
Rapid Performance Modeling by Transforming
Use Case Maps to Palladio Component Models

Christian Vogel?, Heiko Koziolek†, Thomas Goldschmidt†, Erik Burger?
?Software Design & Quality, Karlsruhe Institute of Technology, Germany

E-Mail: sdq@ipd.uka.de,burger@kit.edu
†ABB Corporate Research, Industrial Software Systems Program, Ladenburg, Germany

E-Mail: {heiko.koziolek,thomas.goldschmidt}@de.abb.com

ABSTRACT
Complex information flows in the domain of industrial soft-
ware systems complicate the creation of performance models
to validate the challenging performance requirements. Per-
formance models using annotated UML diagrams or math-
ematical notations are difficult to discuss with stakeholders
from the industrial automation domain, who often have a
limited software engineering background. We introduce a
novel model transformation from Use Case Maps (UCM) to
the Palladio Component Model (PCM), which enables per-
formance modeling based on an intuitive notation for com-
plex information flows. The resulting models can be solved
using existing simulators or analytical solvers. We validated
the correctness of the transformation with three case study
models, and performed a user study. The results showed
a performance prediction deviation of less than 10 percent
compared to a reference model in most cases.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures; D.2.11 [Software Engineer-
ing]: Software Architecture

Keywords
Use case maps; Performance modeling; Palladio Component
Model; Model Transformation; User study

1. INTRODUCTION
Industrial software systems, such as distributed control

systems, follow complex information flows. For example,
they transport sensor data from industrial field devices along
multiple hubs to central servers, from which the data can be
processed by different kinds of operator stations. Designing
software architectures for such systems is hard because of
the complex control flows. In addition, these systems have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

challenging performance requirements for high throughput
and short response times. Thus, early performance modeling
is desired to identify performance bottlenecks and design
efficient information flows.

To enable early performance modeling, numerous math-
ematical notations (e.g., queuing networks, stochastic Petri
nets, stochastic process algebra) and software-related nota-
tions (e.g., annotated UML) have been proposed [1, 29, 12].
These notations usually require expertise from the perfor-
mance domain and their graphical representations are often
difficult to discuss with stakeholders from the domain of in-
dustrial systems. This complicates reasoning on different
alternatives for scalable architectures and leads to a general
reluctance to apply performance modeling in this domain.

The notation of Use Case Maps (UCM) [11] has been
created by analyzing how software systems are typically
sketched in early stages on white boards. UCMs capture
high level software components as well as the control flow
for specific usage scenarios in an intuitive notation. In for-
mer work, Petriu and Woodside [20] proposed a model trans-
formation from UCMs to layered queuing networks (LQN)
to allow performance predictions from UCMs. Their trans-
formation did however not result in a component-based
model, and the implementation is no longer maintained.
Other transformations mapped UML state machines, se-
quence diagrams, or activity diagrams to stochastic Petri
nets [3] or stochastic process algebras [26], but require
UML/MARTE [18] and/or performance expertise to be use-
ful.

The contribution of this paper is UCM2PCM, a model
transformation from UCMs into the Palladio Component
Model (PCM) [2], which enables component-oriented per-
formance modeling as well as multiple solution methods
(e.g., discrete event-based simulation [2], layered queuing
networks [13], queuing Petri nets [15]). The transformation
bridges semantic gaps between the requirements-oriented
UCM notation and the component-oriented PCM notation.
Users can create UCMs using existing graphical editors and
transparently run performance solvers using the PCM tool
chain. Our approach supports a two-staged software perfor-
mance engineering process, where first domain stakeholders
can perform initial modeling based on UCMs and second
performance experts and architects can refine the resulting
PCM models.

In this paper, we evaluate UCM2PCM by transforming
UCMs from three existing software systems into respective
PCM models. We validate the correct bridging of seman-

tical gaps between the notations by comparing UCM-based
simulation results with former purely PCM-based simulation
results. In addition, we validate the usability of the mod-
els and tooling with an empirical user survey, demonstrating
the benefits of the new modeling approach. UCM2PCM [27]
is available for free, allows faster modeling, and requires a
lower effort for model modifications, thus increasing the mo-
tivation to try different design alternatives. UCMs provide
a better overview of systems with complex control flows and
can be easier discussed with domain stakeholders.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly introduces UCM and PCM. The mapping from
UCMs to PCM is described in Section 3. Section 4 presents
the evaluation of the approach, including the results of the
survey. Section 5 differentiates our approach from related
work. The last Section 6 provides conclusions and future
work.

2. FOUNDATIONS
This section provides the backgrounds of this work and

introduces the Use Case Maps language and the Palladio
Component Model.

2.1 Use Case Maps (UCM)
As part of the User Requirements Notation (URN) speci-

fication [11], UCMs are used to visualize how a system works
and what the requirements and causal responsibilities are.
UCMs are behavioral diagrams and use scenarios. This is
similar to UML sequence diagrams, but UCMs remain on a
higher abstraction level. In difference to sequence diagrams,
UCMs don’t show all messages or signals that are exchanged
between components or actors, but only control flows with
importance for the behavior of a system. Skipping the de-
tails enhances the overview and allows the usage of UCM
early in the design process, where not much detail is speci-
fied yet [5].

The design of UCMs is clear and simple and the notation
is intuitive because it is based on sketching a model by hand
on a piece of paper. This shall make UCM easy to learn and
understandable, also for non-experts.

A UCM diagram consists of paths, showing a possible
control flow through a system. In Fig. 1 an example of a
UCM diagram for a software implementing a media store
can be found. Every path has at least one Start- and one
EndPoint. Along each path so called Responsibilities de-
scribe the actions that take place on a high abstraction level.
Responsibilities are symbolized with a cross. Alterna-
tively, Stubs can be used. A Stub is displayed as a rhombus
and represents an own UCM diagram that describes in more
details what happens inside.

To model the control flow, forks can be added to a path.
An AndFork splits a path into two branches, which are ex-
ecuted in parallel. An OrFork offers alternative branches.
To decide, which branch is taken, conditions or probabilities
can be specified. The OrJoin joins branches. Additionally,
an AndJoin contains a barrier, which continues the control
flow only when all incoming branches finished executing.

UCMs also support modeling of components. With com-
ponents, the entities involved in a scenario can be specified
and an architectural structure of a system can be defined.
Components in UCMs can also be nested. In a diagram,
components are represented by boxes. All elements inside
the box are bound to that component. Unlike in the PCM,

there are no interface definitions for components. Their ex-
ternal behavior can only be derived by the paths entering or
exiting the component. To model different design alterna-
tives with UCM, it is often sufficient to keep the paths and
only replace or rearrange the components of a model.

2.2 Palladio Component Model (PCM)
The PCM [2] is a domain-specific tool for component

based software engineering (CBSE) that is based on the
Eclipse Modeling Framework (EMF). Besides other analyses
it supports performance prediction for software models [24].
It offers the comparison and selection of several design alter-
natives of a software system already in the modeling state.
The PCM has recently been applied in a number of indus-
trial case studies [14, 8, 23].

(a) PCM System of the Media Store

(b) Example PCM SEFF of the Media Store’s WebGUI Down-
load Service

(c) PCM Allocation of the Media Store

Figure 2: Media Store PCM Example

A PCM model consists of four parts that cover different
aspects of the performance model:

• Repository: The repository contains the component
types & interfaces of the system. There are Basic-

and CompositeComponents. BasicComponents contain
so called ServiceEffectSpecification (SEFF) that
abstractly describe performance-relevant behavior of
a single component service. CompositeComponents

are composed from inner components. A SEFF con-
tains actions that determine the control flow inside
the component. For example, Fig. 2b depicts a SEFF

for the MediaStore’s WebGUI service ’download’. Ev-
ery SEFF starts with a StartAction and ends with
an EndAction. InternalActions represent computa-
tions or other resource consumption inside a compo-
nent and thus contain execution time annotations that
are later transformed into service demands and used

Figure 1: UCM of the Media Store components and inner control flow. The usage model is another UCM belonging to the
model, which is omitted here for space reasons.

by the performance simulator. ExternalCallActions

can be used to call external services that are required.
Fork-, Branch- and LoopActions are used to manage
the control flow. Components can provide or require
interfaces and are bound to them via Provided- or
RequiredRoles.

• System: A system is a composite structure and
shows how the components in a software system are
connected (cf. example in Fig. 2a). It consists
of AssemblyContexts that represent instances of the
components in the repository and thus having the same
Provided- or RequiredRoles. If the Provided- and
RequiredRole of two AssemblyContexts match, they
can be connected by an AssemblyConnector. Like ev-
ery composite structure, a system itself can also have
Provided- or RequiredRoles. A SystemProvidedRole

represents services that the software system provides
to its environment. With a ProvidedDelegation-

Connector the SystemProvidedRole is connected to
the ProvidedRole of the inner AssemblyContext

that offers the provided service. If an Assembly-

Context needs to call a service outside the system, its
RequiredRole is connected to the SystemRequired-

Role, using a RequiredDelegationConnector. By
that, the request for a service is forwarded to the sys-
tem boundaries.

• Allocation: The allocation defines, how component
instances (i.e., AssemblyContexts) are deployed on
hardware resources (cf. example in Fig. 2c). The
mapping relation for a component instance is called
AllocationContext. The hardware resources are
stored in a ResourceEnvironment. Each hardware re-
source can have different processing entities, such as
CPU or HDD.

• Usage Model: In a usage model, several Usage-

Scenarios can be created, each describing an expected
usage of the system, by a user. For each Usage-

Scenario a workload (i.e., open or closed) and a be-
havior can be defined. This behavior consists of a

set of EntryLevelSystemCalls that refer to services
in SystemProvidedRoles. In this set, also sequences,
branches and loops can be used.

The PCM Workbench provides multiple tools to conduct
the performance predictions. The tool PCM Solver can be
used to calculate the execution times and the related prob-
abilities of a workload. The second tool, SimuBench allows
simulating different number of runs for a workload. For
every call in the model, the execution times can be simu-
lated and visualized in several diagrams. Additionally, dia-
grams that show the utilization of hardware resources, such
as CPUs or hard disks, can be created.

3. UCM TO PCM MAPPING
This section describes how UCM elements or constructs

are translated into corresponding PCM elements or con-
structs, which performance relevant annotations to UCM el-
ements are specified and what limitations exist for the trans-
formation. The main idea of the transformation is to map
UCM components to PCM components and then to segment
each UCM path per component to create PCM SEFFs.

3.1 Paths
Every path in a UCM corresponds with a System-

ProvidedRole, as both represent a function that the soft-
ware system provides to its environment (Fig. 3). In con-
trast to standard UCMs, UCM paths to be transformed into
PCM need exactly one StartPoint and one EndPoint. Dif-
ferent paths may not join. Otherwise, the mapping could
be ambiguous in the UCM2PCM tool. To translate a path
into PCM, the UCM2PCM transformation follows a path
node by node. In the following, the mapping for the most
important UCM constructs is presented.

Figure 3: UCM2PCM Mappings - UCM Map

3.2 Hardware resources
To be able to predict the performance of a component,

it has to be mapped to an active resource. This is done in
PCM with an AllocationContext. In UCMs, there is no
corresponding construct. Therefore, a performance annota-
tion in the meta data of the UCM component is needed.
Here, the allocation to a hardware resource can be specified
as a key-value pair as shown in Fig. 4. If the allocation meta
data is missing, then the component is allocated to a default
hardware resource.

If a PCM hardware resource is not yet present from for-
mer transformation steps, the transformation automatically
creates it first. All hardware resources are created with a
default CPU and a default HDD as processing entities, no
parameters can be specified here. This is a deliberate limita-
tion to keep modeling with the UCM2PCM tool simple and
allow for rapid performance modeling. However, if servers
with custom CPU or HDD are needed, then this can be
defined later in PCM after the transformation as manual
refinement step.

3.3 Components
In a UCM, components can be reused in different dia-

grams. That is why the component definitions do not ap-
pear in a UCM diagram. The boxes in a diagram only are
references to UCM components defined elsewhere. This is
the same concept as in PCM, where a component of the
PCM repository can be reused in several AssemblyContexts
in a software system. In the transformation therefore, for
every reference an own AssemblyContext will be created.
If the corresponding component already exists in the PCM
repository, it will be used; otherwise a new component for
that AssemblyContext will be created.

In UCM, all component references that are based on the
same component share the same name and meta data. These
attributes are stored in the component and not in its ref-
erences. This means that the corresponding Assembly-

Contexts, created by the transformation, also share the
same name and are allocated on the same hardware resource.
If two AssemblyContexts, based on the same component,
should be named differently or they should be allocated on
different hardware resources, this has be to done manually in
the PCM model resulting from the UCM2PCM transforma-
tion. We decided that this limitation is acceptable, because
to solve this problem the UCM meta model would have to
be changed.

Fig. 4 shows, how a normal UCM component reference is
translated into a BasicComponent. Additionally, a new SEFF

with a StartAction will be created for the component, to
follow the path inside the component. If the UCM compo-
nent reference contains a Stub, then a CompositeComponent

Figure 4: UCM2PCM Mappings - Standard Component

will be created instead in the PCM repository. This can be
seen in Fig. 5.

3.4 Composite Components
Stubs can be used to create layered UCMs. They con-

tain a complete UCM map. Every path leading inside or
outside a Stub can be connected to a Start- or EndPoint

inside the Stub. CompositeComponents have a similar func-
tion in PCM. They are composed from inner components
and can be seen as a kind of subsystem. Therefore, a di-
rect mapping between a UCM component containing a Stub

and a CompositeComponent can be defined. A Composite-

Component itself may not contain any actions. This is only
possible for the inner components. Therefore, in a UCM
component containing a Stub, also no additional nodes are
allowed; otherwise, no mapping is possible and the compo-
nent can’t be translated into PCM.

For all components inside a Stub, the allocation meta data
will be ignored, because all components inside a Composite-

Component in PCM are defined to be allocated on the same
hardware resource as the CompositeComponent.

In PCM, actions can only occur inside components, while
in UCMs there are no dependencies between nodes and com-
ponents. To be able to map a UCM path into PCM, the
UCM2PCM transformation ignores all nodes or constructs,
which are located outside a component, except for Respon-

sibilities that are mapped as SystemRequiredCalls.
By moving a node inside or outside a component, it can

quickly be included or excluded from the transformation.
This can even accelerate the process of testing and convert-
ing different design alternatives into PCM.

Figure 5: UCM2PCM Mappings - Stub Component

3.5 Responsibilities and Resource Demands
For UCM Responsibilities, there is a 1:1 mapping with

InternalActions, where resources are consumed. There-
fore, resource demands performance annotations have to be
specified for Responsibilities. The UCM2PCM tool sup-
ports the CPU & HDD resources of PCM. They can be
entered as key-value pairs in the meta data of the Respon-

sibilities as shown in Fig. 6. If no resource demand is
specified, a default CPU demand will be used.

In PCM models, it can be necessary to model a control
flow that enters a component without any InternalAction

executed. For example if a component forwards a call to
another component, instead of processing it internally. In
UCMs, this behavior is not possible. If a new component is

Figure 6: UCM2PCM Mappings - Responsibilities

entered, there always has to be a node inside the component,
otherwise it could not be determined if the component has
been entered. As a workaround, a Responsibility with an
explicit CPU resource demand of zero can be used for this
purpose. The transformation skips all Responsibilities

with CPU resource demand of zero.

3.6 Calls
Component calls to other components have no dedicated

representation in a UCM but they implicitly occur when the
path enters or leaves a component. In UCMs, a call can be
determined, by checking if the surrounding component of a
node has changed compared to the predecessor node.

PCM implements the concept of interfaces as a contract
between different components. Therefore, an interface has
to be created for every call in a UCM, by the transformation.
In general, a RequiredRole targeting this interface has to be
created for the caller, and a ProvidedRole has to be created
for the callee. An example of this is shown in Fig. 7.

Figure 7: UCM2PCM Mappings - Call Interfaces

The transformation can distinguish different types of calls,
depending on whether a component has been entered, been
changed, been left or if a Stub has been entered or left. The
following enumeration describes the different calls in more
detail:

1. SystemProvidedCall: Here, the previous node is a
StartPoint and the path has entered a new UCM com-
ponent as depicted in Fig. 8. In this case, for the new
component & AssemblyContext in PCM, a Provided-

Role corresponding to the call is created. In addi-
tion the ProvidedRole will be cloned and added as
a SystemProvidedRole to the AssemblyContexts par-
ent container. This container is the PCM system, or a
CompositeComponent, if the path resides inside a Stub.
Then the two ProvidedRoles will be connected by a
ProvidedDelegationConnector.

2. ComponentCall: A ComponentCall occurs when a
UCM path crosses the borders between two UCM
components. In this case the component of the cur-
rent node is different than the component of its pre-
decessor node, as shown in Fig. 9. For the compo-
nent, which is left a RequiredRole, for the component,
which is entered a ProvidedRole, corresponding to the

Figure 8: UCM2PCM Mappings - SystemProvidedCall

call, are created. Additionally, the transformation cre-
ates an AssemblyConnector that connects the created
Provided- and RequiredRole. Finally, in the SEFF of
the calling component, an ExternalCallAction tar-
geting the new RequiredRole, is added.

Figure 9: UCM2PCM Mappings - ComponentCall

3. SystemRequiredCall: A SystemRequiredCall is
used, if a component needs to be called, which is out-
side the modeled software system. This is depicted
in Fig. 10. In a UCM, such a call can be modeled
by a path leaving a component, followed by a Re-

sponsibility outside of a component. In the trans-
formation, a new RequiredRole for the calling PCM
component is created. In addition, the RequiredRole

is cloned and added to the PCM System as System-

RequiredRole. Finally, both RequiredRoles will be
connected, using a RequiredDelegationConnector. In
the SEFF of the calling component, an ExternalCall-

Action targeting the new RequiredRole is added. In-
side a Stub, a SystemRequiredCall is not possible.
Here, a ParentCall has to be used instead. A System-

RequiredCall is the only case, where a node outside
a component is used to create PCM elements. In all
other cases, nodes outside a component will be ignored
by the UCM2PCM transformation.

Figure 10: UCM2PCM Mappings - SystemRequiredCall

4. ParentCall: A ParentCall is used, inside a Stub,
to call a target, which is outside the Stub. This is
equivalent to a SystemRequiredCall, as in both cases
the target of the call is outside the parent container.
The syntax of a ParentCall is shown in Fig. 11. Inside

a Stub, there has to be an EndPoint inside the calling
component. In the same component there also needs
to be a StartPoint, where the control flow returns
back into the Stub. Both the End- and the StartPoint
need to be connected by a path leaving and entering
the Stub. In the path outside the Stub, any types of
calls can be made. The ParentCall will be translated
similar as the SystemRequiredCall. A RequiredRole

and a SystemRequiredRole are created and connected
via a RequiredDelegationConnector.

Figure 11: UCM2PCM Mappings - ParentCall

In a PCM model, ExternalCallActions model syn-
chronous calls by default. Therefore, all calls in UCMs
are also assumed to be synchronous. If there is an open
call, meaning that the control flow has not yet returned to
the caller, and the calling component is reentered, then the
transformation interprets this as the return of the open call,
rather than a new call. Before the call returns, all calls
opened in the meantime will automatically return and get
closed in the opposite order than they were opened. When
a path reaches an EndPoint and is finished, all calls, which
are still open, are automatically returned and closed.

However, if it is necessary to model components in UCMs
that are calling each other with circular dependency (e.g. in
the callback software pattern), then this could be realized
using a workaround. To avoid a call being interpreted as
return call, an OrFork can be entered before the call. The
call needs to be moved to one branch of the OrFork and its
probability has to be set to ’1’. The probability of the other
branch will be set to ’0’. The left diagram in Fig. 12 shows
the default behavior, while the workaround is shown on the
right side.

Figure 12: UCM2PCM Mappings - Workaround for Com-
ponents Calling Each Other

3.7 Branches
Beside the sequential control flow, UCM2PCM also sup-

ports modeling all branching constructs of the PCM. In
PCM there are Fork-, Branch- and LoopActions. In UCMs,
these actions can be modeled using AndForks, AndJoins, Or-
Forks and OrJoins.

1. A ForkAction in PCM consists of several Forked-

Behaviors that contain subpaths, which are executed
in parallel. In UCM, an AndFork with correspond-
ing AndJoin has the same semantic meaning, therefore
there is a 1:1 mapping of both constructs, depicted in
Fig. 13.

Figure 13: UCM2PCM Mappings - Forks

2. A BranchAction in PCM also splits the control flow,
but, in contrast to a ForkAction, only one of the possi-
ble paths will be followed. In PCM, there are guarded
and probabilistic BranchActions. In guarded Branch-

Actions, the choice of which branch is taken is de-
pends on guard conditions. They are not supported
by the UCM2PCM transformation. For probabilistic
BranchActions, probabilities have to be specified for
each branch. In UCMs, they can be modeled by an
OrFork with corresponding OrJoin, as seen in Fig. 14.
The probabilities of each branch in UCM have to be
specified in the attribute “probability” of the connec-
tion, which connects the OrFork with the first node in
the subpath in the UCM diagram.

Figure 14: UCM2PCM Mappings - Branches

3. LoopActions can only be emulated in UCMs. There
is no special loop construct to model them 1:1. For
the UCM2PCM transformation, a loop is defined as
an OrJoin, directly followed by an OrFork with two
branches. One branch, containing the loop body, leads
back to the OrJoin, the other branch continues the
path after the loop. From the performance point of
view the number of iterations for the loop is relevant.
This information can be specified as performance an-
notation, in the meta data of the OrFork, as shown in
Fig. 15.

In the context of the UCM2PCM transformation, the us-
age of join nodes is affiliated with two problems. Firstly, the
fork and the corresponding join node could be located in
different components, which is not supported by PCM. To
avoid this problem, we decided that the fork node in UCM
defines, in which component the resulting action in PCM

Figure 15: UCM2PCM Mappings - Loops

will be located. The join node is automatically assumed to
be located in the same component.

Secondly, there is a problem with nesting. Like in PCM,
all branching constructs can be nested. The use of joins
in UCM can lead to a “dangling join” problem. Therefore,
the transformation is restricted to only hierarchical nesting.
This implies that each join, which is not part of a loop,
belongs to the latest opened fitting fork. The UCM2PCM
transformation contains a special algorithm [27] to check, if
the branching in a UCM is valid.

3.8 UsageScenarios
The built-in rudimentary scenario support in UCMs does

not match the capabilities of PCM. Therefore, we decided
that UsageScenarios have to be modeled explicitly with
UCMs. This is possible with hardly any additional effort
and allows us to also model sequential EntryLevelSystem-
Calls with branches and loops.

A UCM component of type “Actor” represents a Usage-

Scenario, as depicted in Fig. 16. In the meta data, the
workload can be specified with the same properties as in
PCM. If the workload is open, the interarrival time of new
users has to be specified; if it is closed, then the population
and the think time are necessary parameters.

The whole path of the scenario including the StartPoint

has to be located inside the “Actor” component. This al-
lows the transformation to distinguish between a normal
path through the software system and a UsageScenario.
Branches and Loops can be built like in a normal UCM
path. The Responsibilities inside a scenario are trans-
lated into EntryLevelSystemCalls, instead of Internal-

Actions. Therefore their name has to be the same as the
name of the StartPoint representing the SystemProvided-

Role that should be called by the EntryLevelSystemCall.

Figure 16: UCM2PCM Mappings - UsageScenarios

3.9 Assumptions and Limitations
There are a few limitations for the use of the UCM2PCM

tool that are described in the following:

• Limited PCM feature support: Our approach
is not intended to fully support all PCM features;
instead, we propose a trade-off between ease-of use
and complexity of a tool. Thus, PCM variables and
guarded branches are not supported. Right now, only
fixed values or the PCM “Stochastic Expressions” [24]
can be used for performance annotations in UCMs.
It is also not possible to create a custom Resource-

Environment. Allocating two AssemblyContexts, im-
plementing the same component, onto different hard-
ware resources is infeasible, due to UCM meta model
limitations.

• Limited input assistance: The jUCMNav editor for
creating UCMs [22] has limited input assistance. Per-
formance annotations need to be added in the meta
data of each UCM node, as key-value pairs. This is
not convenient, as the user needs to know the names
of all performance annotations. At design time, in the
UCM editor, there is no possibility to validate a UCM
model and to indicate errors to a user. This is only
possible after modeling, by running the UCM2PCM
transformation.

• No reverse transformation: After transforming a
UCM into a PCM model, this model can be further
refined in PCM. Thus, there is no reverse transforma-
tion yet, to transfer the changes back into the UCM.
However, it would be desirable to regain an easy pre-
sentable UCM representation of the refined perfor-
mance model.

3.10 Implementation
Fig. 17 shows a high-level sketch of the UCM2PCM

tool chain. The UCM2PCM prototype is implemented as
an Eclipse plug-in. The transformation uses the Eclipse
Model to Model (M2M) transformation framework and
is implemented in QVT Operational [17] (approx. 3000
lines of code). UCMs can be created with the jUCMNav
editor [22] based on the Graphical Modeling Framework
(GMF). UCM2PCM can then be invoked from inside Eclipse
accepting a UCM model as input. The resulting PCM model
can be further refined by editing it with the PCM Work-
bench [6], which is also based on GMF.

The transformations from the resulting PCM model into
the different performance models are out of the scope of
this paper. Becker et al. [2] describe the transformation
of PCM instances into extended queuing networks, which
are then solved using the discrete-event simulator SimuCom.
Koziolek et al. [13] map PCM instances to layered queuing
networks, which are then solved using the fast, heuristic
layered queueing network solver. Meier et al. [15] explain
how to map PCM instances to queueing Petri nets, which
are solved by approximate analytical solvers or simulation.

The whole tool chain is open source and available free of
charge.

4. EVALUATION
To validate UCM2PCM, we need to show that its map-

ping of model elements is valid and the tool is useful. Thus,

Figure 17: UCM2PCM Toolchain

this section evaluates (a) the accuracy of the transforma-
tion (i.e., the correct mapping) and (b) the usability of the
UCM model. To address (a), we first ran a number of in-
ternal tests with a number of artificial models which are
not detailed here. Afterwards, we transformed performance-
annotated UCMs of three different case study systems into
the respective PCM models (Section 4.1). We then ran
a series of experiments (Section 4.2) and compared the
simulation results of these models with simulation results
from former PCM models of these systems (Section 4.3).
A low difference between both simulation results demon-
strates that UCM2PCM successfully bridges semantic gaps
between UCM and PCM. To address (b), we let six users
model a UCM and apply the UCM2PCM transformation
(Section 4.4). We then asked them for feedback in a user
survey. While the low number of users is not statistically
relevant to draw general conclusion, it provides a first hint
on the usability of the approach.

4.1 Systems under Study
We applied UCM2PCM on three heterogeneous, mid-sized

systems, to increase the external validity of our approach.
The models also demonstrate that UCM2PCM can be used
to model and process complex control flows and is there-
fore well-suited for industrial control systems. The analyzed
models are:

• Media Store: This system (Fig. 1) is a plain Java web
application for storing and retrieving audio or video
files using a MySQL database. The model reflects a
use case where a digital watermark is added to down-
loaded files for copy protection. The model contains
a hard disk resource, which is accessed when retriev-
ing files. Resource demands for the Media Store have
been measured using manual instrumentation of the
Java implementation [2]. The model comprises 19 re-
source demands and a closed workload.

• SPECjAppServer: SPECjAppServer is an industry-
standard benchmark, designed to measure the perfor-
mance of application servers conforming to the Java
EE 5.0 or later specifications. It is modeled after an au-

tomobile manufacturer, where dealers place customer
orders or interact with suppliers. The system is im-
plemented as a Java Enterprise application, deployed
on two servers using an Oracle database. The 15 re-
source demands in the model have been determined
using an estimation technique based on measured re-
sponse times and resource utilization [4].

• Business Reporting System: The BRS (Fig. 18)
is loosely modeled after a management information
system, formerly analyzed at Carlton University [30].
Users can retrieve live business data from the system
and run statistical analyses. The analyzed configu-
ration comprises two open workload usage scenarios,
nine components, and four servers. The 37 resource
demands of the BRS are based on estimations. Fig. 18
depicts a high-level overview of five of the most im-
portant UCM paths in the model. The model includes
UCM Stubs with nested UCMs that are mapped to
PCM CompositeComponents. Fig. 19 shows the PCM
repository resulting from the UCM2PCM transforma-
tion.

4.2 Experiments
Based on the available PCM instances of the systems,

we manually created corresponding UCMs, using jUCM-
Nav 4.3.0. We had to resolve parameter dependencies from
the models (e.g., converting guards on branches into prob-
abilities or calculating resource demands by substituting
the required parameters), since they are not supported by
UCM2PCM. The resulting UCMs contained branch proba-
bilities, loop counts, and resource demands.

Because of the missing parameterization concepts in
UCM, we used the mean resource demands instead of pa-
rameterized resource demands in the model. As discussed
in Section 3.9, a mapping of all PCM concepts is neither
possible nor intended. Thus, we expect a certain deviation
of prediction results.

For the experiments, we transformed the UCMs into PCM
models and then ran the discrete-event simulator Simu-
Com [2]. We also ran SimuCom on the former PCM models
and then compared both results. We used Eclipse 3.7, PCM

Figure 18: UCM of the high-level Business Reporting System. Nested UCM Stubs and the corresponding UCM usage model
are not shown here.

Figure 19: PCM repository resulting from the transformation of the BRS system with UCM2PCM

3.3 running on a Windows 7 PC with 16 GB RAM and an
Intel Core i7-2720QM CPU at 2.20 GHz. Each simulation
run took less than five minutes to execute.

4.3 Validation of Accuracy
Tab. 1 shows different performance metrics for the sys-

tems, both from simulating the original model and from
simulating the UCM-based models. The table reports mean
and standard deviations of response times and throughputs
in seconds, the mean resource utilizations as percentages.

The table shows that the difference between the original
model and the UCM-based models is below 10 percent in
most cases. The standard deviation of the MediaStore re-
sponse time shows a difference of 14 percent compared to
the original model, which probably could have prevented by
using the distribution functions instead of mean values as
resource demands. The mean response time for the BRS
show an 11 percent higher difference. In this case, the dif-
ference resulted from several simplications that had to be
introduced into the BRS UCM.

Despite some differences in the simulation results, we
deem the accuracy of UCM2PCM sufficient to support early
design-time performance decisions. The low differences for
different kinds of models demonstrate that UCM2PCM was
successful in bridging most semantic differences in these
models.

Original

model

UCM

model

% Diff-

erence

MediaStore

Mean ResponseTime in sec (Scenario 1) 2,368 2,366 -0,1%

StdDev Response Time in sec (Scenario 1) 1,705 1,496 -14,0%

Throughput per sec (Scenario 1) 1,267 1,268 0,1%

Utilization (App Server CPU) 58,7% 58,8% 0,2%

Utilization (DB Server CPU) 2,0% 2,0% 0,0%

Utilization (DB Server HD) 87,6% 87,6% 0,0%

SPECjAppServer

Mean ResponseTime in sec (Scenario 1) 0,026 0,026 -1,0%

StdDev Response Time in sec (Scenario 1) 0,012 0,012 2,2%

Throughput per sec (Scenario 1) 10,407 10,092 -3,1%

Mean Response Time in sec (Scenario 2) 1,044 1,050 0,5%

StdDev Response Time in sec (Scenario 2) 0,014 0,013 -1,9%

Throughput per sec (Scenario 2) 9,626 9,817 1,9%

Utilization (WL Server) 34,7% 34,8% 0,3%

Utilization (Oracle Server) 17,5% 17,6% 0,6%

Business Reporting System

Mean ResponseTime in sec (Scenario 1) 8,853 7,974 -11,0%

StdDev Response Time in sec (Scenario 1) 3,295 3,163 -4,2%

Throughput per sec (Scenario 1) 0,531 0,540 1,7%

Utilization (Server1) 59,4% 60,2% 1,3%

Utilization (Server2) 65,3% 59,5% -9,7%

Utilization (Server3) 59,4% 60,4% 1,7%

Table 1: Evaluation results showing simulation results from
the original PCM models, and the UCM-based PCM models
created by UCM2PCM.

4.4 Validation of Usability
Tab. 2 shows the results from a user survey to evaluate

the usability of UCM2PCM. We let each participant (i.e.,
computer science graduate students and PhD students) work
through a tutorial and then model the Media Store system
as an exercise. Afterwards, the participants used a web tool
to anonymously submit their ratings for the approach and
the tool on the following scale: (--, -, -, +, ++, +++).

Questions

Pa
rt

ic
ip

an
t 1

Pa
rt

ic
ip

an
t 2

Pa
rt

ic
ip

an
t 3

Pa
rt

ic
ip

an
t 4

Pa
rt

ic
ip

an
t 5

Pa
rt

ic
ip

an
t 6

Pa
rt

ic
ip

an
t 7

How long (in minutes) did you evaluate UCM2PCM ? 30 45 40 40 150 30 45

How long (in minutes) did it take you to model the
"MediaStore with Cache" as UCM?

45 60 15 15 40 45 120

Speed: How fast basic performance models can be
created with the UCM2PCM tool?

++ ++ ++ ++ + +++ -

Complexity: Is the UCM2PCM tool also suited for
creating more complex models?

-- -- ++ + -- - ---

Comprehensibility:Is a UCM model, created with
UCM2PCM clear and comprehensible?

++ + +++ ++ + ++ ++

Simplification: Is it easier to create performance
models using the UCM2PCM tool, compared to
modeling with PCM?

- - ++ ++ + ++ +

Speed up: Does the usage of the UCM2PCM tool
speeds up performance modeling, compared to
modeling with PCM?

+ - ++ ++ + +++ --

Comprehensibility for experts: Are UCMs created
with the UCM2PCM tool more comprehensive than
PCM models?

++ -- ++ - + + +

Comprehensibility for non-experts: Are UCMs
created with the UCM2PCM tool more
comprehensive than PCM models?

+++ ++ +++ ++ ++ +++ ++

Table 2: User Ratings for UCM2PCM

While all of the participants were able to quickly produce
a UCM, a majority was afraid that UCMs would not be suit-
able for complex models. This might be a pointer for future
work, to further simplify and support the creation of large
models with the tool. The comprehensibility of the models
was deemed good or very good by all participants, especially
for non-experts. Thus is a first hint for the good applicabil-
ity of the tool for discussing designs with stakeholders from
the industrial automation domain.

The results of this user survey are not statistically signif-
icant due to the small sample size. Furthermore, the partic-
ipants might have been biased towards the novel approach.
A future empirical study should investigate a larger sam-
ple size, analyze different design alternatives, and compare
UCM modeling with other methods.

5. RELATED WORK
Surveys on model-based performance prediction [1], per-

formance evaluation of component-based systems [12] and
the future of software performance engineering [29] provide
a broad overview of recent approaches for performance mod-
eling. In addition, Smith and Williams [25] described funda-
mentals of software performance engineering and Menasce et
al. [16] detailed on capacity planning with queuing models.

Several other approaches focused on model transforma-
tions from performance-annotated UML models to various
performance models, such as queuing networks [9], stochas-
tic Petri nets [3, 10], and stochastic process algebra [26].
Petriu and Woodside use the UML Schedulability, Perfor-
mance, and Time (SPT) profile to enrich UML diagrams
with performance annotations [19]. In [28] they show the
usage of the UML MARTE (Modeling and Analysis of Real-
Time and Embedded Systems) profile, which is the successor
of the SPT profile.

As UML is the de-facto standard modeling language in
the software industry, these approaches have a higher prob-
ability of being broadly adopted in practice. However, the
UML specification and the UML MARTE specification for

performance annotations are complex and therefore difficult
to learn for stakeholders from industrial automation. In
contrast, UCMs provide a reduced set of model attributes
and intuitive visualizations and are thus more applicable in
our context. UML mainly focuses on object-oriented soft-
ware development, while we target component-based devel-
opment.

KLAPER [7] is a meta model language for performance
prediction of component based systems. With the KLAPER
Suite, there is a set of tools to actually create performance
prediction from the model. This is comparable to the
PCM tool chain, but KLAPER is no language to design
component-based models. It does not offer a front-end for
software design.

UCMs are more abstract than for example UML sequence
diagrams. They do not include all message and signals ex-
changed between components, but can focus on the impor-
tant, performance-relevant behaviors. Abstracting from un-
necessary details is an essential part of modeling and allows
to use the notation during early development stages. In
contrast to UML activity diagrams, the UCM mapping of
responsibilities to software components is arguably more in-
tuitive and visually more appealing than using the UML
swimlane notation.

Petriu and Woodside proposed a specific approach for per-
formance modeling with UCMs [21, 20]. They introduced
the scenario to performance (S2P) algorithm to transform
UCMs into LQNs. S2P allows to transform modeled asyn-
chronous, synchronous, and forwarding requests between
software processes to represent common communication pat-
terns in distributed systems. Compared to our approach S2P
resulted in a monolithic performance model (LQN), which
does not support a component-based development process.
It complicates exchanging individual components in the sys-
tem because of the lacking interface concept. Our target
model PCM supports reusable component models as well as
a decoupled resource model. The latter allows quickly at-
taching different resource environment models to the com-
ponent model so that sizing and capacity planning questions
can be answered quickly. Furthermore, tool support for S2P
is no longer available.

6. CONCLUSION & FUTURE WORK
Performance engineering is an important part of improv-

ing the quality of service of software systems, but usually
requires performance specialists to be involved in the de-
velopment process. The approach presented in this paper
lowers the entrance barrier for performance engineering by
combining the intuitively understandable modeling language
(UCM) with a sophisticated performance engineering ap-
proach (PCM). Software engineers can create UCMs and use
the defaults in the presented approach to transform them
into PCM instances. The simulation and analysis tools of
the PCM workbench deliver performance values that can be
used for the evaluation of design alternatives.

If more detailed performance properties are required, the
generated PCM instances can be further adapted. Thus, the
approach enables software engineers to model performance
properties on different levels of abstraction. Data-flow ori-
ented systems can be described more easily and clearly than
with PCM alone, without losing the benefits of the PCM
simulation and analysis techniques.

The integration of UCMs into the PCM development

process and modeling workflow has to be investigated fur-
ther. A reverse transformation that allows developers to
(re)transform PCM models into the more comprehensible
UCM is desirable. Furthermore, a validation of UCM mod-
els is currently lacking at editing time. Once model trans-
formations are fast enough to check the consistency of input
models on-the-fly in a similar way to text-based code as-
sistance in state-of-the-art CASE tools, the approach could
also be extended to component models other than the PCM,
with UCMs serving as an easily understandable modeling
language in early phases of the software design process.

7. ACKNOWLEDGMENTS
The authors would like to thank all participants of the

user study for their support.

8. REFERENCES
[1] S. Balsamo, A. Di Marco, P. Inverardi, and

M. Simeoni. Model-based performance prediction in
software development: A survey. Software
Engineering, IEEE Transactions on, 30(5):295–310,
2004.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. JSS, 82:3–22, 2009.

[3] S. Bernardi and J. Merseguer. Performance evaluation
of uml design with stochastic well-formed nets. Journal
of Systems and Software, 80(11):1843–1865, 2007.

[4] F. Brosig, N. Huber, and S. Kounev. Automated
Extraction of Architecture-Level Performance Models
of Distributed Component-Based Systems. In 26th
IEEE/ACM Intl. Conference On Automated Software
Engineering (ASE), November 2011.

[5] R. Buhr. Use case maps: A new model to bridge the
gap between requirements and design. In OOPSLA
workshop – Requirements Engineering: Use Cases and
More, Sunday October 15, 1995.

[6] Chair Software Design and Quality, Karlsruhe
Institute of Technology. Palladio: The software
architecture simulator.
http://www.palladio-simulator.com/, August 2012.

[7] A. Ciancone, A. Filieri, M. Drago, R. Mirandola, and
V. Grassi. Klapersuite: An integrated model-driven
environment for reliability and performance analysis of
component-based systems. Objects, Models,
Components, Patterns, pages 99–114, 2011.

[8] T. de Gooijer, A. Jansen, H. Koziolek, and
A. Koziolek. An industrial case study of performance
and cost design space exploration. In Proc. 3rd Int.
Conf. on Performance Engineering (ICPE’12), pages
205–216. ACM, April 2012.

[9] A. Di Marco and P. Inverardi. Compositional
generation of software architecture performance qn
models. In Proc. 4th Working IEEE/IFIP Conference
on Software Architecture (WICSA’04), pages 37–46.
IEEE, 2004.

[10] S. Distefano, M. Scarpa, and A. Puliafito. From uml
to petri nets: The pcm-based methodology. IEEE
Transactions on Softw, 37(1):65 –79, jan.-feb. 2011.

[11] International Telecommunication Union (ITU). User
requirements notation (URN) - Language definition,
z.151 edition, 11 2008.

[12] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Evaluation, 67(8):634–658, 2010.

[13] H. Koziolek and R. Reussner. A model transformation
from the palladio component model to layered
queueing networks. Performance Evaluation: Metrics,
Models and Benchmarks, pages 58–78, 2008.

[14] H. Koziolek, B. Schlich, C. Bilich, R. Weiss, S. Becker,
K. Krogmann, M. Trifu, R. Mirandola, and
A. Martens. An industrial case study on quality
impact prediction for evolving service-oriented
software. In Proc. 33rd ACM/IEEE Int. Conf. on
Software Engineering (ICSE’11) Software Engineering
in Practice Track, pages 776–785. ACM, May 2011.

[15] P. Meier, S. Kounev, and H. Koziolek. Automated
transformation of component-based software
architecture models to queueing petri nets. In Proc.
19th IEEE/ACM Int. Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’11), July
2011.

[16] D. Menasce, V. Almeida, L. Dowdy, and L. Dowdy.
Performance by design: computer capacity planning by
example. Prentice Hall, 2004.

[17] Object Management Group (OMG). Meta Object
Facility (MOF) 2.0 Query/View/Transformation
(QVT). http://www.omg.org/spec/QVT/Current,
January 2011.

[18] Object Management Group (OMG). The UML Profile
for MARTE: Modeling and Analysis of Real-Time and
Embedded Systems.
http://www.omg.org/spec/MARTE/, September
2011.

[19] D. Petriu and M. Woodside. A metamodel for
generating performance models fron uml designs.
Lecture notes in computer science, pages 41–53, 2004.

[20] D. Petriu and M. Woodside. Software performance
models from system scenarios. Performance
Evaluation, 61(1):65–89, 2005.

[21] D. B. Petriu. Layered software performance models
constructed from use case map specifications. Master’s
thesis, Carleton University Ottawa, 2001.

[22] Project SEG. jUCMNav Project Website.
http://goo.gl/4JL3K, May 2012.

[23] C. Rathfelder, S. Becker, K. Krogmann, and
R. Reussner. Workload-aware system monitoring using
performance predictions applied to a large-scale e-mail
system. In Proceedings of the Joint 10th Working
IEEE/IFIP Conference on Software Architecture
(WICSA) & 6th European Conference on Software
Architecture (ECSA), Helsinki, Finland, 2012.

[24] R. Reussner, S. Becker, E. Burger, J. Happe,
M. Hauck, A. Koziolek, H. Koziolek, K. Krogmann,
and M. Kuperberg. The Palladio Component Model.
Technical report, KIT, Fakultät für Informatik,
Karlsruhe, 2011.

[25] C. Smith and L. Williams. Performance Solutions: a
practical guide to creating responsive, scalable
software, volume 34. Addison-Wesley Boston, MA;,
2002.

[26] M. Tribastone and S. Gilmore. Automatic extraction
of pepa performance models from uml activity
diagrams annotated with the marte profile. In
Proceedings of the 7th International Workshop on
Software and Performance, pages 67–78. ACM, 2008.

[27] C. Vogel. A use case map editor for rapid performance
modeling and reasoning. Master’s thesis, Karlsruhe
Institute of Technology (KIT), 2012.

[28] M. Woodside. From annotated software designs (uml
spt/marte) to model formalisms. In Proceedings of the
7th international conference on Formal methods for
performance evaluation, pages 429–467.
Springer-Verlag, 2007.

[29] M. Woodside, G. Franks, and D. Petriu. The future of
software performance engineering. In 2007 Future of
Software Engineering, pages 171–187. IEEE Computer
Society, 2007.

[30] X. Wu and M. Woodside. Performance Modeling from
Software Components. In Proc. 4th International
Workshop on Software and Performance (WOSP’04),
volume 29, pages 290–301, New York, NY, USA, 2004.
ACM Press.

