
Perseverance in Sustainable Software Architecting

Roland J. Weiss
ABB Power Generation
Via Enrico Albareto, 35

16153 Genova, Italy

roland.weiss@it.abb.com

Daniele Repetto
ABB Power Generation
Via Enrico Albareto, 35

16153 Genova, Italy

daniele.repetto@it.abb.com

Heiko Koziolek
Industrial Software Systems
ABB Corporate Research

Ladenburg, Germany

heiko.koziolek@de.abb.com

ABSTRACT
In the recent past, there has been an increased interest in better
managing the evolution of existing software systems and
improving the software engineering practices for this now
common task. In this paper, we take a look at the efforts at ABB
to advance in this area, with special emphasis on architectures of
long-living systems. The review consists of detailing the
introduced methods and tools, as well as sharing experiences from
applying them. In addition, we present two current case studies
from the industrial automation domain that will be used as
additional test fields for the developed methods.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures
– industrial automation, long-living software systems.

General Terms
Management, Measurement, Design, Experimentation.

Keywords
Sustainability, long-lived software systems, validation.

1. INTRODUCTION
Software is controlling many aspects of our daily life. Every day
new software is written and existing software is being updated and
evolved. For long-living industrial software systems, the majority
of investments flow into maintenance and evolution of the
systems instead of greenfield development. These software
systems with a life-span of more than 10 years have to be
constructed according to special requirements to their design,
structure, and internal quality. During their life-span, such
systems have to be able to evolve in response to changes in the
environment (i.e., hardware and software), usage profile (i.e.,
changed or increasing workload), and business demands (i.e., new
features, changed business processes). Because these requirements
may require expensive changes to a system, it is necessary to keep
efforts and costs within acceptable limits during maintenance and
evolution.

To address this pressing need, software evolution has become a
topic of active research recently again. Within ABB, we have

monitored these activities, as well as started several initiatives,
either on our own or with partners, in order to improve our
practices to sustainably evolve the software systems that we own.

From the economic sustainability point of view, we see three
characteristics as important in industrial software-intensive
systems: technical, organizational and financial sustainability.

Technical sustainability in a software-intensive system is achieved
by selecting technologies that not only provide the required
qualities but also provide a platform for future maintainability and
evolution of long-lived systems.

Organizational sustainability ensures the right resources (people
and tools) will be available to ensure development is conducted in
the most efficient way.

Financial sustainability ensures the organization meets its
expected revenues from the developed software.

In this paper we focus mainly on approaches - and experiences
with them - to ensure technical sustainability.

2. A Toolkit for Sustainable Software
Architecting and Engineering
In this section we will present the approaches we have
investigated in order to improve sustainable software development
within ABB. These approaches both consist of existing methods
and tools, adaptations, and unique work.

2.1 Sustainability Guidelines
After an extensive literature survey [9] we have distilled the most
important practices for sustainable software development into a
small handbook called “Software Sustainability Guidelines”. The
document provides a guide for explicit consideration of
sustainability during system design, development, operation, and
maintenance. Its objective is to support problem analysis and
decision making for active incorporation of sustainability aspects.
The structure of the document is aligned with the software
lifecycle phases: Requirements, Architecture, Design,
Implementation, Validation and Verification, and Maintenance. It
also conveys some general aspects that are relevant for multiple
lifecycle phases.

Each section provides an essential selection of approaches
recommended for improving sustainability in the respective phase.
Each approach and each section is accompanied with a list of risks
that have to be kept in mind when applying the respective
approach and a checklist that serves as a quick reference covering
the most important sustainability questions of the respective
phase.

In order to quickly grasp the essence of each approach, the
descriptions follow a common description template. In the header,
we summarise the name, relevance for evolution, addressed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Industry Day’12, June 27, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1349-0/12/06...$10.00.

11

problem of the approach, application, and learning efforts. The
body section provides a short description, names supporting tools,
explains usefulness, and enumerates risks and pitfalls.

The main audience for the guideline are development teams
within ABB. There are at two possibilities how to select methods
from this guide: look up per development phase or look up per
evolution scenario. The latter one was introduced in order to have
a fast way of checking only sections that are relevant to a specific
evolution scenario that a development team faces. We have
defined and grouped a number of generic evolution scenarios for
software systems in the industrial automation domain based on a
number of interviews with researchers in this area.

In order to give a taste of the content of the guidelines, we list
both some of the present scenarios as well as approaches they
relate to.

Evolutions scenarios (examples):

 Replacement of the user interface technology
 Change of the operating system
 Enhance or add in-house components

Sustainability aspects (examples):

 Architecture-Level Modifiability Analysis
 Design: bad smells, anti-patterns
 Maintenance: Architecture consistency checking

At the moment, the document is only available for internal use.

2.2 TechSuRe
Over the lifetime of a long lived software intensive system the
(software) technologies used in the system will change. Changing
technologies in these systems is typically extremely costly and
painful for the organizations that have to perform these changes.
Hence, wrong technology choices can jeopardize the economic
viability of such systems in the long run. With TechSuRe [3] we
introduced a method for assessing technology sustainability in
long lived software intensive systems. The method makes
sustainability issues an explicit part of a technology assessment
and offers guidance on how to gauge the associated sustainability.
Together, this supports making appropriate technology choices for
long lived software intensive systems.

The TechSuRe method uses a bottom-up approach to establish
expected sustainability risk and sustainability. The method starts
with quantifying different indicators in a three-level discrete scale
(e.g. high, medium, low). Next a reasoning framework is provided
that, given the quantification of the individual indicators, guides
one to reach conclusions.

The reasoning framework is represented as a set of tables where
the left column holds the results of the reasoning given the
indicators. We have not ranked the importance of each indicator,
this is implicitly handled in the resulting estimate.

The result from applying our reasoning framework is a statement
about the sustainability and associated sustainability risk (given as
number) for using a particular software technology in a specific
software intensive product. Consequently, the sustainability is
only relevant in the context of a particular use.

Note, that the precise numbers are not the main contribution of the
method. It is the process of analyzing a software technology from
a sustainability point of view that really is the strength of the
method.

2.3 Q-ImPrESS
Model-driven development holds the promise of smooth evolution
once the models are defined and all relevant meta-data is in place.
As part of the EU-funded FP7 research project Q-ImPrESS [5] we
have investigated usage of model-driven development for
enabling software architects to predict the impact of architectural
design decisions on performance, reliability, and maintainability
of a service-oriented software system. With such tooling in place,
evolution of our software systems can be improved, resulting in
shorter update cycles and higher conformance to the quality goals.

To evaluate the various features of the Q-ImPrESS method, we
selected a process control system (PCS) from the automation
domain. A PCS manages time-dependent industrial processes, e.
g. power generation, pulp and paper handling, and oil and gas
processing. It periodically collects sensor data like temperature,
flow, and pressure from various field devices and visualizes it for
human operators.

The operators use the system to manipulate actuators in the
process, e. g. pumps, valves, and heaters. The system can
automatically execute predefined actions and informs operators of
irregular conditions using alarms.

After the EU project finished, we have applied part of the Q-
ImPrESS method for guiding a redesign of a Robotics
infrastructure system [2].

2.4 Tracking Sustainability Indicators
For the same kind of process control system that we applied the
Q-ImPrESS method, we have also introduced a reporting
framework for several novel architecture-level code metrics from
recent literature [6].

We found more than 40 architecture-level code metrics in
literature. They measure different aspects of sustainability, but
most of them are related to the modularization quality of the
system. It is argued that a clean modularization of a large system
benefits maintainability, as it reduces system complexity, allows
faster system understanding, and enables more easy replacement
of modules during system evolution. Such modularization metrics
concern for example, similarity of purpose within modules,
encapsulation, compilability, extendability, testability, and
module size. In order to track sustainability characteristics over
time, the tool plots the evolution of user-selected metrics for
selectable time intervals. It is also possible to directly compare
only two builds. The type of graph can be chosen according to the
capabilities of the spreadsheet tool. This typically includes the
linear plots of Fig. 10 as well as Kiviat diagrams.

In addition, we added tooling to the build process for architecture
enforcement. This is based on the face that over time the initial
system structure may erode and layering rules may be broken.
Violated layering rules severely impact maintenance costs, as they
negate the benefits of modularization and complicate independent
module compilability, extendibility, and testability [8].

This decay is often introduced unintentionally because of missing
enforcement. Either the design documents become out of sync
with the system or developers neglect to check for layering rule
violations in subsequent builds. Two reasons are that layering
violations do not have an immediate effect on functionality and
that the architectural design documentation is often merely used
for documentation purposes.

The tools NDepend (for C#) and CppDepend (for C++) check
generic dependency rules out-of-the-box, such as disallowed
dependency cycles between .NET assemblies. Based on fact

12

databases extracted from the source code, they produce design
structure matrices (DSMs) for easily analyzing module
dependencies and identifying cyclic dependencies. Additionally,
developers can specify custom queries to the fact databases using
the declarative Code Query Language (CQL). We used this
extension mechanism to define CQL queries checking allowed
dependencies from the architecture model.

2.5 Sustainability Evaluation
Finally, as part of several projects we have conducted architecture
evaluations according to established methods that are used in
industry [1][4]. We emphasized quality attributes related to
sustainability, e.g. maintainability, adaptability etc.

One case study compared two versions of a system with respect to
sustainability scenarios. The first version of the system reflects the
architecture of currently available products, and the second
version reflects the future architecture to address changing
customer and market requirements. We have chosen ALMA as it
focuses on modifiability as a single quality attribute which is also
specific to our case study. It does not perform a more general
trade off analysis between multiple quality attributes such as the
Architecture Trade-off Analysis Method (ATAM). Second, it is
less depending on the experience of the assessors than others such
as SAAM. For example, it provides more guidance by the
applications of the definition of the goals, the parts of the
architecture to be considered as well as the steps to be performed
in general. All of these aspects support a more repeatable method.

The following table provides a summary of the analysis of the
change scenarios selected for the ALMA analysis. Each change
scenario was analysed for both the current and future system, and
the resulting sustainability rating is listed in the following table
for the comparison.

The “sustainability rating” documents how the analysis rates the
support for the individual scenario according to the available
documentation. Possible ratings are:

 High: The scenario is explicitly considered in the
architecture.

 Medium: The scenario is not explicitly considered but
no blocking issues have been identified.

 Low: Issues that might block this scenario have been
identified in the architecture and documentation.

Table 1. Overview of the sustainability ratings for the change
scenarios analyzed with ALMA

Scenario Current Future

Third Party Component Medium Medium

UI Changes: Replacement of the User
Interface Technology

High High

Functionality level changes: Enhance
in-house components

Low Medium

Data level changes: Support for
processing larger amounts of data

Low Medium

Application level Changes: Change of
the Operating System

Medium High

Hardware Level Changes: Exploit
Multi-Core Processors

Low High

3. Experiences from Industrial Applications
In the previous section we have given an overview of activities
executed at ABB (often with partners) in order to improve
sustainable software architecting and engineering. In this section
we summarize the key experiences from these activities.

3.1 Sustainability Guidelines
The guidelines have so far been applied to only one internal case
study. Interestingly enough, we identified two key areas to
improve the investigated software architecture and related
processes:

 Traceability is not considered for requirements and
architecture design.

 The framework is planned with a Copy-Paste-
Instantiation for individual products, which might be a
treat to the systems’ sustainability.

Also, the results of this first case study triggered several requests
for the document. Application of the guidelines document is now
active in a few development projects.

3.2 TechSuRe
Applying TechSuRe typically does not require huge efforts from
the development teams. Thus, it has been well perceived and
applied in the last two years in roughly a dozen projects, both
research and product development.

Overall, the feedback is positive. With some support from the
researchers that created the method, it is easy enough to apply and
provides the right amount of input for making key technology
decisions.

3.3 Q-ImPrESS
Q-ImPrESS has of course been applied to the demonstrator that
was part of the EU project. Beyond that we have used the
performance prediction capabilities in another project [2].

On the one hand are the results promising, and development teams
express interest in the results. However, the learning curve is
steep, and the up-front investment in model creation and data-
collection is high [5].

3.4 Tracking Sustainability Indicators
The framework for sustainability tracking and architecture
enforcement has been integrated into the development process of
one major software product unit within ABB. Both aspects have
been well perceived as they are part of the build process and carry
low overhead. Violations from architecture conformance checks
have been added to the following sprint backlogs. The same is
true for corrective actions to keep the sustainability metrics within
the defined thresholds. Another major rollout within ABB of the
framework is planned this year.

3.5 Sustainability Evaluation
Architecture evaluations are well accepted practice within major
software development activities within ABB. They are either
executed by internal or external review teams. We have even
introduced a lightweight method for fast internal reviews. The one
application of ALMA was positive, but more experience is
required to make a final assessment with respect to cost/benefit of
this approach.

13

3.6 Summary
The previous paragraphs summarized our experience with various
approaches to improve sustainability. At this point we collect this
qualitative information in a table for quick reference.

Table 2. Overview of experience with sustainability methods

Method Ease-of-
use

Expe-
rience

Impact Active

Guidelines Medium Low Medium Medium

TechSuRe High High Medium High

Q-ImPrESS Low Medium High Low

Sustainability
Indicators

High Low Medium Medium

Evaluation Low Medium Medium Medium

4. Perseverance and Future Work

In the previous sections we have seen which approaches we have
selected and developed to further sustainable software systems
within our organization. There are two main challenges that we
still have to address to make these efforts sustainable themselves:

1. The methods have to be anchored in product
development units and relying on experts from research
units has to be reduced to a minimum.

2. A quantitative validation of the benefits of applying
these methods has to be done. This is a long term effort
and requires support from the whole organization.

As can be seen from Table 2, point 1 is on a good way. However,
without proving the benefits also quantitatively, there is a high
risk that they are getting used less and get obsolete. And we still
have to define a good framework for this validation, thus we are at
the research level with this point. At a high level, the key
performance indicators are:

 Time between releases with certain added functionality
 Budget dedicated for maintenance/evolution activities

In the automation domain, and related to process control systems
specifically, there are two interesting areas that we want to
further study in the context of sustainability:

Connectivities: PCS have to be able to connect to controllers and
other devices from legacy systems, competitor systems, and of
course the current line-up. As most PCS vendors offer several
such systems, a good sharing approach is of interest, at the same
time increasing the sustainability demands.

Process graphics: PCS present the current system state from
process graphics. However, significant changes in customer
demands (portable devices, levels of details, pan-and-zoom,
portable web access) are asking for sustainable solutions.

5. Related Work

The first systematic taxonomy of software evolution is typically
attributed to Lehman with the notorious Lehman’s Laws. This is a
good starting point for classifying work related to evolution [7],
which is the starting point for sustainability goals.

For a detailed survey of related work we recommend the extensive
collection in [9].

6. Conclusions
We have presented the current practices and related experiences
regarding sustainable software development at ABB. While we
have made progress in recent years, we also have identified
significant challenges in order to make sustainable software
development sustainable itself.

7. ACKNOWLEDGMENTS
Our thanks go to the numerous colleagues that worked with us in
the last years to establish the practice of sustainable software
architecting at ABB, both cooperation partners and colleagues:
Aldo Dagnino, Pia Stoll, Anton Janssen, Tommy Kettu, Magnus
Larsson, Martin Naedele, Eric Harper, Ralf Reussner, Steffen
Becker, Johannes Stammel, Zoya Durdik, Benjamin Klatt, Klaus
Krogmann, Mircea Trifu, Raffaela Mirandola, Anne Martens, and
the whole Q-ImPrESS consortium.

8. REFERENCES
[1] Ali Babar, M., and Gorton, I, 2004. Comparison of Scenario-

Based Software Architecture Evaluation Methods. 11th Asia-
Pacific Software Engineering Conference (APSEC'04), 2004.

[2] De Gooijer, T., Jansen, A., Koziolek, H., and Koziolek, A.,
2012. An industrial case study of performance and cost
design space exploration. In Proc. 3rd Int. Conf. on
Performance Engineering (ICPE'12), ACM.

[3] Jansen, A., Wall, A., Weiss, R., 2011. TechSuRe - A Method
for Assessing Technology Sustainability in Long Lived
Software Intensive Systems. In Proc. 37th EUROMICRO
Conference on Software Engineering and Advanced
Applications, pp. 426-434.

[4] Kazman, R., Klein, M., Clements, P., 200. ATAM: Method
for Architecture Evaluation. Carnegie Mellon University
CMU/SEI-2000-TR-004.

[5] Koziolek, H., Schlich, B., Bilich, C., Weiss, R., Becker, S.,
Krogmann, K., Trifu, M., Mirandola, R., and Martens, A.,
2011. An industrial case study on quality impact prediction
for evolving service-oriented software. In Proc. 33rd
ACM/IEEE Int. Conf. on Software Engineering (ICSE'11)
Software Engineering in Practice Track, 776-785. ACM.

[6] Koziolek, H., 2011. Sustainability evaluation of software
architectures: A systematic review. In Proc. 7th Int.
ACM/SIGSOFT Conf. on the Quality of Software
Architectures (QoSA’11), 3–12, ACM.

[7] Cook, S., Harrison, R., Lehman, M.M., and Wernick, P.,
2006. Evolution in Software Systems: Foundations of the
SPE Classification Scheme. J. Softw. Maintenance &
Evolution: Res. & Pract. 18 (1): 1–35. doi:10.1002/smr.314

[8] Sarkar, S., Rama, G. M., and Kak, A. C., 2007. API-based
and information-theoretic metrics for measuring the quality
of software modularization. IEEE Trans. Softw. Eng., vol. 33,
pp. 14–32, January 2007.

[9] Stammel, J., Durdik, Z., Krogmann, K., Koziolek, H., and
Weiss, R., 2011. Software evolution for industrial
automation systems - literature overview. Technical Report
2011-2, Karlsruhe Institute of Technology.

14

