
Automated Transformation of Component-based
Software Architecture Models to

Queueing Petri Nets
Philipp Meier

Karlsruhe Institute of Technology (KIT)
76131 Karlsruhe, Germany

mail@philippmeier.com

Samuel Kounev
Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany
kounev@kit.edu

Heiko Koziolek
Industrial Software Systems

ABB Corporate Research
68526 Ladenburg, Germany
heiko.koziolek@de.abb.com

Abstract—Performance predictions early in the software de-
velopment process can help to detect problems before resources
have been spent on implementation. The Palladio Component
Model (PCM) is an example of a mature domain-specific model-
ing language for component-based systems enabling performance
predictions at design time. PCM provides several alternative
model solution methods based on analytical and simulation tech-
niques. However, existing solution methods suffer from scalability
issues and provide limited flexibility in trading-off between results
accuracy and analysis overhead. Queueing Petri Nets (QPNs)
are a general-purpose modeling formalism, at a lower level of
abstraction, for which efficient and mature simulation-based
solution techniques are available. This paper contributes a formal
mapping from PCM to QPN models, implemented by means
of an automated model-to-model transformation as part of a
new PCM solution method based on simulation of QPNs. The
limitations of the mapping and the accuracy and overhead of the
new solution method compared to existing methods are evaluated
in detail in the context of five case studies of different size and
complexity. The new solution method proved to provide good
accuracy with solution overhead up to 20 times lower compared
to PCM’s reference solver.

I. INTRODUCTION

One of the most important extra-functional properties of
modern software systems is their performance. Architectural
changes in the late development stages are very costly. There-
fore, it is essential to be able to predict the system performance
at design time in order to detect potential problems before
resources have been spent on implementation. The Palladio
Component Model (PCM) [1] is a domain-specific modeling
language for component-based systems enabling performance
predictions at design time. Four performance-influencing fac-
tors are modeled for each software component: the component
implementations, the external services they use, the execution
environment on which they are deployed, and the component
usage profiles.

PCM models are analyzed through a transformation to a
predictive performance model at a lower level of abstraction.
In the case of SimuCom, the reference solver distributed
with the PCM meta-model, the transformation targets Java
sourcecode based on a general-purpose simulation framework.
Even though SimuCom uses a transformation, it does not

abstract away information from the model and implements
the full model semantics. Other existing transformations are
a transformation to Layered Queueing Networks (LQNs) [2]
and a transformation to Stochastic Regular Expressions [3].
They use simplifications and abstractions to reduce the evalu-
ation overhead. Based on these transformations, several PCM
solvers have been developed which place different restrictions
on the PCM model instance and offer different trade-offs be-
tween accuracy and overhead. However, existing solvers either
provide high precision at a high overhead, or low precision at
a low overhead and they also suffer from scalability issues.

Queueing Petri Nets (QPNs) are a general-purpose modeling
formalism, at a lower level of abstraction compared to PCM,
that has been shown to lend itself well to modeling and
analyzing the performance of distributed component-based
systems [4], [5]. A mature and optimized simulation engine
(SimQPN [6] which is part of QPME – the Queueing Petri net
Modeling Environment [7]), as well as analytical techniques
(e.g., HiQPN-Tool [8]), are available. However, QPNs are
a general-purpose modeling formalism and therefore provide
no constructs for representing software domain elements like
components or system usage profiles directly. A mapping from
the components of the system to the appropriate QPN model
currently has to be developed manually and individually for
each project. It is therefore desirable to be able to model
the system in PCM, which supports most system entities
directly, and conduct the analysis using the available tools and
methods for QPNs, in particular the highly optimized SimQPN
simulator [6]. An automatic transformation from PCM to QPN
models would open up the benefits of QPNs to the PCM
community and provide a basis for future transformations to
QPNs from other source models in the performance engineer-
ing domain.

This paper makes the following contributions: i) a formal
mapping from PCM to QPNs analyzing the feasibility of
using QPN models as a target analysis formalism for PCM
models, ii) implementation of an automatic transformation
from PCM to QPNs in the form of a new PCM solver tool
based on SimQPN, iii) an extensive evaluation of the PCM-to-
QPN transformation in terms of results accuracy and analysis



overhead. While the transformation is defined in the context of
PCM, it is not limited to PCM and can be easily generalized to
other component-based software architecture models. Further
details on the presented results, including a more detailed
description of the mapping and a more in-depth comparison
of the different solvers, can be found in [9].

The remainder of this paper is organized as follows: Sec-
tion II discusses the related work of our approach. Section III
briefly introduces the foundations of this work: PCM and
QPNs. The mapping from PCM to QPNs is presented in
Section IV, its implementation in Section V. Section VI
presents the evaluation of the approach, including the results
of the case studies. Finally, Section VII concludes this paper
and discusses future work.

II. RELATED WORK

Performance prediction approaches for component-based
systems have been surveyed by Koziolek [10]. Transforma-
tions in the software performance engineering domain are
discussed in [11]. This section describes first related PCM-
transformations, then UML-based transformations, and finally
transformations for proprietary languages.

Existing solvers for PCM based on model-to-model trans-
formations are directly related to this work. Two solvers, built
on top of the DependencySolver introduced in [3], are based
on a transformation to Layered Queueing Networks (LQNs)
[2] and a transformation to Stochastic Regular Expressions
[3]. The DependencySolver is a module that automatically
resolves parametric dependencies and stochastic expressions.
Similarly to the above two transformations, we use it as a pre-
processing step in the PCM to QPN transformation presented
in this paper. A detailed comparison of LQNs and QPNs as
analysis formalisms can be found in [12]. Stochastic Regular
Expressions can be solved analytically with very low overhead,
however, they only support single user scenarios. Koziolek
[3] introduces a transformation to an extended form of QPNs
which has not been studied by the research community and
is not supported by available tools. It uses tokens that carry
arbitrary properties instead of just a color value. Henss [13]
proposes a PCM transformation to OMNeT++, focusing on
realistic network infrastructure closer to the OSI reference
network model. No experimental evaluation of the approach
has been published. The PCM-Bench tool comes with the
SimuCom simulator [1]. A model-to-text transformation is
used to generate Java code that builds on Desmo-J, a general
simulation framework. The code is then compiled on-the-
fly and executed. SimuCom is tailored to support all of the
PCM features directly and covers the whole PCM meta-model.
However, the current version of SimuCom is limited in terms
of the supported metrics and provides limited configurability
of the simulation output data. Furthermore, it suffers from
scalability issues, due to the high analysis overhead and
memory constraints.

Also relevant to this paper are other model-based ap-
proaches that use some form of transformation to analyze

model instances. LQNs are the most common analysis tech-
nique, but Markov chains, Stochastic Petri Nets and Stochastic
Process Algebras are also used for performance analysis
[1]. Many approaches are based on the Unified Modeling
Language (UML) [14] extended with an annotation profile.
The most important standards for performance annotations in
UML are SPT (UML Profile for Schedulability, Performance
and Time) [15] and the newer and extended version MARTE
(UML Profile for Modeling and Analysis of Real-time and
Embedded Systems) [16]. A discussion of the benefits and
drawbacks of PCM compared to UML is presented in [1].

Di Marco and Inverardi [17] transform UML models an-
notated with SPT stereotypes into a multichain queueing net-
work. UML-ψ, the UML Performance SImulator [18], comes
with its own simulation model. A UML instance annotated
with SPT stereotypes is transformed to this model. As the
simulation model is close to UML, the results can easily be
reported back to the annotated UML instance [11]. Another
approach uses the stochastic process algebra PEPA as analysis
model [19]. In this case, only UML activity diagrams are
considered, which are annotated with a subset of the MARTE
stereotypes. A software tool implementing this method is
also available. Bertolino and Mirandola [20] integrate their
approach into the Argo-UML modeling tool, using the RT-
UML performance annotation profile. An execution graph and
a queueing network serve as the target analysis formalisms.

Other approaches use UML, but do not use standardized per-
formance profile annotations: Petriu et al. [21] use XSLT, the
eXtensible Stylesheet Language Transformations, to execute
a graph pattern based transformation from a UML instance
to LQNs. Instead of annotating the UML model, it has to be
modeled in a way so that the transformation can identify the
correct patterns in the model. Bernardi et al. [22] consider only
UML statecharts and sequence diagrams. A transformation
written in Java turns the model into GSPN submodels that are
then combined into a final GSPN. Gomaa and Menascé [23]
use UML with custom XML performance annotation. The
performance model is not described in detail, but appears to be
based on queueing networks.Wu and Woodside [24] use UML
component models together with a custom XML component
performance specification language. LQN solvers are used for
the analysis.

III. FOUNDATIONS

We provide an overview of the Palladio Component Model
and Queuing Petri Nets, which form the basis of this work.

A. Palladio Component Model (PCM)

The Palladio Component Model (PCM) is a meta-model
allowing the specification of performance-relevant information
of a component-based architecture [1]. It focuses on the soft-
ware performance engineering (SPE) and component-based
software engineering (CBSE) domains. Four factors essentially
determine the performance of a software component: its imple-
mentation, the performance of external services it requires, the
performance of the execution environment it is deployed on,



and the usage profile. These aspects are specified using para-
metric dependencies, providing a domain specific language
for each of the four roles in the CBSE development process:
component developer, software architect, system deployer and
business domain expert. Each role contributes a part of the
PCM instance to be analyzed.

The component developer specifies the implementation-
specific information of a component and stores it in a compo-
nent repository. After specifying the provided and required in-
terfaces of a component, a service effect specification (SEFF)
is specified for each of the provided interface signatures. The
SEFFs model the externally visible behavior of a service with
resource demands and calls to required services.

The system architect uses the component specifications of
the component developer to assemble the system. Like a com-
ponent, the system has provided and required interfaces, which
represent the boundaries of the modeled system. In between,
components are assembled by referencing their specification
in the component repository. References to components with
a matching provided and required interface can be connected.
The component references are called assembly contexts. This
way the software architect can choose which components to
use without knowing any implementation details.

The system deployer uses his knowledge about the target
runtime system to model the resource environment. The re-
source environment is divided into resource containers which
each can have a number of different resource types. For
each assembly context, representing a runtime instance of
the component, the system deployer specifies the resource
container that instance is deployed on. This deployment part
of the model is called allocation. Consequently, any resource
demands specified in the SEFF of the referenced component
occupy the resources of the resource container the assembly
context is deployed on.

The domain expert specifies the usage profile. For each of
the system provided interfaces it is specified, how often, and
with which input parameters, the service is called. For this,
stochastic probability distributions can be used to accurately
represent real life scenarios.

Many PCM entities contain RandomVariables representing
arbitrary discrete and continuous statistical distributions. They
are specified using the PCM stochastic expressions language
(StoEx). At runtime, the specification is parsed and an abstract
root entity Expression is returned. There are concrete sub-
entities of Expression for numbers and other literals, common
probability functions like a probability mass function (PMF)
and exponential function, and entities for combining or mod-
ifying other Expressions. A Product-expression, for example,
references a left and a right Expression and applies a product
operator. A detailed examination and a description of the
underlying meta-model can be found in [3].

The DependencySolver [3] is a tool for substituting param-
eter names inside PCM stochastic expressions with character-
izations originating from the usage model. In addition, it also
handles component parameters.

Figure 1 illustrates the basic idea behind the Dependency-

[…]

[…]

[…]

demand = 

17 + a.VALUE * 25

guard = 

b.VALUE < 10

guard = 

b.VALUE >= 10

iterations = 

c.NoE

inputVarUsg = 

d.BYTESIZE * 2

InternalAction

BranchAction

LoopAction

External

CallAction

[…]

[…]

[…]

demand = 

67

probability = 

0.3

probability = 

0.7

iterations = 

22

inputVarUsg = 

IntPMF[(140;0.5)(160;0.2)(180;0.3)]

InternalAction

BranchAction

LoopAction

External

CallAction

Before After
a.VALUE = 2

b.VALUE = IntPMF[(2;0.3)(15;0.7)]

c.NUMBER_OF_ELEMENTS = 22

d.BYTESIZE = IntPMF[(70;0.5)(80;0.2)(90;0.3)]

Fig. 1. DependencySolver Illustration [3]

Solver. The example shows a simplified SEFF with paramet-
ric dependencies in the form of stochastic expressions. An
IntPMF is a probabilistic mass function with integral values.
The values for the employed variables (e.g., a.VALUE), set
in the usage profile, are used by the DependencySolver to
reduce the expressions to concrete representations. Computa-
tions within the expressions are also carried out.

The context shown in the example is simplified, as the actual
context is only known at analysis time and depends on the
different PCM sub-models (e.g., repository and system assem-
bly). One SEFF is usually traversed with a range of different
contexts, resulting in different analysis-time instances. The
main simplification introduced by the DependencySolver is
that all information about stochastic variables is lost, and with
it the variable scopes.

B. Queueing Petri Nets (QPNs)

Queueing Petri Nets (QPNs) build on Colored Generalized
Stochastic Petri Nets (CGSPNs), a combination of Colored
Petri Nets (CPNs) and Generalized Stochastic Petri Nets
(GSPNs) [25]. An ordinary Petri net is a bipartite, directed
graph. It consists of one set of places and one set of transitions.
Places are connected to transitions, and transitions to places,
but not among themselves. Places contain a certain number of
tokens. The number of tokens at the start of the analysis is
determined by an initial marking function. The forward inci-
dence function defines how many tokens a transition requires
in each connected place to be ready to fire. When a transition
fires, it deducts that number of tokens from each incoming
place and deposits new tokens in other places if a backward



incidence function is defined. If more than one transition is
ready to fire, one is randomly chosen with equal probability.
A formal definition can be found in [26].

CPNs introduce the ability to distinguish different token
classes using token colors. The initial marking and incidence
functions are now defined with respect to multiple different
colors. The different possibilities of firing a transition are
referred to as modes. Modes also have firing weights that
influence which mode is chosen when multiple modes are
ready to fire. GSPNs introduce timed transitions and firing
weights for transitions, both of which are not used by our
mapping. QPNs introduce a new type of place: the queueing
place. A queueing place consists of a queue, a server and
a depository. The server processes the tokens in the queue
according to a certain scheduling strategy. The time a token
occupies the server is defined through a statistical distribution.
Once a token is finished, it is put into the depository, which
then behaves like an immediate place for connected transitions.
Only tokens in the depository are considered available for the
incidence function. A formal definition can be found in [25].

IV. PCM TO QPN MAPPING

This section presents the main contribution of this paper:
the mapping from PCM models to QPNs. The limitations
applying to the individual features are also discussed. All
features of PCM in version 3.2 are covered. They are pre-
sented groups, each having its own subsection: workload,
calls, branches, loops, forks, processing resources and passive
resources. The mapping of linking resources and the mapping
of QoS annotations, as well as detailed PCM meta-model
excerpts, have been omitted for reasons of brevity and can be
found in [9]. The QPN diagrams follow the notation presented
in Figure 2. A Subnet represents a part of the QPN which
varies independently of the described feature.

Queueing 

Place

Subnet

Place

Queue Depository

Ordinary 

Place

Nested QPN

oo o o o o

Transition Token

o
o o

Fig. 2. QPN Diagram Notation

A. Workload

The workload in PCM is represented as a number of usage
scenarios, running in parallel. Each scenario has a workload
specification and a ScenarioBehavior. The ScenarioBehavior
is very similar to the SEFF of a component, but does not
consume resources directly. The calls reference external in-
ferfaces of the system assembly. PCM supports both open
and closed workloads [27]. An open workload is characterized

(a) OpenWorkload (b) ClosedWorkload

Fig. 3. Workload QPN

by an inter-arrival time distribution, which describes the time
that elapses between consecutive requests. Figure 3(a) shows
how the OpenWorkload usage model entity is represented in
the generated QPN to achieve the open workload semantics.
The Client-Place queueing place generates tokens of a color
c which is different for each UsageScenario. It references a
client queue with Infinite Server (IS) scheduling strategy. An
empirical distribution is used for the Client-Place resource
demand representing inter-arrival time distribution of the
OpenWorkload. The initial number of tokens is set to 1.
For each input token the Client-Entry transition creates a
new token in the subnet representing the ScenarioBehavior.
Another token is created in the Client-Place queue. The
Client-Exit transition destroys tokens of color c from the
ScenarioBehavior subnet.

A closed workload is characterized both by an integral
population, as well as by a think time distribution. There
is a fixed number of requests, each of which has to wait
according to the think time after its processing is complete.
Figure 3(b) shows the mapping for a ClosedWorkload. The
difference is that the Client-Entry transition does not generate
any tokens in the Client-Place. Instead, this is done by the
Client-Exit transition. At the Client-Place we use an empirical
distribution for the resource demand equal to the think time
distribution of the ClosedWorkload. The initial number of
tokens is set to the population of the closed workload. A new
token will now be available after it has passed through the
whole ScenarioBehavior and after the residence time in the
queue, which equals the think time.

B. Calls

In PCM there are two types of call entities. The EntryLevel-
SystemCall and the ExternalCallAction. They both represent
the invocation of a single method of an interface that is offered
by one of the components in the repository. The difference is
that EntryLevelSystemCalls are part of the UsageModel and
reference only external interfaces of the system assembly.
Figure 4(a) and Figure 4(b) show the mapping. Each call entity
is represented by two transitions.

EntryLevelSystemCall-Entry connects the subnet of the pre-
vious action in the current usage model behavior with the
subnet of the target SEFF . EntryLevelSystemCall-Exit in
return connects the target SEFF subnet with the subnet of
the following action. A new token color is created for each
EntryLevelSystemCall that distinguishes the requests coming
from that call.



(a) EntryLevelSystemCall (b) ExternalCallAction

Fig. 4. Calls QPN

The mapping of ExternalCallAction is defined in a similar
way. The new token color is derived from the current token
number during traversal.

C. Branches

A branch routes an incoming request to exactly one of
its child behaviors. The behavior is not deterministic and
depends on the probabilities of the different child behaviors.
The branch entities of PCM (Branch and BranchAction) are
mapped to the same basic QPN elements shown in Figure 5.

Fig. 5. Branch QPN

A branch has N child behaviors Bi with corresponding
branching probabilities Pi. The Branch transition consumes a
token from the subnet of its predecessor. The transition has N
modes corresponding to the number of child behaviors. Each
mode creates a token in the subnet for child behavior Bi and
has a firing weight of the branching probability Pi.

D. Loops

PCM supports three different types of loops: Loop in
usage models, and LoopAction and CollectionIteratorAction
in SEFFs. Using the DependencySolver, all three variants are
reduced to the following behavior specification:

1) The loop has a single child behavior.
2) The number of times the loop child behavior is executed

is specified by a stochastic expression that evaluates to
an integer constant I or to an integer type probability
mass function (IntPMF). An IntPMF has N possible
integer values Vi that each have a probability Pi. All
probabilities Pi must add up to 1.0. In the following, the
constant case is treated as N = 1, Vi = I and Pi = 1.0.

3) The next loop iteration does not start until the previous
request has completed the child behavior.

i i

i

i

i

i

i

Fig. 6. Loop QPN

i

i

i

i

i

i

i

i
i

i

Fig. 7. Loop QPN (Alternative)

Two different QPN mapping variants were developed. The
first variant, shown in Figure 6 was employed for the case
studies presented later as it uses fewer places, modes and
tokens. Figure 7 shows the alternative variant. As the two
alternatives share considerable parts, the common parts will
be discussed first.

Both loop subnets can be divided into an inner and an
outer part. The outer part consists of the Loop-Entry and
Loop-Exit transitions, as well as of the Loop-Pool and Loop-
Depository places. The inner part consists of the Loop-Inner-
Entry and Loop-Inner-Exit transitions, as well as of the Loop-
Inner-ColorCode place. The outer part handles the token input
from the predecessor subnet and token output to the successor
subnet. The inner part handles the input and output to and from
the child behavior subnet, denoted as LoopBehavior. The color
of the input and output tokens is not determined in this part
of the mapping and will be referred to as the loop input color.

The outer and inner part separation is necessary to im-
plement behavior property 2) above. If only one token color
was used, the exit transition would not know when the whole
request is complete. Different iteration counts are possible.
This is decided at the loop entry and encoded into a new color.
For each of the N possibilities of iteration counts one color Ci

and one mode Mi is generated in the Loop-Entry transition.
The firing weight of each mode is set to Pi. The Loop-Inner-
Entry transition takes a token of color Ci from the Loop-Pool,
generates a token of the loop input color in the loop child
behavior denoted as LoopBehavior, and generates a token of
color Ci in Loop-Inner-ColorCode. The loop input color is
used in the LoopBehavior to limit the number of modes and
colors in the child behavior subnet to a minimum. The iteration
count information encoded in Ci is needed only locally in this



part of the mapping, not inside the subnet representing the
child behavior. The color code place is then necessary for the
Loop-Inner-Exit transition to know which color Ci to generate
in the Loop-Depository when consuming a token of loop input
color from the last place of the LoopBehavior.

The other parts of the mapping differ in how behavior
property 3) is implemented. The first approach, in Figure 6,
uses two different modes per color Ci in the Loop-Exit
transition. One mode to leave the loop and one mode to return
the token of color Ci to the Loop-Pool for another client
behavior iteration. The exit mode has a firing weight of Pn

where n is the iteration count of color Ci. The return mode has
a firing weight of 1− Pn. The random selection between the
two modes for color Ci at the Loop-Exit transition behaves like
a Bernoulli random variable. The number of iterations until
the loop is left are therefore geometrically distributed with an
expected value of 1/Pn. Therefore, we choose Pn = 1/n.
The mean number of times that a request completes the inner
behavior now equals the expected value 1/Pn = 1/(1/n) = n.
The limitation is that for an individual request the number of
times the internal behavior is executed does not necessarily
equal n.

The alternative approach, which can be found in [9], does
not impose this simplification. We skip its presentation here
for the sake of compactness.

A limitation applies to the mapping of CollectionItera-
torAction. It carries a special semantic which is not im-
plemented. The extra semantic compared to a LoopAction
is that stochastic variables that are used in the loop body
must be evaluated in a statistically dependent manner. For
example, let ‘a.BYTESIZE’ contain an IntPMF that has two
possible values a and b. If anywhere in the loop behavior
‘a.BYTESIZE’ is used, it is evaluated and if a is returned,
all other references to ‘a.BYTESIZE’ must then also return a.
In QPNs, transition firing probabilities are always evaluated
independently of other transitions. Any dependencies would
have to be encoded in colors. As only a fixed number of
colors is available, dependencies between continuous variables
cannot be mapped adequately. An extreme number of colors
is also inefficient.

E. Forks

PCM supports both synchronous and asynchronous forks.
Both are realized by a single entity, the ForkAction. It directly
contains a number of N asynchronous ForkedBehaviors. In
addition, it contains a SynchronizationPoint which contains M
synchronized ForkedBehaviors.

Figure 8 shows the QPN mapping for a ForkAction.
There are three transitions. ForkAction-Split consumes a token
from the predecessor subnet and creates a token in each
of the M +N child behavior subnets. ForkAction-Consume-
Asynchronous consumes tokens from the N asynchronous
child behavior subnets, but does not create any new tokens.
ForkAction-Join-Synchronous waits until a token is available
in each of the M synchronous child behavior subnets. It then
consumes all of them and creates a new token in the successor

ForkAction-
Asynchronous-

Behavior-1

ForkAction-
Asynchronous-

Behavior-2

ForkAction-
Asynchronous-

Behavior-N

Source-
Behavior

ForkAction-Split

o

ForkAction-
Synchronous-

Behavior-1

ForkAction-
Synchronous-

Behavior-2

ForkAction-
Synchronous-
Behavior-M

ForkAction-
Consume-

Asynchronous

ForkAction-Join-
Synchronous

o

o

o

o

o

o

o

o
o

o

o
o

o

Fig. 8. ForkAction QPN

subnet. When M = 0, a dummy ordinary place is created for
the synchronized client behavior subnet to prevent the request
from getting lost.

A limitation applies to the mapping of synchronized forked
behavior. The synchronization of two sub-requests generated
by a single parent request cannot be represented in a seman-
tically equivalent fashion using QPN constructs. Individual
tokens carry no identity and it cannot be decided for two
tokens whether or not they belong to the same parent request.
The tokens are consumed without considering their parent
request, introducing an error. The extent of the error depends
both on the number of parallel behaviors and on the properties
of the child behavior subnets.

F. Processing Resources

The PCM version employed for this paper supports only
single-server processing resources and three scheduling strate-
gies: first-come-first-served, processor-sharing and infinite
server. Each ResourceContainer of the ResourceEnvironment
can have an arbitrary number of ProcessingResourceSpecifi-
cations which each have a locally unique name, a locally
unique ProcessingResourceType and a processingRate. An
InternalAction represents a load a request places on one
or more processing resources. It contains a number of N
ResourceDemands. Each ResourceDemand contains a resource
demand specification in the form of a PCMRandomVariable
and a reference to a ProcessingResourceType. The specifica-
tion uses abstract units of time and must logically match the
processing rate of the target ProcessingResource. The actual
resource demand times are determined at model analysis time
using the current AssemblyContext.

Figure 9 shows the QPN mapping for an InternalAction.
The transitions InternalAction-Entry and InternalAction-Exit
handle token input from the predecessor and token output
to the successor, respectively. The resource demands are
processed in series, one after another. The order cannot be
specified. This matches the behavior simulated by the Simu-
Com reference simulator. For each of the N ResourceDemands
Ri of the InternalAction a queueing place InternalAction-
ProcessingResource-i is generated. For each Ri with i < N a
connector transition InternalAction-Connector-i is also gener-
ated.



o InternalAction-
ProcessingResource-1

InternalAction-
ProcessingResource-2

InternalAction-
ProcessingResource-3

Source-
Behavior

InternalAction-Entry

InternalAction-
ProcessingResource-NInternalAction-Exit

InternalAction-
Connector-1

InternalAction-
Connector-2

InternalAction-
Connector-N-1

o

o
o

o

o

o

o

o
o

Fig. 9. InternalAction QPN

The DependencySolver solves all parametric dependencies
in the specification of Ri and provides an empirical distribu-
tion. The distribution is then divided by the processingRate
of the target ProcessingResourceSpecification defined by the
current context (using the folding module of the Dependency-
Solver). This results in the resource demand distribution for
the tokens of the current color. The distribution is used for an
empirical distribution in the color reference of the queueing
place for Ri.

The target queues of the N queueing places are only
generated on demand, one queue for each ProcessingResource-
Specification of each ResourceContainer. The scheduling dis-
ciplines are mapped to their respective QPN queue scheduling
strategies. The number of servers is set to 1. If N = 0, a
dummy ordinary place is generated in place of the queueing
places in order not to lose the request.

G. Passive Resources

PCM supports passive resources. A BasicComponent can
contain N PassiveResources. Each PassiveResource contains
an initial capacity specification of type integer. While Pas-
siveResources are defined per component, they are instantiated
per AssemblyContext. AcquireAction and ReleaseAction mark
the section during which a request requires a passive resource.
They both reference one of the N PassiveResources.

Source-

Behavior

AcquireAction

ReleaseAction

Passive-

Resource

s

s

p

ps

s

Fig. 10. AcquireAction and ReleaseAction QPN

Figure 10 shows the QPN mapping for both AcquireActions
and ReleaseActions. The PassiveResource is mapped to an or-
dinary place. A global semaphore color type is used. The initial
number of tokens is set to the capacity. The AcquireAction
transition consumes a token from the predecessor subnet and
one token from the PassiveResource place and generates one
token in the successor subnet. Similarly, the ReleaseAction

transition consumes a token from the predecessor subnet
and creates a token in both the successor subnet and the
PassiveResource place. For each AssemblyContext referencing
the parent BasicComponent of the PassiveResource, a different
place is created and accessed. For simplicity, this has been
omitted from the figure.

V. IMPLEMENTATION

The presented PCM-to-QPN transformation was imple-
mented using QVTO Operational [28] and Java. The trans-
formation itself is largely generic and could easily be reused
for a number of solution techniques for QPNs. In this case, we
used the SimQPN simulator, which is available as an Eclipse
plugin. The tool implementing our new SimQPN-based solver
is also available as an Eclipse plugin. It is integrated into
the PCM-Bench, which is distributed with the PCM meta-
model. Figure 11 outlines the architecture of the tool. The
Instrumentation UI and Instrumentation Model allow the user
to specify which metrics to collect at the PCM domain level.
Likewise, the Results Integration module converts SimQPN-
level simulation results back into the PCM domain.

PCM 
Instance

Instrumentation 
Model

QPN 
Instance

SimQPN 
Result

Flow of Artifacts

Solved
PCM 

Instance

Decorates

Fig. 11. SimQPN Solver Architecture

VI. EVALUATION

This section presents a detailed evaluation of the proposed
PCM-to-QPN mapping. Five case studies were conducted to
evaluate the results accuracy and analysis overhead of the new
SimQPN Solver in a realistic context. The SimQPN Solver
results were compared to the results of the SimuCom reference
simulator as well as to the LQNS and LQSim solvers.

In the following, the experimental environment is presented.
The individual case studies and their complexity are discussed
next. Finally, after outlining the steps taken for each case study,
the analysis results are presented. For lack of space, we only
present a summary of the evaluation results here. The detailed



results are available in [9] including a detailed evaluation of
the mapping on a feature-by-feature basis.

A. Experimental Environment

All experiments were conducted using Eclipse Galileo 3.5.1
with the following features installed: EMF 2.5.0, Eclipse QVT
Operational 2.01, PCM 3.2 Development Build, QPME 1.5.2
Development Build. The system and hardware configuration
included: Microsoft Windows 7 Professional (64bit), 32bit
JDK 1.6.0 (Update 20), Quad-Core Intel i5 750 CPU (2.67 Ghz
per core), 4 GB Memory. LQNS and LQSim were available
in version 4.1.

Of the available simulation methods offered by SimQPN,
the batch means method [29] was used for all simulation runs.
It is the most stable method provided by SimQPN. LQSim was
used with the -T<logical runtime> option. For LQNS
the default settings of the PCM-to-LQN transformation were
used: convValue = 1e-005, itLimit = 50, printInt = 10, under-
Coeff = 0.5 and psQuantum = 0.001.

B. Case Studies

The aim of the evaluation was to use PCM models of realis-
tic size and complexity. Instead of creating an artificial model,
five case studies were conducted using existing models from
various sources: SPECjEnterprise2010, ABB Demonstrator,
MediaStore, CoCoME and Business Reporting System.

The SPECjEnterprise2010 model is taken from [30] where
it was used to evaluate a method for automated extraction of
PCM model instances from running enterprise Java applica-
tions. SPECjEnterprise2010 is a benchmark developed by the
Standard Performance Evaluation Corporation (SPEC). Two
different models were available that differ in their usage model
complexity.

In the context of an internship at ABB Research in Laden-
burg, Germany, the ABB Demonstrator model was made
available, which represents a large distributed factory process
control system by ABB [31, D7.1].

The MediaStore is an example model that does not reach
the complexity of an industrial system but is still much larger
than the simple models used to evaluate individual features in
[9]. The PCM instance used for this paper is an adaptation of
the MediaStore model used in [3] ported to the current PCM
version.

CoCoME stands for Common Component Modeling Exam-
ple and describes a trading system as it can be observed in a
supermarket handling sales [32].

The Business Reporting System (BRS) model is taken from
[33]. It was created to evaluate a method of automatic software
architecture optimization.

For the SPECjEnterprise2010 and the ABB Demonstrator
case studies, the workload parameters were varied, creating
an additional 12 model instances in addition to the six models
discussed above.

Table I shows a number of complexity metrics that charac-
terize the different case study models. Only components and
SEFFs directly or indirectly referenced from the usage model

are counted. The number of calls, branches and loops refer to
the number of entities that are instantiated during the model
traversal of both usage model and system assembly. This
better reflects the different combinations of input parameters.
The StoEx usage shows the most advanced elements in the
employed stochastic expressions.

To further illustrate the complexity of the involved trans-
formations, Figure 12 shows a simplified version of the
MediaStore model and the corresponding generated QPN. The
incidence functions are omitted to save space. MediaStore is
the simplest of the case studies, the QPNs generated from
the other case studies are much larger. As an example, the
generated QPN model for the BRS case study included a total
of 236 places, 171 transitions and 105 token colors.

Fig. 12. Example transformation for the MediaStore case study (PCM and
QPN models simplified for compactness)

C. Evaluation Steps

To conduct the case studies, an appropriate logical sim-
ulation length was determined for each of the considered
workload scenarios. A fixed simulation time was employed
to maximize the comparability of the results in terms of
simulation overhead. All employed simulation based solvers
(SimuCom, SimQPN and LQSim) support a fixed simulation



TABLE I
MODEL COMPLEXITY

Model #UsageScenarios #Components #SEFFs #Calls #Loops #Branches StoEx usage
(#Open / #Closed) (referenced) (referenced) (instantiated) (instantiated) (instantiated)

SPECjE (A) 1 / 0 7 7 7 1 1 Exp in workload, IntPMF
SPECjE (B) 1 / 0 7 15 26 2 4 “
ABB 4 / 0 9 9 76 0 76 basic number arithmetic
MediaStore 0 / 1 5 5 5 2 0 IntPMF, DoublePDF
CoCoME 0 / 1 10 12 15 6 3 IntPMF, DoublePDF
BRS 1 / 0 9 27 85 18 20 EnumPDF, DoublePDF

.

time mode of operation. LQNS was set up to use a 95%
confidence level.

The evaluation is then based on the total analysis time,
which includes the simulation time, as well as any time needed
for the actual transformation or related processing.

Using the determined simulation time, each workload sce-
nario was evaluated 30 times with each solver. Then, for
each metric, the relative deviation of the mean value provided
by each solver compared to the SimuCom reference solver
was computed. To determine, if that deviation is statistically
significant, a 95% confidence interval for the difference of
means between the SimuCom result and each other solver was
computed.

D. Evaluation Results

Table II presents the results accuracy of the most impor-
tant mean value metrics which were available for each of
the case studies. The processing resource utilization metrics
are represented as UResourceContainer ProcessingResourceType.
RScenarioName stands for the response time of a scenario,
XScenarioName for the throughput. For each metric, the
average relative difference of the results for each of the
considered solvers compared to the results of the SimuCom
reference solver are shown. Between the different workloads
of a case study, only the worst case results are presented.
If the difference between the solver mean and the reference
mean was not statistically significant at a 95% confidence
level, ≈ 0% is shown. Where no results are included, no
meaningful results could be provided by the respective solver.
Table III shows the average simulation runtimes in seconds
for simulation-based solvers.

In this paper, the results for a single logical simulation
runtime chosen for each case study are presented. The results
for two additional (shorter) logical simulation times can be
found in [9]. However, apart from slightly higher variation in
the results, there were no significant differences between the
different runtimes.

Evaluating the SimQPN Solver, for both processing resource
utilizations and usage scenario throughputs, it showed predic-
tions within 2% of the SimuCom results. Mean response time
predictions showed a deviation of under 12%. The analysis
overhead compared to SimuCom was reduced by over 90% in
most cases, and over 50% for the CoCoME case study.

LQSim could only handle the ABB Demonstrator case
study, where it showed results very close to LQNS for all

TABLE II
RESULTS ACCURACY

SimQPN LQNS LQSIM
Metric relDiff relDiff relDiff
SPECjE (A)
UWLS CPU 0.153% - -
UDBS CPU ≈ 0% - -
RScenario 1.46% - -
SPECjE (B)
UWLS CPU -0.142% - -
UDBS CPU ≈ 0% - -
RScenario -0.294% - -
ABB
UAS CPU -0.224% -0.0223% ≈ 0%
UAS CPU -0.113% ≈ 0% ≈ 0%
RScenarioA 9.16% 71.2% 77.8%
RScenarioB 1.06% 28.7% 29.3%
MediaStore
UAS CPU 1.31% 1.34% -
UDB CPU -0.73% -0.599% -
RScenario -1.12% -10.3% -
XScenario 1.14% 8.05% -
CoCoME
UAS CPU ≈ 0% 0.176% -
RScenario ≈ 0% -2.41% -
XScenario ≈ 0% 0.182% -
BRS
UServer1 CPU ≈ 0% -0.00759% -
UServer2 CPU ≈ 0% -0.00634% -
UServer3 CPU ≈ 0% ≈ 0% -
UServer4 CPU ≈ 0% ≈ 0% -
RScenario 11.2% 45.7% -

TABLE III
RESULTS AVERAGE ANALYSIS TIMES (S)

Model SimuCom SimQPN LQNS LQSIM
SPECjE (A) 395.67 16.62 - -
SPECjE (B) 616.50 30.83 - -
ABB 125.01 9.77 0.82 5.17
MediaStore 8.88 2.02 0.36 -
CoCoME 4931 2387 5.73 -
BRS 183 16.3 9.32 -

metrics. As LQNS runs much faster than LQSim and could
handle all but the SPECjEnterprise2010 case study, only
LQNS is discussed here. For processing resource utilizations,
LQNS stayed within 2% of the SimuCom results. For usage
scenario throughputs, it stayed within 9%. For mean response
times, however, errors of over 70% were observed. LQNS,
being an analytical method, generally runs about an order of
magnitude faster than the SimQPN Solver.



In terms of the results stability, the solvers mostly showed
comparable results. The coefficient of variation (CoV) re-
mained under 2% for processing resource utilizations and
throughputs. With the exeption of one ABB variant, in which
the CoV for the mean response time reached 5.14%, it did not
exceed 2%. For the analysis times, the CoV remained under
10%.

Overall, the SimQPN Solver provided very satisfactory
results for all models and metrics. This means that results were
obtained much faster while sacrificing only little accuracy at
the same time. This shows, at least in the context of the nu-
merous case studies, that the abstractions of the transformation
are well-chosen and that QPNs and the available tools are
well-suited for automated performance analysis of component-
based software architecture models.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a mapping from PCM to QPNs, a
solver tool implementing the mapping, and a detailed analysis
of the accuracy and overhead of the solver compared to the
existing solvers: SimuCom, LQNS and LQSim. The mapping
was evaluated in the context of five representative case studies.
The new SimQPN Solver predicted all mean value metrics
with high accuracy. At the same time, the analysis overhead
compared to SimuCom could be significantly reduced, in many
cases by an order of magnitude. The LQN-based solvers
showed significantly less accurate results regarding mean
response times.

The use of PCM in more complex and new arising contexts
will likely lead to scenarios that use many more of the PCM
features, especially PCM stochastic expressions of higher
complexity. To adequately support these upcoming scenarios,
the limitations regarding the mapping of arbitrary stochastic
expressions to common probability distributions need to be
understood in more depth. Another topic requiring more re-
search is the computation of response time distributions using
token identities in QPNs [9].

With the presented approach, performance predictions for
component-based software systems have become more flex-
ible. More scenarios can be evaluated at a high level of
accuracy in less time. Decisions involving the replacement of a
component, or involving changes in the assembly, deployment
and usage behavior of an adequately modeled system, can be
made faster and can be supported by more information.

REFERENCES

[1] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” J. Syst. Softw., vol. 82,
no. 1, pp. 3–22, 2009.

[2] H. Koziolek and R. Reussner, “A model transformation from the palladio
component model to layered queueing networks,” in Proc. on SIPEW
’08, 2008, pp. 58–78.

[3] H. Koziolek, “Parameter dependencies for reusable performance spec-
ifications of software components,” Ph.D. dissertation, University of
Karlsruhe (TH), 2008.

[4] S. Kounev, “Performance modeling and evaluation of distributed
component-based systems using queueing petri nets,” IEEE Trans. Softw.
Eng., vol. 32, no. 7, pp. 486–502, 2006.

[5] S. Kounev and A. Buchmann, “Performance modelling of distributed
e-business applications using queuing petri nets,” in Proc. on ISPASS
’03, 2003, pp. 143–155.

[6] ——, “Simqpn–a tool and methodology for analyzing queueing petri net
models by means of simulation,” Performance Evaluation, vol. 63, no.
4-5, pp. 364–394, 2006.

[7] S. Kounev and C. Dutz, “QPME - A Performance Modeling Tool Based
on Queueing Petri Nets,” ACM SIGMETRICS Performance Evaluation
Review, vol. 36, no. 4, pp. 46–51, 2009.

[8] F. Bause, P. Buchholz, and P. Kemper, “QPN-tool for the specification
and analysis of hierarchically combined queueing petri nets,” in Proc.
on MMB ’95, 1995, pp. 224–238.

[9] P. Meier, “Automated Transformation of Palladio Component Models to
Queueing Petri Nets,” Master’s thesis, Karlsruhe Institute of Technology
(KIT), 2010.

[10] H. Koziolek, “Performance evaluation of component-based software
systems: A survey,” Performance Evaluation, 2009.

[11] A. D. Marco and R. Mirandola, “Model transformation in software
performance engineering,” in QoSA, 2006.

[12] F. Heimburger, “Performance Modelling of Java EE Applications using
LQNs and QPNs,” Master’s thesis, TU Darmstadt, 2007.

[13] J. Henss, “Performance prediction for highly distributed systems,” in
Proc. on WCOP ’10, vol. 2010-14. Karlsruhe Institue of Technology,
2010, pp. 39–46.

[14] Unified Modeling Language (UML) Specification 2.1.2, OMG Std., 2007.
[15] UML Profile For Schedulability, Perf., And Time 1.1, OMG Std., 2005.
[16] UML Profile for Modeling and Analysis of Real-Time and Embedded

Systems Beta 2, OMG Std., 2008.
[17] A. D. Marco and P. Inverardi, “Compositional generation of software

architecture performance QN models,” Software Architecture, Working
IEEE/IFIP Conf. on, vol. 0, p. 37, 2004.

[18] M. Marzolla and S. Balsamo, “UML-PSI: The UML performance
simulator,” Quantitative Eval. of Syst., vol. 0, pp. 340–341, 2004.

[19] M. Tribastone and S. Gilmore, “Automatic extraction of PEPA perfor-
mance models from UML activity diagrams annotated with the MARTE
profile,” in Proc. on WOSP ’08, 2008.

[20] A. Bertolino and R. Mirandola, “CB-SPE tool: Putting component-based
performance engineering into practice,” in Component-Based Software
Engineering, ser. LNCS, 2004, vol. 3054, pp. 233–248.

[21] G. P. Gu and D. C. Petriu, “XSLT transformation from UML models to
LQN performance models,” in Proc. on WOSP ’02, 2002, pp. 227–234.

[22] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML sequence
diagrams and statecharts to analysable petri net models,” in Proc. on
WOSP ’02, 2002, pp. 35–45.

[23] H. Gomaa and D. Menasc, “Performance engineering of component-
based distributed software systems,” in Performance Engineering, ser.
Lecture Notes in Computer Science, 2001, vol. 2047, pp. 40–55.

[24] X. Wu and M. Woodside, “Performance modeling from software com-
ponents,” SIGSOFT Softw. E. Notes, vol. 29, no. 1, pp. 290–301, 2004.

[25] F. Bause and P. S. Kritzinger, Stochastic Petri Nets – An Introduction
to the Theory, 2nd ed. Vieweg Verlag, 2002.

[26] F. Bause, “Queueing Petri Nets – a formalism for the combined
qualitative and quantitative analysis of systems,” in Proc. on Petri Nets
and Performance Models, 1993, pp. 14–23.

[27] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing
Networks and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications, 2nd ed. J. Wiley & Sons, 2006.

[28] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifica-
tion 1.0, OMG Std., 2008.

[29] H. Perros, Computer simulation techniques – the definitive introduc-
tion. http://www.csc.ncsu.edu/faculty/perros/simulation.pdf: E-Book,
NC State University, 2003.

[30] F. Brosig, S. Kounev, and K. Krogmann, “Automated extraction of
palladio component models from running enterprise java applications,”
in P. on VALUETOOLS ’09, 2009, pp. 1–10.

[31] Q-ImPrESS project results. http://www.q-
impress.eu/wordpress/documentation/deliverables/.

[32] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner,
K. Krogmann, H. Koziolek, R. Mirandola, B. Hummel, M. Meisinger,
and C. Pfaller, The Common Component Modeling Example, ser. Lecture
Notes in Computer Science, 2008, vol. 5153, pp. 16–53.

[33] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner, “Automatically
improve software models for performance, reliability and cost using
genetic algorithms,” in Proc. on WOSP/SIPEW ’10, 2010, pp. 105–116.


