps: First, new candidates are created based on

the current candidate(s) using generation operations. The candidate generation

considers the additional constraints and produces only valid candidates. In the

second step, promising candidates for future iterations are chosen based on the

evaluation Φ0 of q0 that is to be optimised.

Many metaheuristics with different characteristics have been presented (see [3]

for an overview). It still is an open question which metaheuristic configured with

which parameters is the most appropriate for our problem.

For performance, there are design options with known influence on the over-

all system. For example, if we increase the processing speed of a highly utilised

resource, the response time of a system will likely decrease (although there are ex-

ceptions). We formulate such performance domain knowledge into a set of heuristics.

To generate new candidates, we can apply the resulting heuristic operations.

However, there are design options for which we have no prior knowledge on how

they affect the extra-functional property at hand for a specific system. For example,

if we replace a component A in a candidate system c′ with a component B, we do not

know in advance how the performance of the resulting candidate system c′1 changes.

Furthermore, the effects of a design option Di for a candidate c are not necessarily

independent of the other design option values c1, ..., ci−1, ci+1, ..., c|I|. If we consider

a different candidate c′′, that differs to c′ in some design option values (e.g. c′1 6= c′′1
and c′2 6= c′′2, which may represent different allocation of the assembled components),

exchanging A for B in c′′ could have different effects (e.g. slowing down the system)

than in c′ (e.g. speeding up the system). Here, we want the metaheuristic to try

solutions we have no prior knowledge of, thus we create undirected operations to

generate new candidates without prior knowledge.

Undirected operations could include local search or random change. For local

search, all neighbouring candidates (e.g. with one component exchanged, or with a

processing resource speed increased by one increment) are evaluated. For random

change, a number of design option values are changed for candidates to randomly

chosen values.

3 Performance Improvement for Component-Based
Systems

Although the concepts of automated performance improvement described in Sec-

tion 2 are generic, our goal is to apply the approach on performance prediction for

component-based software systems. This section explains how we have tailored the

approach to deal with the specifics of component-based systems by applying it on

the Palladio Component Model (PCM) (Section 3.1). We specifically describe the

design options available for component-based systems (Section 3.2). Afterwards,

we describe an initial, prototypical implementation of performance-oriented perfor-

mance improvement for the PCM (Section 3.3).
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Fig. 1. A PCM Instance Example

3.1 Palladio Component Model

The PCM [2] is a modelling language specifically designed for performance pre-

diction of component-based systems. The language allows the component devel-

oper specify the behaviour and the performance properties of components in a

parametrised form. Then, software architects can combine these component spec-

ifications with specifications of component assembly, user behaviour, and resource

environment to form an architectural model. A model transformation into a discrete-

event simulation of generalised queueing networks allows software architects to pre-

dict various performance metrics such as utilisation or response time distributions

of the system and of individual components.

The Eclipse-based PCM Bench tool allows the specification and analysis of

PCM instances. Figure 1 shows an example PCM instance. In the figure, we see

three diagrams (clockwise from upper left corner): the assembly of components to

form a system, the activity-diagram-like performance specification of the component

internals, and the predicted response time distribution.

3.2 Design Options for Component-based Systems

As components shall be black-box entities, which are possibly obtained from third

parties, automated performance improvement may not change modelled internals

of the components. Thus, we only vary component assembly, user behaviour, and

resource environment. The following design options are currently present in a PCM

instance:

• Substituting Functionally Equivalent Components: A component can be

replaced by other available components with potentially better extra-functional

properties. For that, a notion of substitutability needs to be present in the model.

In the PCM, a component B can substitute a component A if all interfaces pro-
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vided by A are also provided by B and B requires no more interfaces than A.

• Component Allocation: The allocation of components to hardware nodes is

a design option that also has no functional impact, but may have a high extra-

functional impact. For example, for performance, it is beneficial to distribute the

load evenly on several servers or to allocate two components with tight commu-

nication together on one server to allow local communication.

• Resource Environment: We model the hardware environment separately from

the component assembly to allow to adjust the sizing of resource. As the choice

of hardware in the hardware environment has no functional impact, but a large

non-functional impact on the system, we can change its configuration during the

search. For example, the processing speed of a certain CPU can be increased.

• Configuration Parameters: The software itself can offer configuration param-

eters that have no functional influence, but may affect the performance of the

system. Mainly, this applies for the middleware as offered by application servers.

For example, the number of threads provided by an application server for the ap-

plication can vary. Additionally, the communication between remote components

(modelled as a connector) can be configured, for example the network protocol

to be used can be changed (e.g. RMI or SOAP).

• Usage Profile: The number of users as well as their input parameters can have

an effect on the overall performance of the system. These values are included

within a PCM instance. Adding these values to the changeable parameters of the

model, the scalability of the system at hand in relation to other design options

(as presented above) can be studied.

3.3 Prototypical Implementation for the PCM

We have implemented the PerOpteryx tool to provide an initial prototypical im-

plementation of the ideas presented in section 2.2 for automated extra-functional

property improvement in general and in section 3.2 for performance of component-

based system. PerOpteryx can automatically improve the performance of PCM

instances. It is realised as a plugin for the Eclipse framework and thus seam-

lessly extends the PCM Bench. The PCM Bench relies on the Eclipse Modelling

Framework (EMF) for modelling the component-based system. During the search,

PerOpteryx manipulates the EMF instance of the PCM to generate new candi-

dates. To evaluate a candidate, its EMF instance is automatically transformed in

a generalised queueing network system and analysed using a discrete-event simula-

tion. Both transformation and analysis are provided by the existing PCM Bench

implementation and described in detail in [2]. From the various resulting perfor-

mance metrics, PerOpteryx currently uses the mean response time of an entire

usage scenario for assessing a candidate.

The current early version of PerOpteryx applies steepest-ascent hill-climbing

to the problem, which is a simple metaheuristic. For each iteration, the best can-

didate from the current set of solutions is chosen as the basis for new candidates.

If no candidate from the current set of solution is better than their common direct

ancestor, the search terminates. Thus, PerOpteryx cannot pass over local minima.

As we have no cost model integrated yet, the search also terminates if a candidate

8



Martens

fulfils the specified performance requirements. In the prototype, we use predicted

mean response time to state the performance requirements. To really find an sup-

posedly optimal candidate, this requirement can be set to 0 seconds, then, only the

first mentioned stop criterion will end the search.

For candidate generation, the tool includes one heuristic operation and one undi-

rected operation as an example to illustrate the concepts. Technically, for each new

candidate (for both operations), the EMF model of the current candidate is copied

and then varied.

The heuristic operation “Increase processing speed” reflects our performance-

domain knowledge that adding processing power improves performance. For ex-

ample, it is possible to buy faster processors. However, this also introduces higher

costs, thus we only want to increase the processing speed if needed.

The “Increase processing speed” heuristic states the following: Whenever a re-

source (e.g. a CPU) is found in the model that has a predicted utilisation of more

than 75%, the processing speed of the resource is increased by 10%. This reduces

the service time of all jobs executing on this resource.

The undirected operation “Replace components” has no conditions, as we do not

know about the effects of replacing components in advance before trying them in

the actual system. The component models are highly parametrised and components

compete for resources. The rationale behind this operation is that multiple com-

ponents for one task could be available from third parties and that some of them

might lead to better performance.

PerOpteryx can replace components in the system if they are substitutable by

other components in a component repository. For each component in the system, the

prototype checks whether there are substitutions by iterating through all available

components in the repository. Substitutability is checked based on the provided

and required interfaces. As interfaces are first-class entities in the PCM, we can

easily check whether component provide or require the same interface, i.e. refer to

the same interface entity as “provided” or “required”. For simplicity, we assume

here that an interface fully defines the functionality, i.e. that components referring

to the same interface entity as “provided” offer the same functionality through this

interface. Then, component B can substitute component A in a system if and only if

(1) B provides at least the interfaces A provides, (2) B requires at most the interfaces

A requires, and (3) A is not identical to B. Technically, if a matching component is

found, the prototype generates the new candidate by replacing the old component

with the new component in the system model and by updating references to that

component in the connectors. Thus, the new component is automatically allocated

to the same server. Our current algorithm substitutes one component at a time (i.e.

only considers neighbouring candidates and thus conducts a local search).

We aim to evolve the PerOpteryx into a framework for extra-functional prop-

erty optimisation for component-based software systems.

4 Case Study

In this section, we present a case study applying PerOpteryx to the so-called

Business Reporting System (BRS), which is based on an industrial system. With
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Fig. 2. The Business Reporting System modelled in the PCM

this case study, we demonstrate the feasibility of our approach and illustrate how

the current prototype PerOpteryx works.

The BRS is a 4-tier, web-based system to monitor and manage business data.

On a high abstraction level, it consists of 5 software components. Figure 2 shows

how the BRS is modelled in the PCM 3 . Clients either request business reports

or specific entries from the database via the Webserver component. A Scheduler

component connects the Webserver component with the core application. The core

application consists of a component ReportingEngine, which manages the creation

of reports, and a component CacheInfo, which buffers data from the database for

quick access. Both, the ReportingEngine and the CacheInfo query the compo-

nent Database, which stores a configurable amount of entries in its tables. The

Webserver, Scheduler and Database component are each allocated on a dedicated

server (server 1 to 3), whereas the components ReportingEngine and CacheInfo

are allocated together on server 4 (see allocation diagram in the lower part of figure

2).

We specified that the mean response time of the BRS for the expected usage

should be less than 2.5 seconds. The usage was expected to be an open work-

load with a user arriving every 1.3 seconds. We specified no further constraints.

For the Webserver component, there are two alternatives named WebServer2 and

WebServer3 available in the repository.

After the system is modelled in the PCM, we can directly start the optimisation

process. In the following, we will explain the steps PerOpteryx takes for our case

study example. Figure 3 shows the candidates evaluated during the process.

3 You can download the model at http://palladio-approach.net/ fesca2009
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Candidate mean response Utilisation of

time (in sec) server 1 server 2 server 3 server 4

BRS 3.43 0.85 0.19 0.18 0.78

BRS-Web3 2.52 0.14 0.19 0.18 0.79

BRS-Web3-incrCPU4 2.16 0.14 0.19 0.19 0.71

Table 1
Utilisation of the Servers for Selected Candidates

4.1 Initial analysis

We analyse the model of the initial candidate “BRS” with a discrete-event simu-

lation developed for the PCM that can output the predicted mean response time,

amongst other metrics. The analysis of the initial model results in a predicted mean

response time of 3.43 seconds, which does not fulfil our performance requirement of

2.5 seconds. The utilisation of the servers is depicted in table 1, line “BRS”.

4.2 First iteration of the search

(i) Generation of new candidates: First, the candidate is analysed for design op-

tions:

(a) Replace components: For each component in the system, the repository is

searched for alternatives. In our case, two alternatives can be found for the

Webserver component: Webserver2 and Webserver3. Thus, two new can-

didates are created: In candidate “BRS-Web2”, the Webserver component

is replaced by the Webserver2 component. In candidate “BRS-Web3”, the

Webserver component is replaced by the Webserver3 component.

(b) Increase processing speed: The processors of both the web server (server

1) and the application server (server 4) are both rather highly utilised

(see table 1), both reach the limit of 75% utilisation that is the current

condition of our Increase processing speed heuristic. Thus, the processing

rate of the highest utilised processor (server 1) is increased by 10% in

candidate “BRS-incrCPU1”.

(ii) Analysis of the new candidates: The simulations is conducted with the three

new candidates. The results are shown in figure 3. The new candidate “BRS-

Web3” exhibits a better mean response time than the initial candidate. Can-

didate “BRS-incrCPU1” let to no visible improvement. For candidate “BRS-

Web2”, the mean response time even worsened by factor 30: Here, the system

is overloaded.

(iii) Selection of the best candidate: Candidate “BRS-Web3” has the lowest mean

response time of 2.52 seconds, thus it is used as a basis for the next iteration.

(iv) Stop criteria: Candidate “BRS-Web3” narrowly misses the requirement of 2.5

seconds, thus the search continues.
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2nd Iteration

Fig. 3. Result of the Performance Improvement

4.3 Second Iteration of the search

(i) Generation of new candidates. Based on candidate “BRS-Web3”, new candi-

dates are generated.

(a) Replace components: The possible alternatives are to change the

Webserver3 component back to Webserver or to switch to Webserver2.

As both will result in the same candidate, we will not go into detail here.

(b) Increase processor speed: The processor of server 1 is now much less utilised,

however, the application server (server 4) processor still reaches the limit

of 75% utilisation. Thus, the heuristic is applied creating candidate “BRS-

Web3-incrCPU4”.

(ii) Analysis of the new candidates: The simulations is conducted for the new

candidates. The results are shown in figure 3.

(iii) Selection of the best candidate: Candidate “BRS-Web3-incrCPU4” is an im-

provement compared to candidate “BRS-Web3”, thus it is chosen.

(iv) Stop criteria: Candidate “BRS-Web3-incrCPU4” fulfils the performance re-

quirements of 2.5 seconds and the search terminates.

4.4 Results

The prototype successfully found a candidate that fulfils the response time require-

ments of 2.5 seconds. Figure 3 shows the 7 candidates analysed during the run. The

automated performance improvement took up 6.3 minutes, whereas the simulation

of each candidate needed between 21 and 38 seconds.

The tool outputs the means response time for all candidates and sorts them,

fastest response time first. Additionally, the created candidates’ models are kept to

allow the software architect further insight in what has been changed and also the

individual simulation of each candidate.

5 Limitations and Future Work

In the following, we first discuss the current limitations of the prototype compared

to the general idea of our approach and present ideas how to cope with them in
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future versions. Then, we give ideas for future extensions of the approach itself.

5.1 PerOpteryx Limitations

Local optima: The current prototype gets stuck in the closest local optima, even

if it is not close to the global optimum. This limitation, however, can be easily

met by applying more sophisticated metaheuristic such as simulated annealing,

genetic algorithms or random-restart hill climbing.

Time consumption: The current performance evaluation of a single candidate

using the discrete-event simulation is rather costly (ca. 30 seconds per candi-

date). As many candidates have to be analysed during a full-size optimisation

run, the time needed for each single evaluation is critical. However, we think

that an optimisation run of several hours would be acceptable for software ar-

chitects, because it can save them hours or days of manual work. Additionally,

several further options to speed up the analysis exist, for example, faster analysis

techniques such as an existing LQN simulation can be used.

Design options: Not all design options for component-based systems (as pre-

sented in section 3.2) are supported by the current prototype. Adding the missing

design options would further increase the number of possible candidates and thus

increase the potential for design improvement.

Extra-functional properties: Only performance prediction is supported by the

prototype so far. For architectural decisions, however, it is usually not appro-

priate to just optimise a single extra-functional property, because other extra-

functional properties can worsen. Several more sophisticated metaheuristics exist

that explicitly take several criteria into account and perform multicriteria Pareto

optimisation, for example [7]. We plan to integrate such metaheuristics together

with a simple cost model of initial cost and operating cost for both software and

hardware as a next step.

Constraints: The specification of constraints and their consideration during the

search is not yet supported. Here, OCL could be used to specify constraint on

the underlying EMF model.

Performance metrics: So far, only the mean response time is supported. How-

ever, PCM predictions yield response time distributions for which requirements

specified as quantiles are more useful (i.e. 90% of all requests must complete

within 5 seconds) and should be supported.

5.2 Automated Performance Improvement Future Work

During the analysis of a system at hand, we might be able to learn correlations of

design option values and performance for that specific system. For example, during

the search, we can learn that component A is better than component B for most

candidates. Possibly, we can even find further heuristics for undirected operations

that are valid for many systems and create new heuristic operations. Some proposed

metaheuristics such as [17] already incorporate such learning techniques that could

be adopted for our automated performance improvement.

Another future extension for our approach is to add an interactive mode. The
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software architects could evaluate candidates during the search, so that their judge-

ment would be a further criterion (interactive optimisation, [8]). Additionally, soft-

ware architects could guide the search when several options how to evolve candidates

are at hand and prioritise the available operations (comparable to interactive modes

of model checker tools).

6 Related Work

Classical performance analysis tools for queueing network or stochastic Petri-nets

usually only produce performance metrics after analysing the model and do not pro-

vide feedback on how to improve the model. The SPE-ED tools by Smith et al. [16],

which relies on queuing network analysis, features a visualisation of the perfor-

mance metrics in the graphical representation of a performance model by colouring

performance-critical steps. While this provides a starting point for improving the

model, there are no concrete guidelines to make these steps less performance-critical.

Xu et al. [18] present a semi-automated rule-based approach to find configuration

and design improvement on the model level. Based on a Layered Queueing Network

(LQN) model, performance problems in terms of bottlenecks and long paths are

identified in a first step. Then, rules containing performance knowledge are applied

to the detected problems. The search on the model level itself is fully automated,

however, for some of the suggested design improvements, it is doubtful whether they

actually can be implemented (e.g. the aforementioned improvement to somehow

reduce the execution time for a task). The search stops when the performance

requirements are met or if no more improvements can be found in all branches of

the spanned tree of alternatives.

Cortellessa et al. [5] propose an approach for feedback generation for software

performance analysis, which aims at systematically evaluating performance predic-

tion results using step-wise refinement. The approach relies on the manual detec-

tion of performance anti-patterns in the performance model. There is no support

to automatically solve a detected anti-pattern, and there is no suggestion of new

architecture candidates.

Bondarev et al. [4] introduce the DeepCompass framework for design space ex-

ploration of embedded systems. The framework relies on the ROBOCOP component

model. It uses a Pareto analysis to resolve the conflicting goals of optimal perfor-

mance and low costs for different architecture candidates. Therefore, performance

metrics for each architecture candidate are plotted against the costs of each candi-

date. The approach requires a manual specification of all architecture candidates

and provides no support for suggesting new candidates.

McGregor et al. [13] have developed the ArchE framework. ArchE assists the

software architect during the design to create architectures that meet quality re-

quirements. It helps to create architectural models, collects requirements (in form of

scenarios), collects the information needed to analyse the extra-functional properties

for the requirements, provides the evaluation tools for modifiability or performance

analysis, and suggests improvements. Compared to our work, ArchE only features

a simple performance model and the architecture model is not component based.

Other than the former quantitative approaches, there are qualitative architec-
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tural evaluation methods, such as ATAM [10] or SAAM [11]. These approaches do

not formally model software architectures, but instead rely on textual specification

of usage scenarios. Therefore, these approaches only allow an informal discussion

of performance properties and architecture candidates, but no automated support

for exploring the design space.

Overall, the approach presented here is one example for search-based software

engineering [8], where metaheuristic search techniques and optimisation are applied

to problems in software engineering.

7 Conclusion

This paper presents a fully-automated approach to improve the expected perfor-

mance of component-based software designs and a prototypical implementation for

it. Using this approach, the design space spanned by different design options (e.g.

available components and configuration options) can be systematically explored us-

ing metaheuristic search techniques and performance-domain heuristics. Based on

an initial architectural model of a system, new candidates are automatically gen-

erated and evaluated for performance. We show a proof-of-concept case study to

demonstrate the approach.

Using this approach, software architects can more easily create high-quality

component-based software designs. The automation of the search saves the software

architect effort for a manual exploration. Thus, the gap between applying formal

performance prediction methods and actually improving the design of a system can

be closed.

The first steps to extend our work will be the integration of a cost model and the

use of multi-objective-enabled metaheuristics to support trade-off decisions among

different extra-functional properties. The prototype will be extended with more

design change operations such as changing the allocation of components and more

performance domain heuristics. The integration of a framework for metaheuristic

search will allow the comparison of several metaheuristics. In the long run, we aim

to evolve the prototype into a framework for extra-functional property optimisation

for component-based software systems.
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