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ABSTRACT
Building a distributed control application is currently per-
formed ad hoc: it consists of building each application part
as an independent program and connecting them through
a communication layer. With the pervasiveness of multi-
core chips, future generations of controllers will include a
variable number of cores and hosts, making such a static de-
velopment process obsolete. To solve this issue, the FASA
component framework for distributed control systems com-
putes a deployment of the components onto the available
computation resources (cores and hosts) and a static sched-
ule for their execution. Depending on the given deployment,
FASA chooses a suitable communication protocol for each
pair of connected components. This makes FASA a scalable
software architecture for heterogeneous distributed control
systems. This article presents the framework, as well as
a validation of FASA using a case study of a distributed
control system comprising both multi-core and single-core
processors.

1. INTRODUCTION
Control applications are programs that handle industrial
systems. Such applications have strong constraints on their
behavior to work in real-time. In industry, such applica-
tions are typically coded in an ad-hoc fashion to ensure that
resources are used optimally. Such applications are always
pushed to their limits to provide more functionalities and to

handle the ever growing amount of information to process.

The need for more computing power inevitably leads ap-
plication developers to consider distributed control systems
(DCS) and multicore systems. Writing monolithical pro-
grams is then hardly an option and more structured models
need to be used to handle the additional complexity of run-
ning the application over a network of multicore systems.
This however should not come at the expense of a high run-
time overhead and should ease the deployment of the system
over the available hardware.

The present article details the FASA component infrastruc-
ture for the building of distributed real-time systems. Con-
trol application developers code FASA components as regu-
lar C++ classes. The FASA framework then automatically
compiles the code and computes in a static way the initial
deployment plan, the schedule, and the best communication
protocol to use between components depending on their rel-
ative deployment. These abstraction mechanisms separate
application development and application deployment. Fur-
thermore, application distribution is completely transparent
for the application developer. Components of the same ap-
plication can be executed on a single CPU core, on multiple
cores, or distributed over several physical controllers. This
makes FASA flexible and scalable. The system then runs
and meets real-time requirements calculated statically. It
can also be updated at runtime by loading new versions of
the components and deploying them on the fly, using pre-
calculated new scheduling [20].

We validate our approach using a DCS case-study with multi-
core and single-core processors. Our experiments reports the
execution times reached using FASA.

The contributions of this article are: 1) FASA uses a con-
straint solver for computing a deployment and schedule for



real-time control applications and arbitrary control system
topologies. 2) FASA provides different mechanisms for inter-
component communication and chooses the most efficient
one for each pair of communicating components. 3) It shows
that this can be achieved in a reliable and efficient way.

This article is structured as follows. Section 2 presents our
running example. Section 3 explains the general FASA ap-
proach. Section 4 presents the implementation. Section 5
evaluates the FASA approach on a real-world example. Sec-
tion 6 details the related work. We eventually conclude in
Section 7 and give an outlook on future work.

2. MOTIVATING EXAMPLE
To make it more concrete, this article uses a cascaded control
loop, which controls a physical process, as a running exam-
ple. In this example, the process comprises a valve and two
sensors measuring temperature and pressure. The valve is
used to control the pressure and temperature read by the
sensors in a tank. This application is a typical example of
a feedback loop in industrial control systems. We illustrate
the application in Figure 1.

This application is executed cyclically at a given control
frequency. Typical control frequencies for software-based
control systems range between 1 kHz and 1 Hz (with corre-
sponding cycle durations of 1 ms to 1 s).

In the example, new values for the three input variables
(Temperature, Pressure, and Track) are acquired at the begin-
ning of each cycle. The input values of type RealIO are pro-
cessed by components of type AnalogInCC, which apply low-
pass filters to the input signal. The actual control algorithm
is implemented by two instances of proportional-integral-
derivative (PID) control components [1], which compute their
output based on the delta between a given set point and
some desired value. The output of the second PID com-
ponent is fed into an AnalogOutCC component, which pre-
pares a value for output to some I/O interface and allows
for plugging-in of error handlers.

The output of the application triggers a valve to open or
close. Based on the new setting of the valve, the temperature
and/or the pressure of the physical process change. In the

subsequent execution cycle, new sensor values are acquired
and an updated setting for the valve is computed. A typical
plant contains numerous such control applications to control
and synchronize actuators such as valves, pumps, conveyor
belts, grapplers, or robots.

3. APPROACH
This section presents the different aspects of our approach
based on the running example from Section 2.

3.1 Component Framework
The FASA component framework was first introduced [15]
focusing on its dynamic updating features. FASA provides a
framework to develop, build and run cyclic control applica-
tions defined as a set of components. Components consists
of one of more blocks, which are the basic units of execu-
tion. Blocks can have ports to receive and send data objects
from/to other blocks. Channels are used to connect an out-
put port of a block to an input port of another block. Chan-
nels are one-to-one only, meaning that at most one block
can write to it, and at most one block can read from it. All
channels are unidirectional. In conjunction with the linear-
ity of blocks this implies that all systems constructed from
channels and blocks can be described by a directed graph
with blocks as nodes and channels as edges. Channels are
responsible for data transport only. They are stateless and
do not check the data they transmit. This is the respon-
sibility of the block that reads from a channel. The data
type of both input port and output port must be same. The
framework allows a block to check whether or not a port is
connected through a channel. If connected through a chan-
nel, the framework ensures that the data object is written
to the input port of the target block before the execution of
the target block begins.

In the example in Figure 1, all two-dimensional entities such
as AnalogInCC are blocks. The input ports of each block are
shown on the left side (e.g., AnalogInput) and the output
ports are shown on the right side of each block (e.g., Out).
Channels are shown as black lines between two ports. Each
block is wrapped by a component of the same name. In
order to avoid cluttering, components are not displayed in
Figure 1.
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Figure 1: Running example: a cascaded control loop.



3.2 Hosts and Periods
An application can be deployed on one or more hosts. Each
FASA host runs one instance of the FASA kernel. Such host
is either a computer running a real-time operating system
or one of its cores. In a complex system with many hosts
running several applications, the blocks of more than one
application may run on the same host and the blocks of one
application may be distributed across multiple hosts. To
achieve this, schedules for each host must be computed based
on the real-time requirements of each application. Each of
these concepts are described in this subsection.

FASA requires the operating system to support fixed-priority
preemptive scheduling. The FASA process runs at the high-
est priority as a user level process. FASA then executes
blocks in an predetermined order determined by a static
schedule. Once all the blocks in the schedule complete exe-
cution, the execution is repeated. This cycle continues until
the FASA process is stopped or a new schedule is provided.
FASA uses a fixed time period to run a cycle. If all the blocks
complete execution before the cycle time is over, then the
scheduler sleeps until the period ends. Figure 2 illustrates
periods on a FASA host. Two consecutive execution cycles
are shown with period t. Please note that the actual execu-
tion time of a block may vary during cycles (within limits)
but the next execution sequence starts exactly at t units
after its last start.

b1 b2 b3 b1 b2 b3

0 t 2t

Figure 2: Period on a FASA host.

Blocks on different hosts communicate transparently either
through message queues — for hosts on different cores of the
same computer – or through network proxies — for hosts on
different computers.

3.3 Computing Deployment and Schedule
Deploying a set of FASA applications implies first solving
a distributed scheduling problem. This problem is solved
offline (i.e., before the system is started) and computes a
static schedule for each FASA host. The scheduling problem
consists of two parts: (1) Finding an allocation of compo-
nents to hosts, and (2) assigning time intervals to function
blocks. The allocation must take into account the memory
requirements of the components and the available memory
on the respective hosts. The time intervals must be non-
overlapping for blocks which are part of components mapped
to the same host. The length of a time interval is always
equal to the worst-case execution time (WCET) of a block:
it is assumed that blocks always require their WCET. This
leads to non-optimal usage of the available time in each cy-
cle, but significantly reduces jitter.

For illustration, we use a system with three hosts and five
applications. Host 1 has a period of t, Host 2 has a period
of 2t and the Host 3 has a period of 4t. The system has five
applications defined as A with three blocks {a1,a2,a3} at a

cycle time t, B={b1, b2, b3} at 2t, C={c1, c2, c3, c4} at 4t,
D={d1, d2, d3} at 2t, and E={e1, e2, e3} at 4t. Because of
I/O constraints, Block b3 (or, to be precise, its component)
and Block c4 must be deployed on Host 1 whereas Block c3
must run on Host 2.

Figure 3 illustrates an example deployment and schedule. In
this example, all blocks of Application A are scheduled on
Host 1. Since all the blocks of B cannot be scheduled on Host
1 (there is not enough time left in the cycle after scheduling
all the A blocks), b1 and b2 are scheduled on Host 2 and b3
is scheduled on Host 1. Application D can be scheduled on
either Host 1 or Host 2. Since the worst case execution times
of its blocks are too large to be scheduled on Host 1, they are
scheduled on Host 2. Since there is not enough time left in
the periods of both Host 1 and Host 2 after scheduling other
applications, c1 and c2 are scheduled on Host 3. Block c3 is
scheduled on Host 2 (repeating every two cycles of the host)
and c4 is scheduled on Host 1 repeating every four cycles.
The blocks of Application E are all scheduled on Host 3.

As explained in Section 3.2, different mechanisms for chan-
nel communication have to be used depending on how the
applications are distributed. Since channels are written to
at the end of the execution of a block and read from at
the beginning, the execution times for the required chan-
nel mechanism has to be added to the WCET of the block.
In other words, the actual value of the WCET for a block
depends on the allocation of components to hosts.

The distributed scheduling problem in FASA is close to
a typical job shop problem, which makes it NP-hard and
impractical to solve manually even on medium-sized sys-
tems [12]. An automated solution is required to make FASA
scalable. The FASA implementation uses a constraint pro-
gramming (CP) approach to compute a system schedule
(Section 4.3).

4. IMPLEMENTATION
This section presents the implementation of the abstraction
mechanisms available to programmers, their runtime im-
plementation, and what input the constraint programming
model.

4.1 Abstractions for Component Developers
FASA provides a high level of abstraction for component
developers by hiding all the details of the actual communi-
cation between components. A component developer only
needs to implement the application blocks.

FASA is implemented in C++ and uses regular object-oriented
constructs. Most methods are inherited from the superclass
representing blocks and developers only need to override two
methods to create a fully functional application block:

construct() : Contains the initializer of the block and is
called automatically at block instantiation. Ports and
class members are initialized in this function.

run() : This function contains the code for the function-
ality of the block. It is called every time the block is
executed, usually once in each cycle.
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Figure 3: An exemplary distribution and schedule.

Other methods can also be overridden (destructors, han-
dle incoming exceptions...) but do not need to be.

As mentioned in Section 3.1, communication between blocks
is carried out through ports. Each port provides a pointer
to a data area, from/to which a block can read/write data.
For each input or output data, the developer needs to create
a typed in or out port (for example, an output port of type
double), and register it in the construct() function. Read and
write operations are performed using the overloaded opera-
tor ’*’. This operator is used both for reading and writing
values as illustrated in the code snippet in Listing 1.

{
In_Port_Typed <double> AnalogInput;
Out_Port_Typed <double> out;

void run ()
{

//Read the input from the data area
//pointed to by ’AnalogInput’ input port
double in = *AnalogInput;

//Write the output to the data area
//pointed to by ’out’ output port
if (in > 0)

*out = in * 1.5;
else

*out = 0;
}

void construct ()
{
ISOGRAFT_REGISTER_IN_PORT (AnalogInput);
ISOGRAFT_REGISTER_OUT_PORT (out);

}
};

Listing 1: Example code of a block.

How the data is sent or received is hidden from the devel-
oper, and encapsulated by FASA channels. For the devel-
oper, a FASA channel is only a black box operating between
two blocks to send data from the sender to the receiver. In
the next section we present the main implementations of
channels.

4.2 Channel Implementation
Two blocks connected through a channel can either be exe-
cuted on the same core, on different cores of the same CPU,
or on two different hosts. For each channel in an application,
the appropriate communication mechanism is determined in
the deployment process. This is completely transparent to
the application developer. Depending on their relative loca-
tion, FASA provides three different mechanisms for channel
communication.

4.2.1 Blocks on the same core
Blocks residing in the same address space on the same phys-
ical host communicate with each other via shared memory.
Communication between two blocks is established by making
them have pointers to the same memory area. The sender
block writes its output data to a memory block, and the
receiver block reads its input data from the same memory
block. Since FASA channels are unidirectional, only one
block has write access to a given memory area, while the
corresponding block only has read access (when calling ’*’,
both writing on output channels and reading on input chan-
nels are forbidden). Synchronization is provided through
the schedule which ensures that no read is performed before
the correspnding write has been performed. Communication
with shared memory is depicted in Figure 5, where read and
write operations are carried out by using the overloaded op-
erator ’*’ as shown in Listing 1 .

4.2.2 Blocks on different cores
Message queues are used to send data between blocks run-
ning on the same physical host, but on different cores. As
shown in Section 3.2, each of the individual cores run an
instance of the kernel and components that communicate
with each other can reside in different processes. Logically,
this is the same as running the application on multiple ma-
chines. Since the application is running on the same host,
inter-process communication mechanisms can be used to
perform communication between the kernel instances run-
ning on different cores. Our implementation uses message
queues. While shared memory could also be used, using
message queues also provides an additional synchronization
mechanism between blocks.

As is the case for shared memory mechanism, only one com-
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ponent block has write permissions on a given message queue.
The output written to data area is wrapped into a message
and sent via the message queue. On the receiver side, that
message is received from the queue and stored in the data
area pointed to by the corresponding input port. Commu-
nication through message queues is illustrated in Figure 6.
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Figure 6: Communication via message queue.

FASA’s implementation of message queues uses the System
V message queue mechanism. Our message passing model
employs a mixed use of synchronous and asynchronous mod-
els. Messages are sent asynchronously, meaning that the
sender block execution continues after sending a message
(unless there is not enough space in the queue for send-
ing a new message, which does not occur in normal opera-
tion). Messages are received synchronously: the execution
gets blocked while a message is not available in the message
queue to make sure that the block does not use uninitialized
or stale input data.

4.2.3 Blocks on different physical hosts
FASA provides network proxy components to establish com-
munication between blocks running on different physical hosts
connected through the network. In order to send an output,
a send proxy block is created on the sender side, and a re-
ceive proxy block is created on the receiver side. A send
proxy block has one input port and a receive proxy block
has one output port. The blocks are scheduled to run as
any other block in the application. The send proxy receives

the data to be sent from its input port, and sends it through
TCP or UDP connection to the corresponding receive proxy
block, depicted in Figure 4. Upon receiving the data, the
receive proxy outputs it to the corresponding application
block. The channels also act as a synchronization mecha-
nism.

In Section 5 we will show how these mechanisms are used
when our example application (Figure 1) is distributed in
different ways and provide detailed performance measure-
ment results.

4.3 Constraint Programming model
We use constraint programming (CP) as a tool for solv-
ing the distributed scheduling problem introduced in Sec-
tion 3.3. This section gives a brief introduction to the CP
model for FASA. It focuses on the scheduling aspects of the
model and does not enter into further details about periph-
eral topics such as memory requirements.

A constraint satisfaction problem (CSP) is a triple 〈X ,D, C〉
where X is a finite set of variables, D is a set of finite do-
mains associated with these variables, and C is a finite set of
constraints. The constraints determine which combinations
of value assignments are acceptable and which are not [19].
All domains are finite sets of integers in the model described
below. Our implementation uses JaCoP [9] as the underly-
ing CP solver.

Allocation variables. As stated in Section 3.2 a FASA
host corresponds to a specific core on a specific physical
host. Let Nm be the number of machines and let Nk be the
(maximum) number of cores on a machine. For each compo-
nent c we create the variables TargetHostc, TargetNodec
and TargetCorec, denoting the FASA host, the physical ma-
chine and the core on which the component will be deployed.

∀c ∈ Components:

TargetHostc ∈ [0, Nm ×Nk − 1]

TargetNodec ∈ [0, Nm − 1]

TargetCorec ∈ [0, Nk − 1]

TargetHostc = TargetCorec + Nk × TargetNodec

(1)

Because of the constraint in Equation 1 an allocation is com-
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Figure 4: Communication via network proxies.



pletely defined by either assigning a value to TargetHostc
or to both TargetNodec and TargetCorec, for each com-
ponent c. This redundancy is useful because in different
situations we will be interested in different aspects of the
allocation. In practice the allocation is often restricted by
a number of constraints: some nodes may have less than
Nk cores or some components cannot be mapped to certain
nodes. These constraints are easy to express in CP using
the variables above.

Scheduling variables. The schedule is defined by assign-
ing a time interval to each block. The simplest way to de-
scribe a time interval in CP is to use three variables to de-
note the starting time, the end time and the duration of each
block. Their domains are initialized such that the described
time interval is within the bounds [0,Period(b)], where Pe-
riod(b) denotes the cycle length of the block. The three
variables also have to fulfill the constraint in Equation 2.

∀b ∈ Blocks:

StartT imeb, EndT imeb, Durationb ∈ [0,Period(b)]3

StartT imeb + Durationb = EndTimeb (2)

Channel variables. It is also necessary to know which chan-
nels require network proxies and which channels use message
queues. Let (s, r) be a channel where s is the sending and
r is the receiving block. For convenience we use s and r to
denote the components to which these blocks belong. For
each channel (s, r) the boolean variables UseNetwork(s,r)
and UseMessage(s,r) are introduced and constrained as fol-
lows:

UseNetwork(s,r) =

(
TargetNodes

?

6= TargetNoder

)
(3)

UseMessage(s,r) = ¬UseNetwork(s,r) ∧(
TargetCores

?

6= TargetCorer

)
(4)

Boolean variables have the initial domain [0, 1]. The con-
straint in Equation 3 assigns the truth value of a logical
constraint, checking for inequality, to a boolean variable.
This constraint is called reification and can be found in most
CP solvers. The logic in Equation 4 expresses that message
queues are only used when the blocks of the channel are
mapped to a different core on the same host.

Proxy counters. The implementation of channels makes
use of several network proxy blocks, which send or receive
data on behalf of the executing block. There are four types
of proxies: Two for sending and receiving data from the
network, and two for sending and receiving messages from
a message queue. Before we can compute the WCET of a
block, we need to know how many proxies of each type will
be used by the block. Notationally, we introduce the set
Proxies = {net send, net recv, msg send, msg recv} con-
taining a constant for each type of proxy. The number of
proxies NumProxiespb can be computed as follows:

∀p ∈ Proxies and ∀b ∈ Blocks

NumProxiesNET SEND
b =

∑
(b,r′)∈Channels

UseNetwork(b,r′)

NumProxiesNET RECV
b =

∑
(s′,b)∈Channels

UseNetwork(s′,b)

NumProxiesMSG SEND
b =

∑
(b,r′)∈Channels

UseMessage(b,r′)

NumProxiesMSG RECV
b =

∑
(s′,b)∈Channels

UseMessage(s′,b)

Block duration. FASA computes the duration of a block
in two steps. First, FASA computes the actual WCET, in-
cluding channel proxies, for a particular block b deployed on
a particular host h by adding all WCETs for proxies to the
WCET of a block. The WCET for each individual block
can be computed using code analysis or experiments. The
WCET (·, ·) predicate below returns the measured WCETs
as constants.

∀b ∈ Blocks and ∀h ∈ Hosts:

DeployedWCETh
b = WCET(b,h) +∑
p′∈Proxies

WCET(p’,h)×NumProxiesp
′

b

In a second step, FASA computes the block duration us-
ing the WCET per host and the host assignment of the
component containing the block. In CP, a partial func-
tion (or lookup table) can be modeled using the Element
constraint. This constraint expresses the relation Result =
Table[Index], where Result and Index are integer variables
and Table is an array of integer variables. When all variables
are fixed, Result is constrained to be equal to the table en-
try chosen by Index. We constrain the variable Durationb

as follows:

∀b ∈ Blocks

Durationb = Element

{
TargetHostb The index
DeployedWCETh

b A table ∀h

Overlap constraint. Finally, the time intervals for blocks
should do not overlap. FASA models this using a single
instance of the Diff2 constraint. In JaCoP, Diff2 is a spe-
cialized constraint for solving overlap problems with objects
(rectangles) in two dimensions. This is an excellent match
to solve the overlap constraints in FASA because blocks
are scheduled in two dimensions: time and host. Formally,
the Diff2 constraint is given a list of N rectangles, where
each rectangle is defined by four integer variables denoting
the length and the origin in both dimensions. A block is
scheduled at regular intervals given by its application pe-
riod. Since a schedule is computed for the hyperperiod, the
same block might occur multiple times during this interval.
Let the CP variable RepeatT imeib denote the start time of
the ith occurence of block b. A block must repeat at a reg-
ular interval to ensure that the schedule is jitter-free. For
every block b and every occurence i of b FASA defines the



rectangle specified in Equation 5.

BlockRectangleib =


RepeatT imeib Origin X
Durationb Length X
TargetHostb Origin Y
1 Length Y

(5)

where b ∈ Blocks, i ∈
[
1,

HyperPeriod

Period(b)

]
and RepeatT imeib = StartT imeb + Period(b)× (i− 1)

In Equation 5, the X-axis is the timeline and the Y-axis the
host selection. The length in Y-direction is 1 such that a
block can only be located on one host. The Diff2 constraint
for FASA is created with a list of all block rectangles given
as argument.

Whereas the focus of this paper is on the scalability of the
FASA runtime framework we were interested in the perfor-
mance of our constraint solving solution because combining
scheduling and deployment problems are notoriously hard
for constraint solvers [12]. To this end we have created
a benchmark system consisting of 20 applications (each of
which comprising seven blocks organized in three compo-
nents) and 10 hosts. Thus, the constraint solver needs to
compute a mapping for 60 components onto 10 hosts and a
schedule for 140 blocks.

The results of these experiments confirm that the problem
we are solving is hard. Independent runs of the constraint
solver on the same input either produce a result within 2–4
seconds or do not terminate within five minutes, which sug-
gests that the initial choice of deployment (which is random
in our approach) is crucial. Future research in this topic
should look into how heuristics for fixing parts of the ini-
tial deployment can keep the schedule computation within
reasonable boundaries.

5. EVALUATION
This section presents experiments which test the scalability
of the FASA architecture. These experiments consist mainly
in deploying the example control application (Figure 1) on
different architectures. We assess the quality of each deploy-
ment by measuring and comparing the individual execution
times of each deployment. For our experiments we use four
different scenarios with different setups of the control sys-
tem:

1× (or single-core): One controller with one single-core
CPU.

2× (or dual-core): One controller with two CPU cores.

4× (or quad-core): One controller with four CPU Cores.

1 + 1 (or distributed): Two controllers with one single-
core CPU. We simulate this scenario using two cores
of the same controller and socket communication.

Depending on the setup, the input for the constraint solver
changes as described in Section 3.3. The output of the con-
straint solver is a deployment of the components of the ap-
plication on the available (physical or virtual) hosts and a
linear schedule for each host.

In single-core (1×), the solver deploys all components on
only one core and computes a schedule in which all com-
ponents are executed linearly. The computed solution is
visualized in Figure 7.

In dual-core (2×), the components are deployed on two cores
of the same CPU. Some components are executed in parallel
as can be seen in Figure 8. For communication between
Temperature PID Controller and PID Controller, a message
queue (cf. Section 3.2) is used. If the control flow on Core 2
reaches PID Controller before Temperature PID Controller on
Core 1 has terminated, the execution on Core 2 is blocked
until a message is received.

In quad-core (4×), the components are deployed on four
cores of the same CPU. Some components are executed in
parallel as can be seen in Figure 9. Whereas this scenario is
conceptually similar to Scenario 2×, it will be used in Sec-
tion 5.1 to measure the benefits versus the overhead caused
by an increased level of parallelism.

When distributed (1 + 1), the components are deployed on
two cores of CPUs in different systems connected through a
network. Some components are executed in parallel. As can
be seen in Figure 10, two additional components—network
proxies for sending and receiving data—are automatically
added to the schedule.

5.1 Performance Measurements and Interpre-
tation

The machine used for the tests contains a QorIQ P4080
processor, which hosts eight PowerPC cores operating at
1.2 GHz. The computer runs under Linux, version 2.6.34.6.
The time required for a FASA channel based on shared mem-
ory, message queues, and network proxies is 7µs, 13µs, and
60µs respectively.

For each scenario we measure the execution time of the
whole application by taking a timestamp at the beginning
and at the end of each execution cycle. The difference be-
tween these timestamps is the execution time of the appli-
cation. Essentially, the execution time of the application
corresponds to the execution time of one kernel instance in
each scenario. For instance, in scenario 2×, the execution
time corresponds to the execution time of the kernel instance
running on core 2 since the two instances run in parallel
and PidCC 2:6 gets blocked if execution reaches there before
TIC55:2 sends the output. Similarly, in scenario 4×, exe-
cution time of the application corresponds to the execution
time of the kernel instance running on core 4 since PidCC 2:6
has to wait for all the inputs from other blocks in order to
continue its execution.

We measured the worst, the best, and mean execution times,
as well as the standard deviation across 300 cycles. We re-
peated this process five times, and the measurement results
in Table 1 reflect the average over five runs.

Table 2 show the mean execution times of individual blocks
in all scenarios. The times shown reflect the average over five
runs across 300 cycles, and consist of the execution times for
receiving inputs from message queues and writing them to
corresponding data areas provided by the in ports, executing
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Figure 7: Scenario 1×: Single-core deployment.
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Figure 8: Scenario 2×: Dual-core deployment.
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Figure 9: Scenario 4×: Quad-core deployment.
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Figure 10: Scenario 1 + 1: Physically distributed deployment.



Table 1: Application execution times in µs.
Scenario Mean Worst Best Std. Deviation
1× 182.79 198.53 175.39 4.39
2× 161.16 190.83 151.97 6.53
4× 149.74 215.82 116.82 24.69
1 + 1 180.30 243.79 167.63 14.04

the block1, and writing the outputs to corresponding mes-
sage queues. If the block has no communication with any
other block via message queue, the execution time essentially
corresponds to the execution time of the run() function. In
Table 2, values are in bold font when they differ from the
base scenario (1×). This explains the difference between the
execution times of some blocks in different scenarios. For in-
stance, PidCC 2:6 receives the inputs via shared memory in
scenario 1×, whereas in scenario 2×, it receives the input
from TIC55:2 block via message queue, which introduces a
small overhead. In scenario 4×, since the kernel instances
on all four cores are run in parallel PidCC 2:6 blocks until
all inputs are available, which explains the longer execution
time.

Table 2: Mean execution times of individual blocks
for 1×, 2×, 4×, and 1 + 1.

Block 1× 2× 4× 1 + 1
T55:1 13.82 13.95 13.82 13.42
TIC55:2 6.22 8.67 8.67 5.10
P55:4 8.65 8.65 13.37 7.55
Multiplier:3 16.86 16.86 21.15 15.15
add(1):5 8.05 8.05 35.45 6.96
PidCC 2:6 8.97 11.32 59.24 8.47
V55:7 5.85 5.70 5.85 4.65
Valve(1) 29.47 31.32 29.47 28.48
Net Rec 16.33
Net Send 27.93

These measurements show that not all possible deployments
are beneficial for the performance. Whereas our example
application benefits from a dual-core deployment (2×) com-
pared to single-core deployment (1×), a deployment on four
cores (4×) introduces a higher communication overhead than
what is saved due to parallel block execution. Several ap-
plications exist where such an overhead is acceptable. For
example, such an overhead is acceptable in a control ap-
plication where the calculation time is much higher than
the induced overhead, or when safety depends on redundant
components executing on different hosts.

6. RELATED WORK
FASA uses a constraint-solving tool to calculate schedules
and assign components to hosts. A large body of knowl-
edge exist on scheduling problems [12]. Real-time schedul-
ing traditionally consists of heuristics-based schedulers [2,
7]. Using a constraint solver for real-time software systems
is more uncommon [16, 5, 6]. The scheduling part of FASA

1This corresponds to executing the run() function of the
block, as explained in Section 4.1.

is however more complex due to the choice of different possi-
ble communication mechanisms introduced by the multicore
and distributed cases.

FASA is a component framework for networked, embedded
systems that is scalable and allows for dynamic updates.
To date, no other component framework contains all these
characteristics. Fore example, RUNES [3] and DREAM
[11] are reconfigurable, component-based middleware sys-
tems. They do not deal with scalability. Another example
is CAPSULE [14], an environment to find an appropriate
parallelism granularity and to map tasks with complex con-
trol and data flow to threads. This approach is on a lower
abstraction level than the FASA framework and does not
support runtime component updates.

Crnkovic et al. [4] provided a classification framework for
software component models. Their survey also includes mul-
tiple component models for embedded systems, which for ex-
ample support interface specifications with resource usages
and deadlines and allow to verify safety and timing prop-
erties. Among the related component models are BlueArX,
CAmkES, COMDES II, CorbaCM, IEC61131, IEC61499,
PECOS, PIN, ProCom, Robocop, Rubus, and SaveCCM.
None of these support dynamic updates.

We distinguish FASA from most similar approaches: CAm-
kES [10] builds on top of the L4 microkernel and strives for
defining operating system functionality (such as file system)
in a component-based way. In contrast, FASA builds on top
of existing real-time operating systems and focuses on the
control applications. PECOS [13] allows the specification
of component-based embedded systems and provides a com-
position language (CoCo). It could be beneficial for FASA
to use CoCo to check composition consistency rules. The
PIN component model [8] allows the specification of timing
properties in order to predict latencies and verify temporal
properties. ProCom [17] enables component specification
on multiple layers, a rich set of connectors, and resource
consumption specifications. None of the component models
provides special concepts or implementation aids to scale
seamlessly on multi-core processors.

Finally, there are special methods to enable running em-
bedded programs in parallel on multi-core processors. For
example, Shih et al. [18] proposed a model-driven multi-
core software development environment for embedded sys-
tems. Based on SysML specifications, developers can gener-
ated pattern-optimized code that can be mapped to different
hardware platforms. However, these approaches usually do
not target networked, component-based systems.

Our own previous work was mainly concerned with FASA’s
component model [15] and FASA’s support for runtime up-
dates [21, 20]. In contract, this paper focuses on FASA’s
support for scalable distributed and multi-core systems.

7. CONCLUSIONS
This article presents FASA, a scalable component framework
for distributed control systems. FASA allows developers to
write control applications with full execution transparency.
FASA automatically deploys a set of control applications on
the control hardware by using a constraint solver approach



to define the schedule and assignment to available hosts.
It supports heterogeneous environments with single-core or
multi-core hosts and automatically choses the best commu-
nication protocol between blocks.

We envision several avenues for future work. An obvious
extension of our approach is the inclusion of optimality con-
straints in the constraint solving approach. Whereas our
current solution computes one or more valid deployments
and schedules, additional constraints could be added that
optimize the solution for criteria such as the execution time
of the whole application or an evenly balanced load across
all available hosts.

In our current solution the schedule for the control system
is calculated based on the worst-case execution time of the
blocks. This has the advantage that jitter is reduced to
a minimum because each block starts at the same time in
every cycle. A disadvantage of this approach is however
that it is pessimistic and time is wasted in each cycle if the
average execution time of the blocks executed is significantly
lower than their worst-case execution time. As a solution the
constraint programming model could be extended to take
into account average-case execution time.
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